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We show the existence of all the 36 eightfold way mesons and determine their
masses and dispersion curves exactly, from dynamical first principles such as di-
rectly from the quark-fluon dynamics. We also give a proof of confinement below
the two-meson energy threshold. For this purpose, we consider an imaginary time
functional integral representation of a 3�1 dimensional lattice QCD model with
Wilson action, SU�3� f global and SU�3�c local symmetries. We work in the strong
coupling regime, such that the hopping parameter ��0 is small and much larger
than the plaquette coupling ��1 /g0

2�0 �����1�. In the quantum mechanical
physical Hilbert space H, a Feynman-Kac type representation for the two-meson
correlation and its spectral representation are used to establish an exact rigorous
connection between the complex momentum singularities of the two-meson trun-
cated correlation and the energy-momentum spectrum of the model. The total spin
operator J and its z-component Jz are defined by using � /2 rotations about the
spatial coordinate axes, and agree with the infinitesimal generators of the con-
tinuum for improper zero-momentum meson states. The mesons admit a labelling
in terms of the quantum numbers of total isospin I, the third component I3 of total
isospin, the z-component Jz of total spin and quadratic Casimir C2 for SU�3� f. With
this labelling, the mesons can be organized into two sets of states, distinguished by
the total spin J. These two sets are identified with the SU�3� f nonet of pseudo-scalar
mesons (J=0� and the three nonets of vector mesons �J=1,Jz=�1,0�. Within each
nonet a further decomposition can be made using C2 to obtain the singlet state
�C2=0� and the eight members of the octet �C2=3�. By casting the problem of
determination of the meson masses and dispersion curves into the framework of the
the anaytic implicit function theorem, all the masses m�� ,�� are found exactly and
are given by convergent expansions in the parameters � and �. The masses are all
of the form m�� ,�=0��m���=−2ln �−3�2 /2+�4r��� with r�0��0 and r��� real
analytic; for ��0,m�� ,��+2ln � is jointly analytic in � and �. The masses of the
vector mesons are independent of Jz and are all equal within each octet. All isospin
singlet masses are also equal for the vector mesons. For each nonet and �=0, up to
and including O��4�, the masses of the octet and the singlet are found to be equal.
But there is a pseudoscalar-vector meson mass splitting given by 2�4+O��6� and
the splitting persists for ��0. For �=0, the dispersion curves are all of the form
w�p��=−2 ln �−3�2 /2+ � 1

4
��2� j=1

3 2�1−cos pj�+�4r�� , p��, with �r�� , p�� �	const. For
the pseudoscalar mesons, r�� , p�� is jointly analytic in � and pj, for ��� and �Im pj�
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small. We use some machinery from constructive field theory, such as the decou-
pling of hyperplane method, in order to reveal the gauge-invariant eightfold way
meson states and a correlation subtraction method to extend our spectral results to
all He, the subspace of H generated by vectors with an even number of Grassmann
variables, up to near the two-meson energy threshold of �−4 ln �. Combining this
result with a previously similar result for the baryon sector of the eightfold way, we
show that the only spectrum in all H�He � Ho �Ho being the odd subspace� below
�−4 ln � is given by the eightfold way mesons and baryons. Hence, we prove
confinement up to near this energy threshold. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2903751�

I. INTRODUCTION

A landmark in particle physics was achieved when Gell-Mann and Ne’eman independently
proposed the eightfold way scheme to classify the then known hadronic particles �see Refs. 1–5�.
This model asserts that every hadron is composed of quarks with three flavors—up �u�, down �d�,
and strange �s�. The baryons are made of three quarks and the mesons are made of a quark-
antiquark pair. Later, a color dynamics was introduced for the quarks via an exchange of gauge
vector bosons called gluons, and today the local gauge model of interacting quarks and gluons
based on the color symmetry SU�3�c, which is known as the quantum chromodynamics �QCD�, is
the best candidate to describe the strong interactions.

The lattice regularization of the continuum theory was introduced by Wilson in Ref. 6. Pre-
cisely, in Ref. 6, an imaginary-time functional integral formulation for lattice QCD was developed.
In this framework, there are basically two ingredients: quarks, obeying Fermi–Dirac statistics,
carrying flavor, color and spin labels, and located in each lattice site, and colored string bits
connecting adjacent points on the lattice. Besides preserving gauge invariance and being free of
ultraviolet singularities, the lattice formulation is powerful enough to, e.g., obtain the first results
on the QCD particle spectrum and to exhibit confinement, i.e., isolated quarks are not observed.
Within this construction, one formally recovers the continuum theory in the scaling limit �i.e., the
lattice spacing going to zero�. Later, it was shown by Osterwalder and Seiler that the lattice
regularization of Wilson has the property of reflection positivity �see Refs. 7 and 8 for more
details�. This property enables the construction of the quantum mechanical Hilbert space of physi-
cal states H and allows us to define a positive self-adjoint energy and self-adjoint momentum
operators. Within this framework, a Feynman–Kac �FK� formula is established and the energy-
momentum �E-M� spectrum can be investigated.

