Microwave-assisted synthesis of Ca1-xMnxMoO4 (x = 0, 0.2, 0.7, and 1) and its application in artificial photosynthesis.
Nenhuma Miniatura disponível
Data
2021
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
This work reports, for the first time, to the best of our knowledge, the use of calcium molybdates doped with Mn2+ in the catalytic photoreduction of CO2 to produce compounds with higher added value that have appli cations in different branches of the chemical industry. The molybdates were prepared at 100 ◦C by microwave assisted hydrothermal synthesis and were characterized by X-ray diffraction, Raman vibrational spectroscopy, scanning electron microscopy, and diffuse UV–vis reflectance spectroscopy. The synthesized Ca1-xMnxMoO4 catalysts (x = 0, 0.2, 0.7, and 1) were also calcined at 500 ◦C, in order to investigate possible phase transitions. For x = 0 and 0.2, the samples crystallized in the tetragonal structure (I41/a, #88) and no phase transitions were observed at 500 ◦C. For x = 0.7 and 1.0, the phase produced at 100 ◦C was a hydrated form of manganese molybdate that exhibited triclinic structure (P1, #2) and became monoclinic (C2/m, #12) when calcined at 500 ◦C. The catalysts subsequently investigated were the pure molybdate and the materials with doping contents of 20 and 70 mol% Mn2+, hydrothermally treated at 100 ◦C and after calcination at 500 ◦C. The band gap en ergies ranged from 2.77 to 3.50 eV. In the performance tests, the productions of CO and CH4 after 6 h of irra diation were in the ranges 2.41–19.74 and 0.21–0.82 μmol g− 1 , respectively. The doped x = 0.2 sample treated at 100 ◦C exhibited the best performance, producing the highest amounts of CO and CH4. The results indicated that the doping of CaMoO4 with Mn2+ improved the performance of this ceramic for the purpose of artificial photosynthesis. Furthermore, our results support a deep discussion about the role of doping content and crys talline structure of the molybdates on the photocatalytic activity.
Descrição
Palavras-chave
Artificial photosynthesis, Molybdates, Doping, Heterostructures
Citação
SILVA JÚNIOR, R. C. da et al. Microwave-assisted synthesis of Ca1-xMnxMoO4 (x = 0, 0.2, 0.7, and 1) and its application in artificial photosynthesis. Ceramics International, v. 47, p. 5388-5398, 2021. Disponível em: <https://www.sciencedirect.com/science/article/pii/S027288422033162X>. Acesso em: 10 jun. 2021.