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Abstract

This work is concerned with the development of an efficient and general algorithm to solve frequency-domain problems modelled by the
boundary element method based on a sub-region technique. A specific feature of the algorithm discussed here is that the global sparse matrix
of the coupled system is implicitly considered, i.e. problem quantities are not condensed into interface variables. The proposed algorithm
requires that only the block matrices with non-zero complex-valued coefficients be stored and manipulated during the analysis process. In
addition, the efficiency of the technique presented is improved by using iterative solvers. The good performance of pre-conditioned iterative
solvers for systems of equations having real-valued coefficients, well demonstrated in the literature, is confirmed for the present case where
the system matrix coefficients are complex. The efficiency of the algorithm described here is verified by analysing a soil-machine foundation
interaction problem. CPU time and accuracy are the parameters used for estimating the computational efficiency. © 2001 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

The pioneer work by Cruse [1] was the first to establish
the mathematical basis for numerical modelling of elastic
wave propagation problems by the boundary element
method. Cruse [1] used integral equations in the Laplace
transformed domain and a numerical algorithm of inversion
due to Papoulis [2] to obtain time-domain responses. It is
important to mention that presently Durbin’s [3] inversion
algorithm is employed rather than Papoulis’ [2].

Cruse’s [1] work inspired later on the development of
BEM models based on the Fourier transform. The derivation
of a BEM approach in Fourier domain was straightforward
(see Ref. [4]) as such a formulation could be easily derived
from Cruse’s [1] work by replacing the complex Laplace
parameter s by iw. FFT algorithms of inversion were used in
this case to find time-domain solutions.

BEM procedures based either on Laplace or Fourier
transforms (see Ref. [5]) have remained as important
alternatives to time-domain BEM formulations (see Refs.
[6,7,5]). They are useful alternatives to standard time-
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domain BEM approaches and essential either when time-
domain fundamental solutions have not been obtained but
the corresponding frequency (or Laplace) domain ones
are known, or when physical properties are frequency-
dependent. A complete review of the main contributions
up to 1996 to the topic boundary element methods in
dynamic analysis can be found in Beskos [8,9].

The present paper is concerned with the development of a
general and efficient BEM sub-region approach to analyse
soil-machine foundation interaction. Only harmonic loads
are considered here, however, transient excitations can also
be dealt with as a trivial extension of the harmonic case
[1,4]. Frequency-domain engineering analyses of infinite
domain problems can be conveniently carried out by the
boundary element method or by BEM/FEM coupling algo-
rithms. Frequency-domain approaches deal with complex-
valued variables that are commonly used to describe
amplitude and phase angle of both loading and response.
Real engineering analyses may require modelling non-
homogeneous infinite media, e.g. soil—structure interaction
problems. When the soil is composed of horizontal layers,
simple procedures can be employed leading to very
economic and accurate numerical models, e.g. models
based on superposition of planes waves [10]. However,
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when layers are not horizontal, more general procedures
must be used [11], BEM being one of the most suitable.
In this case, the BE region must be discretized using the
sub-region technique.

As it is well known, substructuring strategies extend
considerably the range of applications of boundary-integral-
based methods. General aspects of sub-regions techniques
can be found in known textbooks on boundary element
methods [12,13]. More specific aspects concerning sub-
structuring techniques, which are mainly related to the
efficient solution of the blocked, sparse, and unsymmetrically
coupled final systems, are addressed to in a series of papers
published in the last 20 years [14—19]. These works adopt
either non-condensed or condensed strategies and are based
on the use of direct solvers. In this paper, a non-condensed
iterative-solver-based strategy is presented.

Efficient procedures must be used in order to analyse
complex problems in small computers. The algorithm
must use the minimum storage area and yet be fast. These
two topics are addressed to in this paper. Storage area is
reduced to a minimum by not storing null coefficients and
iterative solvers are used to reduce CPU time. The good
performance of iterative solvers for real-valued coefficient
systems of Egs. (20)—(23) is also confirmed for the present
case, where the system matrix coefficients are complex.