The low-lying E-M spectrum �one-particle and two-particle bound states� was rigorously
determined exactly in Refs. 9–19 for increasingly complex SU�3�c lattice QCD models with one
and two flavors in the strong coupling regime, i.e., with the hopping parameter � and plaquette
coupling � satisfying 0
����1. In this regime, more recently, the SU�3� f scheme for baryons
was validated in Refs. 20 and 21 for the �3+1�-dimensional lattice QCD with three quark flavors
and using the Wilson action. Fifty-six eightfold way baryon states of mass �−3 ln � were obtained
from first principles, i.e., directly from the quark-gluon dynamics. By concentrating on the sub-
space Ho�H of vectors with an odd number of quarks and applying a correlation subtraction
method, the eightfold way baryon and antibaryon spectrum was shown to be the only spectrum up
to near the meson-baryon energy threshold of �−5 ln �. More precisely, up to near the meson-
baryon energy threshold, all the E-M spectrum is generated by the 56 eightfold way baryon fields,
and the baryon particles are strongly bound, bound states with three quarks. For each baryon, there
is a corresponding antibaryon related by charge conjugation and with identical spectral properties.
The reason for the restriction ��� is that in this region of parameters, the hadron spectrum
�mesons and baryons of asymptotic masses −2 ln � and −3 ln �, respectively� is the low-lying
spectrum. If, on the other hand, ���, then the low-lying spectrum consists of only glueballs �of
asymptotic mass −4 ln �� and their excitations �see Ref. 22�.
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We point out that even for �=0 �no plaquette terms in the action�, there is still a nontrivial
dependence on the gauge field in the quadratic Fermi field hopping term. One manifestation of this
dependence is that the meson dispersion curves have a small momentum behavior approximately
proportional to �2p�2. For free fermions �such as setting the gauge group elements equal to the
identity�, the behavior is proportional to �p�2 and the free fermion mass is asymptotically −ln �.

The baryons are detected as complex momentum singularities of the Fourier transform of a
two-baryon correlation and are rigorously related to the E-M spectrum via a spectral representa-
tion to this quantity. The spectral representation for the two-point correlation is derived by using
a FK formula.

The 56 baryon states can be grouped into two octets of total spin J= 1
2

�Jz=� 1
2

� and four
decuplets of total spin J= 3

2
�Jz=� 1

2 ,� 3
2

�. On the lattice, there is only the discrete � /2-rotation
group. However, we can adapt the treatment usually employed in solid state physics and use the
structure of point groups �see Ref. 23� to rigorously introduce total spin operators J and spin
z-component Jz so that for zero-momentum states, there is a partial restoration of rotational
symmetry, which means that these operators inherit the same structure as for the continuum. Using
this shows that the masses within the octets and within the decuplets are independent of Jz.
However, there is a mass splitting between the octets and the decuplets given to leading order of
3�6 /4 at �=0. For ��0 and mb��� as the baryon mass, mb���+3 ln � is jointly analytic in � and
�. In particular, the mass splitting between octet and decuplet persists for ��0.

It is worth remarking that the work of Refs. 20 and 21 is not the first publication on the
one-particle spectrum of lattice QCD models with three flavors. Specially in the 1980s, many
papers were devoted to the existence of baryons, e.g., the work of Refs. 24 and 25. However, these
papers do not rely on spectral representations. This can be problematic when tiny splitting among
the states is present. Also, the determination of momentum singularities of the two-point function
via the zeros of uncontrolled expansion in the denominator of the Fourier transform of approxi-
mate propagators leaves the question of the nature and the existence of the supposed singularity
unanswered. The same kind of problems may show up in works where the masses are determined
by the exponential decay rates of two-point functions, as what is usually done in numerical
simulations. We remark that we work with the exact correlation function, its convolution inverse,
and their Fourier transforms.

In this work, in the strong coupling regime, and using the decoupling of hyperplane method
�see Ref. 26–29�, we complete the exact determination of the one-particle E-M spectrum initiated
in Refs. 20 and 21. For a pedagogical presentation of the basic principles of the hyperplane
decoupling method, see Ref. 28. Here, we consider the even subspace He�H and show the
existence of the 36 eightfold way meson �of asymptotic mass −2 ln �� states.

The hyperplane decoupling method has many nice features.

• It enables us to obtain the basic local gauge-invariant excitation fields without any a priori
guesswork. As will be shown, linear combination of these fields can be identified with the
eightfold way particles, namely, the pseudoscalar and vector mesons.

• It gives good control of the global decay properties of the correlation functions involved.
• It enables us to show that the spectrum is generated by isolated dispersion curves, i.e., the

upper gap property.
• It permits us to show that the only spectrum in all He is generated by the eightfold way

particles.

