Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorErcole, Grey-
dc.contributor.authorEspírito Santo, Júlio César do-
dc.contributor.authorMartins, Eder Marinho-
dc.identifier.citationENCOLE, G.; ESPÍRITO SANTO, J. C do.; MARTINS, E. M. Computing the best constant in the Sobolev inequality for a ball. Applicable Analysis, v. 1, p. 1-17, 2018. Disponível em: <>. Acesso em: 16 jun. 2018.pt_BR
dc.description.abstractLet B1 be the unit ball of R N , N ≥ 2, and let p ? = N p/(N − p) if 1 < p < N and p ? = ∞ if p ≥ N. For each q ∈ [1, p? ) let wq ∈ W1,p 0 (B1) be the positive function such that kwqkLq(B1) = 1 and λq(B1) := min ( k∇uk p Lp(B1) kuk p Lq(B1) : 0 6≡ u ∈ W1,p 0 (B1) ) = k∇wqk p Lp(B1) . In this paper we develop an iterative method for obtaining the pair (λq(B1), wq), starting from w1. Since w1 is explicitly known, the method is computationally practical, as our numerical tests show. 2010 Mathematics Subject Classification. 34L16; 35J25; 65N25 Keywords: Best Sobolev constant; extremal functions; inverse iteration method; p-Laplacian.pt_BR
dc.titleComputing the best constant in the Sobolev inequality for a ball.pt_BR
dc.typeArtigo publicado em periodicopt_BR
Appears in Collections:DEMAT - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
  Restricted Access
817,67 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.