2. Frequency-dependent boundary integral equations

When the analysis is frequency-dependent the originally
time-dependent problem can be converted to an only-
boundary value problem governed by

WOUED + | Pitx: & 0)Ui(x. ) dTTx)
- [ vits g o aro
+ JQ Ui(x; & @)Bi(x, ) dOX(x), ey
where c;; is the integral-equation jump term, equal to jump

terms for elastostatics, and U;;((x; & w) and P;',}(x; & w) are
the frequency-dependent fundamental solutions given by
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When known complex boundary conditions
U(x, o) = U(x, w) ifxe I, “)
and
P(x, w) = P(x, w) if x €I, 5)

are considered, the boundary integral Eq. (1) gives the
complete boundary solution of the frequency-dependent
problem (in terms of its complex amplitudes).

Adopting usual discretization procedures, the boundary
integral Eq. (1) is converted to the following frequency-
dependent system of algebraic equations:

H(o)U(0) = G(o)P(w), 6)

after introducing the boundary conditions shown in Egs. (4)
and (5), Eq. (6) can be written as

A(w)x(w) = b(w), (N

whose complex solution vector X(w) contains the unknown
boundary values.

It should be noted that a special integration process based
on a triangular polar co-ordinate transformation, optionally
with use of integration subelements [7,24], was employed
for obtaining the complex coefficients of the system of
Eq. (6) associated with weakly singular integrals. Coeffi-
cients computed from Cauchy principal values — the diag-
onal block matrices coefficients (DBMC) — were evaluated
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indirectly by means of the rigid body displacement criterion.
In order to apply this criterion to frequency-dependent
problems, the following relationship must be considered
[25]:

ci(® + P hy(€ w)

= I:Cik(g) + "hy (& w)]

nse(§)
+ Zl Ll I:P?k(x; & w) — “ph(x; g)]%(r, 5) dI(x),

®)

where nse(£) is the number of singular elements around ¢
and

d)g(rs S)

is the shape function related to the singular point. Thus the

diagonal block matrices coefficients for frequency-
dependent problems are then determined from the sum of
the DBMC for a similar elastostatic analysis — obtained by
means of the rigid body displacement criterion — plus
contributions of non-singular integrals as indicated by
RHS of Eq. (8). Superscripts st and dyn on expression (8)
stand for statics and dynamics, respectively.

Another important point to be observed is that in the case
of semi-infinite domain problems a special mesh of enclos-
ing elements must be considered in order to apply the rigid
body displacement criterion [11]. Discrete Fourier trans-
form (DFT) and inverse discrete Fourier transform (IDFT)
algorithms can be employed to solve time-dependent
problems in infinite or semi-infinite domains, however in
this paper, only steady-state problems were considered.

3. The BE/BE coupling algorithm

In order to illustrate how the algorithm described in this

section works, the system matrix corresponding to a domain
divided into the three sub-domains shown in Fig. 1, is
depicted in Fig. 2. In fact the procedure followed in the
present paper is quite general, i.e. one can have as many
substructures as one wishes. Points 1 and 2 below, and the
comments presented subsequently describe the most impor-
tant features concerning the assemblage of the final system
matrix A(w) shown in Eq. (7).

1. Compatibility and equilibrium conditions, which for
instance at the interface between subregions i and j are
given by

V) =uv(x), ifxely 9)
and
p'(x) = —px), if xely (10)

must be introduced.

2. A search in order to identify the coupled nodes must be
carried out. It should be noticed that in the proposed algo-
rithm, a node cannot be coupled with more than one other.
As described in Fig. 1, node i is coupled with node j, node k
with node I/, and node m with node n. By introducing,
however, existing traction continuity conditions at nodes i,
J> k, I, m, and n the corresponding columns in G(w) matrix
can be superimposed, such that e.g. for the coupled domain
shown in Fig. 1 (with three subdomains), at common inter-
face nodes, indeed just two traction vectors (p' and pk) must
be calculated. One has therefore, at the common node three
equations, from which the unknown vectors

v=v=v=v=u"=0u", (11a)
p=-p=-p"=p" (11b)
and

pf=-p, (11c)

can be calculated. In general it is valid: at a node common to
n sub-regions, there are n equations for determining one

=
=)

Fig. 1. Domain with three coupled subdomains.
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Fig. 2. The coupled system matrix.

displacement vector and (n — 1) traction vectors. Thus, it is
necessary that at least one sub-region be smooth at the
common node, what represents no restriction to the coupling
algorithm proposed here, as it is always possible to create an
extra subregion with a smooth boundary, whenever neces-
sary.