By using a meson correlation subtraction method, we also show that the spectrum generated
by the 36 eightfold way meson states, which are bound states of a quark and an anti-quark, is the
only spectrum in the whole He up to near the two-meson threshold of �−4 ln �. These 36 states
can be grouped into four SU�3� f nonets–one associated with the pseudoscalar mesons �J=0� and
three with the vector mesons �J=1, Jz=0,�1�. Each nonet admits a further decomposition into a
singlet �with quadratic SU�3� f Casimir C2=0� and an octet �C2=3�. The 36 mesons are labeled
�and distinguished by this labeling� by J, Jz, C2, and the quantum numbers of total isospin I �its
square�, third component of total isospin I3, and total hypercharge Y.
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The meson particles are detected by isolated dispersion curves w�p�� in the energy-momentum
spectrum. They are of the form, for �=0, w�p��=−2 ln �−3�2 /2+ � 1

4
��2� j=1

3 2�1−cos pj�
+�4r�� , p�� with �r�� , p�� �	const. For the pseudoscalar mesons, r�� , p�� is jointly analytic in � and
pj, for ��� and �Im pj� small. The meson masses are given by m���=−2 ln �−3�2 /2+�4r��� with
r�0��0 and r��� real analytic. The nonsingular part of the mass, i.e., r���, is jointly analytic in �
and �. For a fixed nonet, the masses of all vector mesons are independent of Jz and are all equal
within each octet. All singlet masses are also equal. For �=0, up to and including O��4�, for each
nonet, the masses of the octet and the singlet are found to be equal. All members of each octet
have identical dispersions. Other dispersion curves may differ. Indeed, there is a pseudoscalar
vector meson mass splitting �between J=0 and J=1� given by 2�4+O��6� and, by analyticity, the
splitting persists for ��0. Using a correlation subtraction method, we show that the 36 meson
states give the only spectrum in He up to near the two-meson threshold of �−4 ln �. Up to and
including O��4�, there is no isospin singlet-isospin octet mass splitting at �=0. There may be a
splitting at higher order in � and �. For this splitting in the continuum model, see the U�1�
problem in Ref. 30.

Combining the present result with the results of Refs. 20 and 21 shows confinement up to the
two-meson threshold. We stress that even within the limitation of dealing with only three quark
flavors, since not all the eightfold way hadrons have not, up to now, been experimentally observed
�specially the heavy decuplet baryons and the scalar mesons�, our results still give more strength
to the Gell-Mann and Ne’eman quark model.

This paper is organized as follows. In Sec. II, we introduce the Wilson’s lattice QCD model
that we use. The decoupling of hyperplane method is also used to reveal the form of the basic
excitation fields in He. To establish a connection with the E-M spectrum, we define a matrix
valued two-point meson function G, in terms of the basic excitation fields with individual quark
and antiquark spin and isospin labels, and introduce a spectral representation for G. Our main
result, stating the existence of the eightfold way mesons, determining their masses, multiplici-
tiesm, and dispersion curves, is then presented in Theorem 1. To determine the meson masses and
dispersion curves, we analyze the convolution inverse � of the two-point correlation. We need
global bounds on G and � as well as their short distance behavior to the lowest orders in �. They
are given in Theorems 2 and 3, respectively. In Sec. III, we make a basis change from the
individual spin and isospin basis to the particle basis. This basis change is implemented by an
orthogonal transformation �normalized at �=0� and allows us to identify the basic excitation fields
with the eightfold way pseudoscalar and vector mesons. As for the baryon case, to carry out this
identification, we label the states by their associated quantum numbers—total isospin I, its third
component I3, total hypercharge, and quadratic Casimir C2—by using the global flavor symmetry.
We also need to consider spin and we adopt the same prescription as in Refs. 20 and 21 in such a
way that for improper zero-momentum meson states, the total spin operator J and related operators
Jx, Jy, and Jz �and also J�� agree with the infinitesimal generators of the continuum. Finally, we
determine the meson masses �the mass splittings� and the dispersion curves. In Sec. VI, we
consider the implementation of total isospin and related operators and total hypercharge operator
as operators acting on the quantum mechanical physical Hilbert space H by following Refs. 20
and 21. In Sec. V, we employ a subtraction method to extend our spectral results from the
subspace generated by the eightfold way meson fields to all He. In Appendix A, to simplify the
proof of Theorem 3, we establish correlation identities using ordinary symmetries as discrete
rotations, parity, time reversal, charge conjugation, and coordinate reflections �for further details,
we refer the reader to Ref. 10�. A new symmetry of time reflection established in Refs. 20, 21, and
31 is also used and a composition with parity and time reversal gives a spin flip symmetry given
in Sec. III B. In Appendix B, we derive a very useful formula for calculating contributions to the
two-point function G�x ,y� of nonintersecting paths connecting the lattice point x to y. This formula
is employed in the proof of Theorem 3.
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II. MODEL AND RESULTS

In the first subsection, we introduce the lattice QCD model and the physical quantum me-
chanical Hilbert space H. In particular, the FK formula and the self-adjoint E-M operators are
considered. We also state our main results on the E-M spectrum and the existence of meson
particles in all He in Theorem 1. In the second subsection, the decoupling of hyperplane method
is introduced and used to obtain the basic excitation states appearing in the two-point function. To
determine the E-M spectrum, we need the long distance and short distance behaviors of the
two-point function and its convolution inverse, which are presented in Theorems 2 and 3.

