Analysis of stochastic local search methods for the unrelatedparallel machine scheduling problem.
Nenhuma Miniatura disponível
Data
2016
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
This work addresses the unrelated parallel machine scheduling problem with sequence-dependent setup times,in which a set of jobs must be scheduled for execution by one of the several available machines. Each jobhas a machine-dependent processing time. Furthermore, given multiple jobs, there are additional setup times,which vary based on the sequence and machine employed. The objective is to minimiz e the schedule’s com-pletion time (makespan). The problem is NP-hard and of significant practical relevance. The present paperinvestigates the performance of four different stochastic local search (SLS) methods designed for solvingthe particular scheduling problem: simulated annealing, iterated local search, late acceptance hill-climbing,and step counting hill-climbing. The analysis focuses on design questions, tuning effort, and optimizationperformance. Simple neighborhood structures are considered. All proposed SLS methods performed signifi-cantly better than two state-of-the-art hybrid heuristics, especially for larger instances. Updated best-knownsolutions were generated for 901 of the 1000 large benchmark instances considered, demonstrating that par-ticular SLS methods are simple yet powerful alternatives to current approaches for addressing the problem.Implementations of the contributed algorithms have been made available to the research community.
Descrição
Palavras-chave
Heuristics, Metaheuristics
Citação
SANTOS, H. G. et al. Analysis of stochastic local search methods for the unrelatedparallel machine scheduling problem. International Transactions in Operational Research, v. 26, p. 707-724, 2016. Disponível em: <http://onlinelibrary.wiley.com/doi/10.1111/itor.12316/epdf>. Acesso em: 20 jan. 2017.