Matrix computations with the Omega calculus.
Nenhuma Miniatura disponível
Data
2021
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
In this work, we explore an extension of the Omega calculus in
the context of matrix analysis introduced recently by Neto [Matrix
analysis and Omega calculus. SIAM Rev. 2020;62(1):264–280]. We
obtain Omega representations of analytic functions of three important classes of matrices: companion, tridiagonal, and triangular.
Our representation recovers the main results of Chen and Louck
[The combinatorial power of the companion matrix. Linear Algebra Appl. 1996;232:261–278] on the powers of the companion
matrix. Furthermore, we generalize previous work on the powers
of tridiagonal matrices due to Gutiérrez–Gutiérrez in [Powers of
tridiagonal matrices with constant diagonals. Appl Math Comput.
2008;206(2):885–891], Öteleş and Akbulak [Positive integer powers of certain complex tridiagonal matrices. Appl Math Comput.
2013;219(21):10448–10455], and triangular matrices following Shur
[A simple closed form for triangular matrix powers. Electron J Linear
Algebra. 2011;22:1000–1003].
Descrição
Palavras-chave
Functions of matrices, Companion matrix, Tridiagonal matrix, Triangular matrix
Citação
FRANCISCO NETO, A. Matrix computations with the Omega calculus. Linear and Multilinear Algebra, v. 70, n. 20, p. 5075-5106, mar. 2021. Disponível em: <https://www.tandfonline.com/doi/full/10.1080/03081087.2021.1903379>. Acesso em: 03 maio 2023.