A. Model and the physical quantum mechanical Hilbert space

We use the same model presented in Refs. 20 and 21. The model is the SU�3� f lattice QCD

with the partition function formally given by Z=	e−S�,̄,g�dd̄d��g�, and for a function

F� , ̄ ,g�, the normalized correlations are denoted by


F� =
1

Z
� F�,̄,g�e−S�,̄,g�dd̄d��g� . �1�

The action S�S� , ̄ ,g� is given by

S�,̄,g� =
�

2 � ̄a,�,f�u����
�e�U�gu,u+�e��abb,�,f�u + �e�� + �

u�Zo
4

̄a,�,f�u�M��a,�,f�u�

−
1

g0
2�

p

��gp� , �2�

where the first sum is over u�Zo
4, �=�1 and �=0,1 ,2 ,3 and over repeated indices. By denoting

0 as the temporal direction, the lattice is given by Zo
4, where u= �u0 ,u��= �u0 ,u1 ,u2 ,u3��Zo

4

�Z1/2�Z3, where Z1/2= � 1
2 ,� 3

2 , . . . �. For each site u�Zo
4, there are fermionic fields represented

by Grassmann variables a,�,f�u�, associated with a quark, and ̄a,�,f�u�, associated with an anti-
quark, which carry a Dirac spin �=1,2 ,3 ,4, a color a=1,2 ,3, and flavor or “isospin” f =u ,d ,s
=1,2 ,3 index. � is related to the Dirac matrices by ��e�=−1���. The �� are the Dirac 4�4
matrices

�0 = �I2 0

0 − I2
� and � j = � 0 i� j

− i� j 0
� ,

where � j, j=1,2 ,3, denote the Pauli 2�2 matrices and I2 is the 2�2 identity matrix. For each
oriented bound on the lattice 
u ,u�e��, there is a matrix U�gu,u�e���SU�3� parametrized by the
gauge group element U�gu,u�e�� satisfying U�gu,u+e��−1=U�gu+e�,u�. The parameter � is the hopping
parameter and ��1 /g0

2 is the plaquette coupling. The measure d��g� is the product measure over
nonoriented bonds of normalized SU�3�c Haar measures �see Ref. 32�. There is only one integra-
tion variable per bond, so that guv and gvu

−1 are not treated as distinct integration variables. The
integrals over Grassmann fields are defined according to Ref. 33. For a polynomial in the Grass-
mann variables with coefficients depending on the gauge variables, the fermionic integral is

defined as the coefficient of the monomial of maximum degree, i.e., of �u,kk�u�̄k�u�, k

��a ,� , f�. In Eq. �1�, dd̄ means �u,kdk�u�d̄k�u� such that with a normalization N= 
1�, we

have 
k1
�x�̄k2

�y��= �1 /N�	k1
�x�̄k2

�y�e−�u,k3,k4
̄k3

�u�Ok3k4
k4

�u�dd̄=O�1�2

−1 �a1a2
� f1f2

��x−y� with a
Kronecker delta for space-time coordinates, where O is diagonal in the color and isospin indices.

By polymer expansion methods �see Refs. 7, 27, and 28�, the thermodynamic limit of corre-
lations exists and truncated correlations have an exponential tree decay. The limiting correlation
functions are lattice translational invariant. Furthermore, the correlation functions extend to ana-
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lytic functions in the global coupling parameters � and ��1 /g0
2 and also in any finite number of

local coupling parameters. For the formal hopping parameter expansion, see Refs. 34–36.
Associated with the SU�3� f model, there is an underlying physical Hilbert space which we

denote by H. Starting from gauge-invariant correlations with support restricted to u0= 1
2 and letting

T0
x0

, Ti
xi

, i=1,2 ,3, denoting translation of the functions of Grassmann and gauge variables �is used
to denote Hilbert space operators� by x0�0, x� = �x1 ,x2 ,x3��Z3, there is the FK formula for F and
G only depending on coordinates with u0= 1

2 given by

�G,Ť0
x0

Ť1
x1

Ť2
x2

Ť3
x3

F�H = 
�T0
x0

T� x�F��G� , �3�

where T� x� =T1
x1

T2
x2

T3
x3

and � is an antilinear operator that involves time reflection. Following Ref.
10, the action of � on single fields is given by

�̄a,�,f�u� = ��0���a,�,f�ut� ,

�a,�,f�u� = ̄a,�,f�ut���0���,

where ut= �−u0 ,u�� for A and B monomials, ��AB�=��B���A�, and �f�guv��= f*�gutvt
��, u ,v

�Zo
4, for a function of the gauge fields where � means complex conjugate. � antilinearly extends

to the algebra. For simplicity, we do not distinguish between Grassmann and gauge variables and

their associated Hilbert space vectors in our notation. As linear operators in H, Ť�, �=0,1 ,2 ,3, are

mutually commuting; Ť0 is self-adjoint with −1	 Ť0	1 and Ťj=1,2,3 are unitary. So, we write Ťj

=eiPj
and P� = �P1 , P2 , P3� is the self-adjoint momentum operator with spectral points p� �T3

��−� ,��3. Since Ť0
2�0, the energy operator H�0 can be defined by Ť0

2=e−2H. We call a point in

the E-M spectrum associated with spatial momentum p� =0� a mass and, to be used below, we let

