A mixed quadratic programming model for a robust support vector machine.
Nenhuma Miniatura disponível
Data
2021
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
Support Vector Machines are extensively used to solve classification problems in Pattern Recognition. They deal with small errors in the training data using the concept of soft margin, that allow for imperfect classification. However, if the training data have systematic errors or outliers such strategy is not robust resulting in bad generalization. In this paper we present a model for robust Support Vector Machine classification that can automatically ignore spurius data. We show then that the model can be solved using a high performance Mixed Integer Quadratic Programming solver and present preliminary numerical experiments using real world data that looks promissing.
Descrição
Palavras-chave
Mixed integer quadratic programming, Outliers, Classification
Citação
SERNA DIAZ, R.; LEITE, R. S.; SILVA, P. J. da S. e. A mixed quadratic programming model for a robust support vector machine. Selecciones Matematicas, v. 8, n. 1, p. 27-36, 2021. Disponível em: <https://www.ime.unicamp.br/~pjssilva/papers/robust/>. Acesso em: 06 jul. 2022.