A simple and important detail of the present coupling
formulation, mainly in what concerns the performance of
the iterative schemes, is that, in order to obtain better
convergence rates, one must use a scaling factor. The one
used here is defined by

I 26,
= s izzlfi, fi= A=2v)° (12)

where ns is the number of sub-regions and G; and v; are,
respectively, the Young’s modulus and Poisson’s ratio of
the ith sub-region. f, given by Eq. (12), is used to scale the
coefficients of the G-matrix, such that all coefficients of the
resulting coupled system become of same order of magni-
tude. It should be also observed that as a matter of fact, the
coupled domain depicted in Fig. 1 is not restricted to 2D
problems, as it might seem to be; it refers to 3D problems as
well, which in fact constitute exactly the class of problems
being treated in this paper.

4. Iterative solvers for complex-valued coupled systems

Iterative procedures for obtaining the solution of systems
of algebraic equations have played a very important role in
the analysis of engineering problems. They can be of funda-

mental importance to minimise the high analyses costs
normally involved in solving algebraic systems, which are
sometimes sparse and have a number of equations varying
from a few hundreds to a few millions. Important character-
istics of iterative procedures that are closely related to their
effectiveness are that, besides preserving matrix sparsity,
they reduce substantially the CPU time in case of large
systems of equations. The gain introduced by iterative
solvers is more substantial for algorithms which employ
parallel processing strategies. In this case, direct solvers
are really inefficient. A comprehensive study on general
aspects of iterative procedures, containing the main devel-
opments on this subject in the last decades (until the begin-
ning of the 1990s) is presented by Hageman and Young [26]
and Hackbusch [27].

Among the iterative schemes, those based on conjugate
gradient acceleration procedures [26] have specially
attracted the attention of the numerical analysis community.
Conjugate gradient methods have a number of favourable
properties, three of them being worthwhile mentioning here:
(1) though an iterative scheme, convergence is achieved in a
finite number of iterations if no round-off errors are present,
(2) they converge at least as fast as the corresponding
Chebyshev procedure, (3) no parameter estimate is neces-
sary for obtaining optimal convergence rates.

Concerning BE analyses, nonsymmetric systems of
algebraic equations are produced and therefore the develop-
ment of iterative solution strategies naturally becomes a
much more difficult task than in symmetric cases, as
reported in works published during the 1980s [28-31]. In
the late 1980s, and at the beginning of the 1990s, successful
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applications of iterative solvers in BE analyses were
reported in works by Aradjo and Mansur [20-22,32], in
which many different iterative techniques were considered.
These works showed that the iterative strategies based on
the biconjugate gradient (BiCG) and Lanczos procedures
[20,22], with preconditioning, performed especially well
in all analyses carried out. Another important point concern-
ing these algorithms is that only information related to two
previous iterations at most (Lanczos algorithm) is neces-
sary. Other methods which require the entire history of
iterations or, at least, a great deal of informations concern-
ing previous iterations, have also been used successfully,
e.g. idealised generalised conjugate gradient acceleration
procedures and their corresponding truncated versions
[32-35].

In the present paper, the biconjugate gradient algorithm,
derived previously for real nonsymmetric and nonsingular
matrices [20,22,32], is extended for complex-valued, non-
Hermitian systems of algebraic equations.

4.1. Lanczos tridiagonalization algorithm

The starting point for deriving the biconjugated gradient
algorithm employed here is the Lanczos tridiagonalization
algorithm [32,36]. Starting from two known vectors ¢' and
*cl, both in the N-dimensional complex space cV , it is
possible by means of the Lanczos tridiagonalization algo-
rithm (in the same fashion as for real matrices [32,36]) to
derive from A and AT in €V two vector sequences {ck +1}

and {*cf1y, respectively given by

S = Ack — apcf — Bt ! (13)
and

Sy e = ATk =tk — Btk (14)

These are mutually orthogonal to each other, i.e. L

el e, %k and fftN L el e, ..., ¢k Tt should be
observed that these orthogonality conditions, can be used
to demonstrate that these two vector sequences are linearly

independent for k = N, N being the dimension of the

complex space in question. Thus the following property
must be verified:

M ="M =9 e V. (15)

The property of Lanczos vectors expressed by Eq. (15) is
very important as it is exactly that one used for establishing
the finite termination of the associated iterative schemes
[26,32]. Moreover, if an usual inner product, i.e. not a
Hermitian inner product, between complex-valued vectors
is used, expressions for determining parameters oy, B; and
*By in Eqs. (13) and (14) similar to those for real matrices
are obtained; these parameters are computed by [32,36]