E��0 ,�� � be the product of the spectral families of Ť0, P1, P2, and P3. By the spectral theorem �see
Ref. 37�, we have

Ť0 = �
−�

�

�0dE0��0�, Ťj=1,2,3 = �
−�

�

ei�j
dFj�� j� ,

so that E��0 ,�� �=E0��0�� j=1
3 Fj�� j�. The positivity condition 
F�F��0 is established in Ref. 8, but

there may be nonzero F’s such that 
F�F�=0. If the collection of such F’s is denoted by N, a
pre-Hilbert space H� can be constructed from the inner product 
G�F� and the physical Hilbert
space H is the completion of the quotient space H� /N, including also the Cartesian product of the
inner space sectors, the color space C3, the spin space C4, and the isospin space C3.

By considering the parameters �, �, it is to be understood that the following conditions hold
in the sequel: there exist �0�0, �0�0, and �0 /�0�0 sufficiently small. Under this condition, our
results hold for all physical values of � and � such that �
�0, �
�0, and � /�	�0 /�0�1. The
main result of this paper is summarized in Theorem 1 below.

Theorem 1: The low-lying energy-momentum spectrum of the lattice QCD model given by the
action of Eq. (2) in the strong coupling regime, in the even subspace He�H, and up to near the
two-meson threshold of �−4 ln � is generated by 36 states, which are bound states of a quark and
an anti-quark. These 36 states are labelled by the SU�3� f quantum numbers I, I3, Y, and C2. Also,
for zero-momentum states, a spin labeling can be introduced. The meson states can be distin-
guished and grouped into three SU�3� f nonets associated with the vector mesons �J=1, Jz=0, �1�
and one nonet associated with the pseudoscalar mesons �J=0�. Each nonet admits a further
decomposition into a SU�3� f singlet �C2=0� and an octet �C2=3�. The particles are detected by
isolated dispersion curves w�p�� in the energy-momentum spectrum. The 36 dispersion curves are
all of the form, for �=0,
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w�p�� = − 2 ln � − 3�2/2 + � 1
4��2�

j=1

3

2�1 − cos pj� + �4r��,p�� ,

with �r�� , p���	const. For the pseudoscalar mesons, we can show that r�� , p�� is jointly analytic in
� and pj, for ��� and �Im pj� small. The meson masses are of the form

m��� = − 2 ln � − 3�2/2 + �4r��� ,

with r�0��0 and r��� real analytic. The m���+2 ln � is jointly analytic in � and �. For a fixed
nonet, the masses of all vector mesons are independent of Jz and are all equal within each octet.
All singlet masses are also equal for the vector mesons. For �=0, up to and including O��4�, for
each nonet, the masses of the octet and the singlet are found to be equal. All members of each
octet have identical dispersion curves. Other dispersion curves may differ. Indeed, there is a
pseudoscalar vector meson mass splitting �between J=0 and J=1� given by 2�4+O��6�; the
splitting persists for ��0. Finally, by, combining the above results with similar results for the
eightfold way baryons, i.e., the eightfold way baryons are the only spectrum in all Ho up to near
the meson-baryon threshold ��−5 ln ��, we also show that up to near the two-meson threshold,
the one-hadron spectrum in H of our lattice QCD model solely consists of the eightfold way
gauge-invariant baryon and meson states, and confinement is thus proven up to near this thresh-
old.

�

Proof. The proof of Theorem 1 follows from Theorems 2 and 3 stating global bounds and the
short-distance behavior in �, respectively, of the two-point function and its convolution inverse.
The fact that the masses depend only on the total spin follows from the analysis of Sec. III B.
In Sec. III D, by using Theorems 2 and 3, the pseudoscalar and vector meson masses, dispersion
curves, and their multiplicities are exactly determined. By using a meson correlation subtrac-
tion method, in Sec. V, we extend our spectral results to all He, up to near the two-meson
threshold. �

B. One-meson spectrum

We start by introducing a spectral representation for the two-point subtracted correlation. To
obtain the spectral representation, we use the FK formula and observe that for M ,L�He and with

support at time u0= 1
2 , denoting them by M� 1

2
��M� 1

2 ,0�� and L� 1
2
��L� 1

2 ,0��,

��1 − P��M� 1
2�,Ť0

�v0−u0�−1T�̌v�−u��1 − P��L� 1
2��H = 
�T0

�v0−u0�−1T�v�−u�L� 1
2����M��− 1

2��T. �4�

Note that P� is the projection onto the vacuum state ��1 since we are interested in the spectrum
generated by vectors orthogonal to the vacuum. From the relation obtained above, we have for
v0�u0,


�T0
v0−u0−1T�v�−u�L� 1

2����M��− 1
2��T = 
�T0

v0−1/2T�v�L� 1
2���T0

u0+1/2T�u���M��− 1
2���T

= 
�M�u0,u��L�v0,v���T,

where we have defined L�v0 ,v���T0
v0−1/2T�v�L� 1

2
� and �M�u0 ,u��=T0

u0+1/2T�u���M��− 1
2

�. Similarly, for
v0
u0, by moving the energy and momentum operators to the left-hand �LHS� and taking the
complex conjugate, we have

