Please use this identifier to cite or link to this item:
Title: Positive solution for a class of coupled (p, q)-Laplacian nonlinear systems.
Authors: Martins, Eder Marinho
Ferreira, Wenderson Marques
Issue Date: 2014
Citation: MARTINS, E. M.; FERREIRA, W. M. Positive solution for a class of coupled (p, q)-Laplacian nonlinear systems. Boundary Value Problems, v. 2014, p. 21, 2014. Disponível em: <>. Acesso em: 06 mar. 2015.
Abstract: In this article, we prove the existence of a nontrivial positive solution for the elliptic system ⎧⎨ ⎩ –_pu = ω(x)f (v) in_, –_qv = ρ(x)g(u) in_, (u, v) = (0,0) on ∂_, where_p denotes the p-Laplacian operator, p, q > 1 and _ is a smooth bounded domain in RN (N ≥ 2). The weight functions ω and ρ are continuous, nonnegative and not identically null in _, and the nonlinearities f and g are continuous and satisfy simple hypotheses of local behavior, without involving monotonicity hypotheses or conditions at∞. We apply the fixed point theorem in a cone to obtain our result. MSC: 35B09; 35J47; 58J20
ISSN: 1687-2762
metadata.dc.rights.license: O periódico Boundary Value Problems permite o arquivamento da versão/PDF do editor no Repositório Institucional. Fonte: Sherpa/Romeo <>. Acesso em: 20 out. 2016.
Appears in Collections:DEMAT - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ARTIGO_PositiveSolutionClass.pdf622,53 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.