*ck,TAck
U= g (16)
¢
_ *Ck*I,TAck
B = ok TT T (17)
k—1,T A T* _k
B= S (18)
k kK LTgh=T "

4.2. Bi-conjugate iterative method

Following the same ideas presented by Aradjo and
Mansur [20—22] and Aratjo [32], it is then possible, starting
from Eqgs. (13), (14), (16)—(18), to derive the Lanczos accel-
eration procedure and the bi-conjugate gradient method, the
later being given by the following recursive expressions
[26,32]:

Xn+1 =x"+ /\npn’ (19)
(0 ifn=0

p = o . (20)
r" +ap", ifn=1

r=r"'—\,_Ap" !, (21)

By considering now the auxiliary formulas related to AT,

Enclosing
Elements

500m
-
1
|

Fig. 3. Soil-foundation interaction problem.
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which are,

*rn — *rn—l _ /\n_lAT*pn—l’ (22)
. 0 =Y, ifn=0
p= ® N #®_n—1 . ’
T ta,p ., ifn=1

and using the orthogonality condition of the Lanczos vectors
(residue vectors) expressed by

(23)

T =0, if i # j, (24)

one can demostrate [32] the A-orthogonality condition of

the search direction vectors p’,
PTAY =0,  ifi#]. (25)

Moreover, with aid of these orthogonality conditions
(relationships (24) and (25)), the following expressions for
parameters A,_; and «, are obtained [32]:

#* n—1,T n—1

Apmt = W (26)
*_nT_n
12.16
1.62
— [—
2 o
S ] = ]
@
£ \/({SL@
sl WL [ [ <
/ 1 m /
52 (b)

Fig. 4. BE meshes for each sub-region.

Table 1
Response for E; = E;

Point  Displacement Traction
Re(u,) Jm(u,) Re(p,) Im(p.)
—0275x 107" —0.776x107% 0407 x10"7 0.272%x10">
—0.196x 107" —0.760x 1072 0.164x 10" 0.622x10"®
—0.136x 107"

—0.736x 1072 0.275%x 10" 0.183x 1077
-0203%x1072 —0.781x1073 - -
—0.152%107%2 —0.105x1072 - -
-0.778%x 107 —0.103x1072 - -

T QW

Solvers based on iterative formulas (19)—(23) and (26),
(27) are known as bi-conjugate gradient methods and were
originally introduced by Fletcher [37].

As one can see with aid of property (24), it is naturally
expected that the complex-valued residue vector !
becomes identically null for n = N (c.f. Eq. (15)). This is
indeed nothing else than the complete demonstration of
convergence of the procedure. For ill-conditioned systems
of algebraic equations, despite the finite termination
property of the iterative scheme, as a consequence of trun-
cation errors introduced during the computer data proces-
sing, it may happen that convergence is not achieved for
n = N. It does happen that the larger the number of itera-
tions required for reaching convergence, the larger the
cumulative errors become, such that for slow convergence
rates the procedure can definitively not converge. In order to
accelerate the convergence rate of iterative schemes and
to avoid cases were convergence is not achieved, some
researchers have introduced preconditioning matrices
in their iterative schemes [20-23,32,35,38], that are so
called because they should improve the condition
number of the system matrix (normally the spectral
condition number is considered). Preconditioning
which is quite relevant for the steepest descent proce-
dure, in which the rate of convergence depends exclu-
sively on the extreme eigenvalues [27,39] is also
important for conjugate gradient procedures, in which,
though the rate of convergence be dependent upon the
complete distribution of the eigenvalues [27,39,40], it
depends also upon the system matrix condition number.
In the case of the bi-conjugate gradient procedure for
non-Hermitian matrices, mathematical analysis concern-
ing the rate of convergence is naturally a much more
difficult issue, and is still a matter of current research.
Despite this fact, following indeed the same ideas of
acceleration or preconditioning considered in gradient

Table 2
CPU times and number of iterations for solving the system (E; = E;)

Solver CPU time (s) No. of iterations
Gauss elimination 0.206 x 10** -
Complex-J-BiCG 0.206 x 103 104
Real-J-BiCG 0.343x 10™3 127
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Table 3
Response for E; = 10E;

Table 5
Response for (E; = 20E;)