��1 − P��L� 1
2�,Ť0

u0−v0−1T�̌u�−v��1 − P��M� 1
2��H

*
= 
�T0

u0−v0−1T�u�−v�M� 1
2���L�− 1/2��T

*. �5�

From the relation obtained above, we have 
�T0
u0−v0−1M� 1

2 ,u����L�− 1
2 ,v���

T
*

= 
M�u0 ,u���L�v0 ,v���
T
*.
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With this, we define the general two-point function below, with M ,L in He, and using the
u0
v0 value to extend the correlation values to u0=v0,

GML�u,v� � �
�M�u�L�v��T, u0 	 v0


M�u��L�v��
T
*, u0 � v0.� �6�

The correlation in Eq. �6� admits the spectral representation, for x0�0, x= �x0 ,x��=v−u, GML�x�
�GML�0,v−u�=GML�u ,v�,

GML�x� = �
−1

1 �
Td
�0

�x0�−1ei�� ·x�d��1 − P��M�1/2�,E��0,�� ��1 − P��L�1/2��H.

Our starting point to obtain the eightfold way mesons, as mentioned before, is the product
structure obtained by using the decoupling of hyperplane method. Before we introduce the
method, we use a convenient form to represent the subtracted two-point function, namely, the
duplicate of variable representation. By this, we mean to replace the two-point function by an

equivalent expression depending on two independent variables ̂, ̂, g, g� to obtain �we take M
=�L in what follows�


M�u�L�v��T =
1

2Z2 � �M�u� − M��u���L�v� − L��v��exp�− S�,̄,g�

− S��,̄�,g���dd̄d��g�d�d̄�d��g�� � 

�M�u� − M��u���L�v� − L��v���� ,

�7�

where


M�u�L�v��T = 
M�u�L�v�� − 
M�u��
L�v�� �8�

is the truncated two-point function.
The decoupling of hyperplane method consists in replacing the hopping parameter � by �p

�C for bonds p connecting u0+ 1
2	p	v0− 1

2 and � by �p�C for plaquettes connecting the
hyperplanes u0+ 1

2	p	v0− 1
2 . Actually, the procedure should start in a finite volume, and then to

reach the infinite volume, we use standard consequences of the polymer expansion. This must be
understood in what follows. For ease of presentation, we refer to the time direction as the vertical
direction. We expand in the two variables �p and �p, around �p ,�p=0, the numerator N and
denominator D of the general two-point function of Eq. �6� and we use the notation N�m,n��u ,v�
�D�m,n��u ,v�� with m ,n�0, which means the coefficient of �p

m�p
n in the expansion of the numera-

tor �denominator�. First, N�0,0�=0 since M�u� decouples from L�v� under the expectation 
·� in the
two-point subtracted function. For �p

0, the first nonvanishing coefficient is �p
4, arising from four

vertical plaquettes composing the four vertical sides of a cube. Next, N�2m+1,n�=0=D�2m+1,n�,
recalling that each expectation factorizes and each factor has an odd number of fermion fields
giving zero. The term N�0,1�=0=D�0,1� is trivially zero due to gauge integration. The term N�0,2�,
corresponding to two superposed vertical plaquettes with opposite orientation, is zero. More pre-
cisely, by using the gauge integral I2 �see Eq. �B2�� and the fact that, as in N�0,0�=0, the fields
decouple, we get the desired result. N�0,3� is zero, corresponding to three superposed vertical
plaquettes with the same orientation and using the gauge integral I3 �see Eq. �B3�� for the vertical
sides of the superposed plaquettes. Therefore by collecting our results for m+n	3, we get

GML�u,v� = GML
�2,0��u,v��p

2 + GML
�2,1��u,v��p

2�p + �higher order terms� , �9�

where we have used
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GML
�0,0��u,v� = GML

�1,0��u,v� = GML
�0,1��u,v� = GML

�1,1��u,v� = GML
�0,2��u,v� = GML

�3,0��u,v� = GML
�1,2��u,v�

= GML
�0,3��u,v� = 0.

Considering the second �p derivative of G, i.e., GML
�2,0�, and for the time ordering u0	p
v0,


M�u�L�v��T
�2,0� = �

w�


�M�u� − M��u��M̄��g��p,w� ����0,0�

M��g��p + 1,w� ��L�v� − L��v�����0,0�

= �
w�


�M�u� − 
M�u���M̄��g��p,w� ���0,0�
M��g��p + 1,w� ��L�v� − 
L�v�����0,0�,

�10�

which we write schematically as

GLL
�2,0��u,v� = �G

LM̄
�0,0�

� GM̄L

�0,0���u,v� .

Similarly, for the time ordering u0�p�v0, we have for L=�M,


M�u�L�v��T
�2,0� = �

w�


�M�u� − M��u��M��g��p + 1,w� ����0,0�

M̄��g��p,w� ��L�v� − L��v�����0,0�

= �
w�


�M�u� − 
M�u���M��g��p + 1,w� ���0,0�
M̄��g��p,w� ��L�v� − 
L�v�����0,0�,

�11�

written also as, after taking the complex conjugate of Eq. �11�,

GMM
�2,0��u,v� = �G

MM̄
�0,0�

� GM̄M

�0,0� ��u,v� .

