Finite control set model predictive control for dynamic reactive power compensation with hybrid active power filters.

Resumo
This work applies finite control set model predictive control (FCS-MPC) for dynamic reactive power compensation using a hybrid active power filter (HAPF). The FCS-MPC uses a model based on LCL-Filter equations to predict the system behavior and optimize the control action. In fact, the application of FCS-MPC in gridconnected converters with LCL-Filter is quite recent. This algorithm is a very promising control technique for power electronics converters and its use for reactive power control of hybrid filter has not been reported in the literature yet. This work uses the FCS-MPC in a multivariable structure along with an adaptive notch filter (ANF) to damp resonance. The main purpose is to improve the dynamic response of the HAPF. Simulation as well as practical results prove the feasibility of FCS-MPC application in HAPF reactive power control. The dynamic response of the equipment was significantly improved and represents the main contribution of this work. As a result, the FCS-MPC allows tracking fluctuations and abrupt changes in load reactive power.
Descrição
Palavras-chave
Citação
FERREIRA, S. C. et al. Finite control set model predictive control for dynamic reactive power compensation with hybrid active power filters. IEEE Transactions on Industrial Electronics, v. 99, p. 1-10 , 2017. Disponível em: <http://ieeexplore.ieee.org/document/8012487/>. Acesso em: 02 out. 2017.