Point Displacement Traction Point Displacement Traction
Re(u,) Jm(u,) Re(p,) Sm(p;) Re(u,) Sm(u;) Re(p.) Sm(p,)
—0255x 107" —0.744%x 1072 0.368x10"7 —0.181x 10" —0247x 107" —0.742%x 1072 0.341x10"7 —0.292x 10"
-0202x107" —0.746x1072 0.273x10™® 0.822x 10" —0204%x107" —0.745%1072 0.302x 10" 0.685¢x10™°

—0.151x107" —0.742%x 1072 0.768x 10" 0.622x 10"
-0.190x 1072 -0.733%x107> - -
—0.152x 1072 —0.103%x 1072 — -
-0.807x107° —103x107° - -

DRCECRNIES

—0.159% 107" —0.744%x 1072 0.981x10™® 0.666 % 10™7
—0.191x1072 -0.728%x107> - -
—0.155% 1072 —0.103%x107% - -
-0.832x107° —0.104x1072 - -

TET A ® >

schemes for symmetric matrices [26,27,32,39], satisfac-
tory results in BEM analyses were obtained in the last
ten years in applications of Lanczos-tridiagonalization-
based iterative algorithms and generalised gradient
methods by many researchers [20,22,32,35,38]. In this
work, the only preconditioning matrix Q used is the Jacobi
splitting matrix, which is defined by the diagonal (complex-
valued) of the system matrix.

4.3. The real version of the iterative scheme

An alternative procedure to iterative schemes for
complex coefficient matrices is naturally their correspond-
ing real versions. For the complex system indicated in
Eq. (7), for instance, simple complex arithmetic operations
can be carried out, giving as a result the following real
equivalent system:

Re(A) —3Im(A) T( Re(x) Re(b) 2)
= . (
Sm(A)  Re(A) JIm(x) JIm(b)
As the system in Eq. (28) is real, the usual solvers for real
matrices can be applied. However, better results were

obtained here by using the following diagonal precondition-
ing matrix Q:

g; = max[Re(ay), Im(a;)] (29)

4.4. Termination criterion

In order to terminate the iterative procedure for matrices
with complex coefficients, the following criterion was
adopted: the Euclidian norm of the real and imaginary
parts of the residue vector at the current iteration, say
[Re(r™)|| and ||Sm(x™)|, were calculated and compared with
a certain tolerance { (a real positive number); whenever the
norm of both parts were smaller than a fixed tolerance, the

Table 4
CPU times and number of iterations for solving the system (E; = 10E;)

iterative procedure was terminated. One has therefore:
ReaM]l < ¢
if 1 and

[Sma|| < ¢

then stop . 30)

For the real versions of the algorithms, see Eq. (28), a
criterion equivalent to that given by expression (30) is
adopted, such that the efficiency of both versions of the
iterative scheme (the complex and the real) can be correctly
compared one to another. It should be observed that
[Re(r") + Im(r™)|| < { could also have been used as a
termination criterion, however the criterion shown in
expression (30) has been preferred in the present work.

5. Applications

The soil-foundation interaction problem depicted in Fig.
3 is analysed in order to check the performance of the
coupling algorithm proposed. The problem is modelled
with two sub-regions (one is the foundation and the other
is the soil), such that the whole model contains 1303 nodes
and 420 elements that corresponds to a complex-valued
coupled system of 3909 equations (Fig. 4).

The soil parameters are E, = 2.0 X 10® Nm ™2, v, = 0.35
and p, = 1800 Kg m °. vy = 0.25 and p; = 2500 Kg m?
were adopted for the foundation and four different values
were adopted for its elasticity modulus: E; = E,, E; =
10E,, E; = 20E, and E; = 40E,.

The square foundation side length and height are 1.52 and
0.19 m, respectively. The excitation loading considered
was a harmonic distributed load of amplitude 4.0 X
10° Nm ™2 and frequency 100 rad s ! acting on the vertical
direction at the top surface of the foundation. The results of
the analysis in terms of displacements, tractions, CPU times

Table 6
CPU times and number of iterations for solving the system (E; = 20E;)

Solver CPU time (s) No. of iterations
Gauss elimination 0.206 x 10™* -
Complex-J-BiCG 0.648 x 103 328
Real-J-BiCG 0.119x 10" 441

Solver CPU time (s) No. of iterations
Gauss elimination 0.206 x 10™* -
Complex-J-BiCG 0.880x 10*3 445
Real-J-BiCG 0216 x 10™* 804
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Table 7
Response for E; = 40E;

