Please use this identifier to cite or link to this item: http://www.repositorio.ufop.br/jspui/handle/123456789/3885
Title: Shaking a methane fizz : seismicity from the Araguainha impact event and the Permian–Triassic global carbon isotope record.
Authors: Tohver, Eric
Cawood, Peter Anthony
Riccomini, Claudio
Lana, Cristiano de Carvalho
Trindade, Ricardo Ivan Ferreira da
Keywords: Permian–Triassic mass extinction
Impact event
Carbon isotope excursion
Seismicity
Methane
Issue Date: 2013
Citation: TOHVER, E. et al. Shaking a methane fizz : seismicity from the Araguainha impact event and the Permian–Triassic global carbon isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 381, p. 0001, 2013. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0031018213003313>. Acesso em: 04 set. 2014.
Abstract: The Late Permian and Early Triassic periods are marked by large fluctuations in the carbon isotope record, but the source(s) of the disturbance to the global carbon cycle and the link to the end-Permian mass extinction arewidely debated. This contribution explores the possible isotopic effects of an impact event into the hydrocarbon-rich rocks of the Paraná–Karoo Basin. Recent U–Pb and 40Ar/39Ar dating of the 40 km Araguainha impact structure of central Brazil reveals an age of 254.7 ± 2.5 Ma (2σ error) for this event. The calculated energy (10^5–10^6 MT of TNT equivalent) released by this impact is less than threshold values of 10^7–10^8 MT TNT equivalent for global mass extinctions. Thus, the Araguainha crater is unlikely to have been the cause of the end-Permian biotic crisis. However, the combined seismic effects from the impact itself and the post-impact collapse of the 20–25 km diameter transient crater to its present 40 km diameter would result in large magnitude earthquakes (Mw 9.3–10.5) and tsunamis in the shallow marine Paraná–Karoo Basin. Slope failure and sediment liquefaction are predicted to have occurredwithin a 700–3000 km radius of the crater, causing large-scale release of methane from organic-rich sediments of this basin, including the oil shale horizons of the Iratí Formation. New geological evidence for seismicity in the Paraná Basin at the time of impact is presented, together with a compilation of existing carbon isotope data from the Paraná Basin, which demonstrate a widespread pattern of disturbance consistent with the release of methane. These two datasets suggest that both seismicity and methane release took place within ca.1000 km of the impact site, with mass balance calculations suggesting ca. 1600 GT of methane were released into the atmosphere at this time. Methane release at this scale would have significant climate effects and would contribute to a sharp (<1 ka) negative shift in δ^13 C values at the time of the impact, which should be distinguishable from the more gradual shift over 0.5–1 Ma caused by contemporaneous intrusion of the Siberian traps.
URI: http://www.repositorio.ufop.br/handle/123456789/3885
metadata.dc.identifier.doi: https://doi.org/10.1016/j.palaeo.2013.07.010
ISSN: 0031-0182
metadata.dc.rights.license: O periódico Palaeogeography, Palaeoclimatology, Palaeoecology concede permissão para depósito deste artigo no Repositório Institucional da UFOP. Número da licença: 3466020705103.
Appears in Collections:DEGEO - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ARTIGO_ShakingMethaneFizz.pdf1,51 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.