In Eq. �10�, we have defined

M̄��g� = 1
�3
̄a,��,g1

a,�u,g2
, �12�

and, similarly, we define the M fields

M��g� = 1
�3
a,��,g1

̄a,�u,g2
, �13�

i.e., making the change → ̄ and ̄→ and preserving the color �a=1,2 ,3�, spin ��u ,�u ,�u

=1,2, �� ,�� ,��=3,4�, and flavor or isospin index �f ,g ,h=u ,d ,s�1,2 ,3�. In Eqs. �12� and �13�
and in the sequel, we use the indices f�, g� , h� and �� , �� , �� to denote �f1 , f2�, �g1 ,g2�, �h1 ,h2� and
��� ,�u�, ��� ,�u�, ��� ,�u�, respectively. Also, by considering Eq. �12� �Eq. �13��, the spin index of

̄ �� is always a lower one, i.e., ��=3,4, in contrast to  �̄� for which it is an upper one, i.e.,
�u=1,2. The normalization factor 1

�3
is such that at coincident points, f1= f2, and for �=0, the

two-point function of Eq. �16� below is the 4�4 identity matrix I4. We refer to the quark-
antiquark fields in Eq. �12� as the fundamental excitation fields in the individual basis since each
isospin and spin index of the fermion fields individually appears.

The next term in the expansion of Eq. �9� is GML
�2,1�, but because of our parameter restriction,

i.e., �p��p, this is a subdominant term. This term is associated with a vertical plaquette with two
bonds, coming from the quark field dependent part of the action, which is superposed the two
vertical sides of the plaquette and in opposite orientation. We note that �p

2�p��p
3 from which we

get the restriction �p /�p�1.
Remark 1: Note that the fields in Eqs. (12) and (13) are local composite fermion fields and

gauge invariant (colorless).
We now obtain a fundamental property called as the product structure, which plays a major
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role in our analysis. In what follows, for simplicity, we drop the superscript notation �m ,0� and
simply write �m�, which means the coefficient of �p

m at �p=�p=0. For closure, which means that
correlations on the LHS and right-hand side �RHS� of Eq. �10� are the same, we take the fields

M =M�� f� and L=M̄�� h� in Eq. �10� to obtain, for u0	p
v0,


M�� f��u�M̄�� h��v��T
�2� = �

w�

M�� f��u�M̄��g��p,w� ��T

�0�
M��g��p + 1,w� �M̄�� h��v��T
�0�, �14�

i.e., the aforesaid product structure. Similarly to Eq. �14�, we have for v0	p
u0, taking M

=M̄�� f� and L=M�� h� in Eq. �11�,


M̄�� f��u�M�� h��v��T
�2� = �

w�

M̄�� f��u�M��g��p + 1,w� ��T

�0�
M̄��g��p,w� �M�� h��v��T
�0�. �15�

Equations �14� and �15� can be put together by schematically writing

GM̄M̄
�2� �u,v� = �GM̄M̄

�0�
� GM̄M̄

�0� ��u,v� .

This property is our guide to define the two-point function of Eq. �16� and to perform our analysis,
i.e., to obtain the mesonic eightfold way from a dynamical perspective.

In agreement with the general definition of Eq. �6�, the two-point function for the basic
excitation fields is defined by, writing GM̄�M̄��

�u ,v��G����u ,v�=G����x=u−v�,

G����x� = 
M��u�M̄���v��T�u0	v0 + 
M̄��u�M���v��
T
*�u0�v0

= 
M��u�M̄���v���u0	v0 + 
M̄��u�M���v��*�u0�v0, �16�

where the subscripts �= ��� , f�� and ��= ��� ,h�� are collective indices. Note that in Eq. �16�, the

subtraction 
M��u��= 
M̄��u��=0 is zero by using parity symmetry �to be defined ahead�. This
must be understood whenever we refer to the meson two-point function. For the dimension of the
two-point matrix regarding �spin� isospin�, we have to consider �2�3�2=36.

By considering Eq. �16�, we have the spectral representation, for x0�0,

G����x� = �
−1

1 �
Td
�0

�x0�−1ei�� ·x�d�M̄��1/2�,E��0,�� �M̄���1/2��H, �17�

which is an even function of x� by parity symmetry �more details will be given in Appendix A�.
Remark 2: We note that from the spectral representation of Eq. (17), the fields M̄ create

particles in contrast to the fields M, which are auxiliary fields entering the definition of the
two-point function of Eq. (16).

