Please use this identifier to cite or link to this item: http://www.repositorio.ufop.br/jspui/handle/123456789/13985
Title: Association of electroanalytical and spectrophotometric methods to evaluate the antioxidant activity of isobenzofuranone in primary cultures of hippocampal neurons.
Authors: Teixeira, Aniely dos Reis
Teixeira, Róbson Ricardo
Ribeiro, Iara Mariana Léllis
Pereira, Wagner Luiz
Manhabosco, Taíse Matte
Brito, Ana Carolina Ferreira de
Oliveira, Laser Antônio Machado de
Nogueira, Katiane de Oliveira Pinto Coelho
Keywords: Cyclic voltammetry
Free radicals
Issue Date: 2020
Citation: TEIXEIRA, A. dos R. et al. Association of electroanalytical and spectrophotometric methods to evaluate the antioxidant activity of isobenzofuranone in primary cultures of hippocampal neurons. Toxicology in Vitro, v. 68, p. 104970, 2020. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S0887233320305208>. Acesso em: 10 jun. 2021.
Abstract: The isobenzofuran-1(3H)-ones (phthalides) exhibit various biological activities, including antioxidant activity on reactive oxygen species (ROS). An excess of ROS that cannot be naturally contained by cellular enzymatic systems is called redox imbalance, which damage cell membranes, proteins, and DNA, thereby possibly triggering neuronal death in several neurodegenerative diseases. Considering our ongoing efforts to find useful compounds to control redox imbalance, herein we evaluated the antioxidant activity of two phtalides (compounds 3 and 4), using primary cultures of hippocampal neurons. Spectrophotometric assays showed that compound 3 significantly reduced (p ≤ 0.05) ROS levels and lipid peroxidation compared to the control treatment, while compound 4 was unable at any of the tested concentrations. Despite their structural similarity, these compounds behave differently in the intracellular environment, which was reliably corroborated by the determination of oxidation potentials via cyclic voltammetry. It was demonstrated that compound 3 presents a lower oxidation potential. The combination of the mentioned methods allowed us to find a strong correlation between the chemical structure of compounds and their biological effects. Taking together, the results indicate that compound 3 presents desirable characteristics to act as a candidate pharmacological agent for use in the prevention and treatment of neurodegenerative diseases.
URI: http://www.repositorio.ufop.br/jspui/handle/123456789/13985
metadata.dc.identifier.uri2: https://www.sciencedirect.com/science/article/abs/pii/S0887233320305208
metadata.dc.identifier.doi: https://doi.org/10.1016/j.tiv.2020.104970
ISSN: 0887-2333
Appears in Collections:DECBI - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ARTIGO_AssociationElectroanalyticalSpectrophotometric.pdf
  Restricted Access
2,1 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.