Point Displacement Traction

Re(u,) Im(u,) Re(p,) Im(p.)
A —0239%x 107" —0.743%x1072 0.308x10"7 —0.347x 10"
B —0207%x107" —0.746 %1072 0.326% 10 0.556x10"°
C —0.169%x 107" —0.748x 1072 0.124x10™ 0.664 % 10*7
D —0.194%x1072 —0.728x 107> - -
E —0.159% 102 —0.104%x107% - -
F -0.863%x107% —0.105x1072 - -
Table 8

CPU times and number of iterations for solving the system (E; = 40E;)

Solver CPU time (s) No. of iterations
Gauss elimination 0.206 x 10™* -
Complex-J-BiCG 0.116x 10™* 588
Real-J-BiCG 0.302 % 10™* 1123

and number of iterations are shown on Tables 1-8. The
points considered for showing the response are defined as
follows: A is the point at the interface centre, B is the
midpoint of an interface edge, C is the point at an interface
corner, and D, E, and F are, respectively, soil points 1.0, 2.0
and 3.0 below A.

The direct solver considered is the standard Gauss elim-
ination procedure without any pivoting strategy and that
takes into account the zero blocks of the coupled system.
Complex-J-BiCG and the Real-J-BiCG stand for the
complex and real equivalent versions of the biconjugate
gradient procedure with Jacobi preconditioner, respectively.

The termination criterion used for the iterative solver is
that defined by Eq. (30), the tolerance being established by
taking { = 107°. The analyses were carried out in a personal
computer with processor AMD K7 — 700 MHz and
640 Mbytes RAM, so that memory swapping (in/out-of-
core transfer) was necessary.

6. Conclusions

The results presented in this paper show that the coupling
algorithm developed, based on the use of iterative solvers,
performs very well in what concerns response accuracy and
convergence properties. No significant differences was
found between results obtained with iterative solvers and
those obtained by means of a coupling algorithm based on
a direct solver, thus only one response concerning tractions
and displacements is presented on Tables 1, 3, 5, and 7. An
important fact to be observed, concerning the iterative
solver analyses, is that the number of iterations required
to reach convergence increased when the relationship
between the elasticity modulus of the foundation and the
soil increased. Based on the data shown on Tables 2 and 8
for instance, one can see that the Complex-J-BiCG iterative

solver is, for E; = E,, 10 times faster than the direct one
(standard Gauss), and for E; = 40E, only 1.8 times faster
than that solver, the corresponding Real-J-BiCG solver
being initially (for E; = E,) six times faster and finally
(for E; = 40E,) even a little bit slower than the standard
Gauss direct solver. This fact should not be considered as
a drawback of the iterative solvers algorithms, rather it just
hints that when E; = 40E; a finer mesh is required to
describe accurately the problem solution. This does happen
because tractions amplitudes near the foundation edges
increase considerably as the relationship E/E; increases,
such that in order to better describe the tractions over the
interface a finer mesh near the edges is required. It should be
also noted, that the scaling factor defined by Eq. (9), plays
an important role for accelerating the convergence rate of
the iterative solvers when E{/E increases.

Other advantages of the iterative-solver-based coupling
strategy presented here are that the zero blocks of coeffi-
cients are completely disregarded during the solution phase.
It is therefore expected for coupled systems of order much
higher than that one treated here, that iterative-solver-based
coupling algorithms perform much better than direct-solver-
based coupling strategies. Storage area required and conse-
quently swapping time of direct solvers may restrict their
use in more complex applications.

Specifically for the frequency-dependent soil-foundation
interaction problem treated here, the Complex-J-BiCG
solver was more efficient than the direct one for all relation-
ships E¢/E; considered, even though no pivoting strategy
was employed in the latter solver. Concerning the iterative
procedures, the complex version was more efficient than the
real one; note that the number of iterations necessary to
reach the convergence with the real version of the iterative
scheme is greater than that of the complex one in all cases,
and so it is the CPU time as well. One should observe that the
preconditioning matrices in both versions are not the same (see
Eq. (29)), such that the preconditioned versions of the iterative
solvers are actually not identical; the preconditioning matrix
given by Eq. (29) had a better performance than that Jacobi
preconditioning matrix defined in the usual way for the equiva-
lent real system of equations given in Eq. (28).

Finally, it is important to mention that the results
presented in this paper hint that the complex version of
iterative solvers should be used instead of the real equiva-
lent versions, yet more numerical experiments are necessary
in order to verify if this is always the case.
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