Extração e comparação de características locais para o reconhecimento facial por meio de retratos falados.

Nenhuma Miniatura disponível
Data
2014
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
Sistemas de reconhecimento facial através de retratos falados são muito importantes para agências de segurança. Esses sistemas podem ajudar a localizar ou diminuir o número de potenciais suspeitos. Recentemente, vários métodos foram propostos para resolver esse problema, mas não há uma comparação clara de desempenho entre eles. Neste trabalho é proposta uma nova abordagem para o reconhecimento facial através de fotografias/retratos falados baseada no Local Feature-based Discriminant Analysis (LFDA). Esse novo método foi testado e comparado com seus antecessores, utilizando três diferentes conjuntos de imagens (retratos falados) e também com a adição de uma galeria extra de 10.000 fotografias para estender a galeria. Experimentos utilizando as bases de imagens CUFS e CUFSF mostraram que a nossa abordagem supera as abordagens do estado-da-arte, além de ser 43% mais rápido que o segundo método, o LFDA. Nossa abordagem também mostra bons resultados com forensic sketches. A limitação ao avaliar este conjunto de imagens está no seu tamanho muito pequeno. Ao aumentar o conjunto de dados de treinamento, a precisão da nossa abordagem vai aumentar, uma vez que foi demonstrado por nossos experimentos. Além disso, demonstramos o desempenho e comparamos vários descritores e os principais métodos, utilizando três bases de dados diferentes e uma galeria extra, tal comparação não existia na literatura.
Descrição
Programa de Pós-Graduação em Ciência da Computação. Departamento de Ciência da Computação, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto.
Palavras-chave
Fotografia, Reconhecimento facial - computação, Reconhecimento de padrões óticos
Citação
SILVA, Marco Antonio de Albuquerque. Extração e comparação de características locais para o reconhecimento facial por meio de retratos falados. 2014. 80 f. Dissertação (Mestrado em Ciência da Computação) - Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, 2014.