By taking the Fourier transform of Eq. �17�, i.e., G̃����p�=�x�Z0
4G����x�e−ipx and after separat-

ing the equal time contribution, we obtain

G̃����p� = G̃����p�� + �2��3�
−1

1

f�p0,�0�d�0d�p� ,�����
0� , �18�

where

d�p� ,�����
0� = �

T3
��p� − �� �d�0d���M̄�,E��0,�� �M̄���H, �19�

with f�x ,y�= �eix−y�−1+ �e−ix−y�−1, and we set G̃�p��=�x�e
−ip� ·x�G�x0=0 ,x��.
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Points in the E-M spectrum are detected as singularities of G̃����p� on Im p0, which are given
by the w�p�� solutions of Eq. �21�. To determine the singularities, we define by a Neumann series
the convolution inverse to the two-point function in the individual spin and isospin basis, namely,
��G−1,

� = �1 + Gd
−1Gn�−1Gd

−1 = �
i=0

�

�− 1�i�Gd
−1Gn�iGd

−1, �20�

where Gd is given by Gd,����u ,v�=Gd,����u ,u������u,v with G=Gd+Gn.
More precisely, the reason behind the introduction of � is that it decays faster than G. Thus,its

Fourier transform �̃�p�, G̃�p��̃�p�=1 has a larger analyticity domain in p0 than G̃�p�, which turns
out to be the strip �Im p0�
−�4−��ln � �see Ref. 38�. Then,

�̃−1�p� = �cof �̃�p��t/det��̃�p��

provides a meromorphic extension of G̃�p�. The singularities of �̃−1�p� are solutions w�p�� of the
equation

det��̃�p0 = iw�p��,p��� = 0. �21�

The solutions w�p�� will be shown to be the meson dispersion curves and the masses correspond to

w�p� =0��.
Remark 3: The meson dispersion relations w�p�� are given by the zeros of det��̃�p0

= iw�p�� , p���=0. Note that due to the determinant, we are free to take any new basis related to the
individual spin and isospin basis by an orthogonal transformation.

As we will see in the next section, the mesonic eightfold way particles are related to the basic
excitation fields of Eq. �12� by a real orthogonal transformation implying that both have identical
spectral properties.

To determine the meson masses �dispersion relations� up to and including O��4� �O��2��, we
need the global bounds for long distances and the low order in � short distance behavior of G and
�. In the sequel, we consider the two-point function of Eq. �16� and its inverse given by Eq. �20�,
where the spin and isospin indices are in the individual basis. Before we state the theorems
concerning the expansion in � of the two-point function and its convolution inverse, we make
some remarks. In the �, expansion of G, we first observe that each link of the path is composed by
an even number of bonds, with two by two in opposite orientation. We call intersecting paths those
either with links intercepting in one point or superposed links connecting two points on the lattice.
For example, in the first case, a path starting at zero and going around a square is an intersecting
path at zero; for the second case, 0→x1→x1+x2→x1, with 0 ,x1 ,x2 lattice points, has an over-
lapping link connecting x1 and x2. In our case, for a path with one link, we need intersecting paths
corresponding to four and six overlapping bonds, with two by two in opposite orientation, con-
necting the points separated by distance one. For paths with two or more links, as we will
determine mass splitting between pseudoscalar and vector mesons to leading order, which turns
out to be O��4�, our calculation shows that we only need nonintersecting paths. Intersecting paths
would give a contribution of O��6� or higher to the mass and dispersion curves. For this purpose,
we have derived a general formula for calculating nonintersecting paths �see Eq. �B6� in Appendix
B�. A direct application of this formula to obtain the low order in � short distance behavior of the

two-point function of Eq. �16� shows that the labeling � and �� in G��� is such that f�=h� and is

independent of f� up to and including O��4�.
Remark 4: Using the symmetries of Sec. III A, we can decompose each nonet into an octet and

flavor singlet. The octet states have the same mass and, up to and including O��4� at �=0, their
masses agree with the singlet of isospin. We point out that we cannot guarantee, solely based on
symmetry considerations, that the equality of masses between octet and singlet states holds to

072301-11 Eightfold way and confinement in lattice QCD J. Math. Phys. 49, 072301 �2008�



higher orders in � and �. For this splitting in the continuum model, see the U�1� problem �see Ref.
30�.

In the sequel, we use the convenient notation �G��� to denote �G���� with �, �� as in Eq. �16�
with fixed f�=h� and independent of f� the 4�4 matrix in the individual spin basis. In a similar
way,we introduce the matrix �����. In the sequel, we use the ordering �=1= �3,1�, �=2= �4,2�,
�=3= �4,1�, and �=4= �3,2�. We also let �x����i=1

3 �xi� and c as an arbitrary constant, which may
differ from place to place. By considering the behavior of G and �, we have the two theorems
given below.

Theorem 2: G and � are jointly analytic in � and � and satisfy the following global bounds:

(1)

�G����x�� 	 c���2�x0�+2�x��. �22�

(2)

������x�� 	 �c���2���4��x0�−1�+2�x��, �x0� � 1

c���2�x��, �x0� = 0,
� �23�

where c is independent of � and ��.

�

Proof: The proof of items �1� and �2� are direct applications of the hyperplane decoupling
method. To compute the hyperplane derivatives of � we use Leibniz formula, i.e., ��n�=
−�m=0

n ��0�G�n−m���m� where, we recall that the superscript �m� stands for the derivative of order m.
We warn the reader about the two time orderings: for the time ordering u0�p�v0 we must take
complex conjugation of the coefficients in the Taylor expansion in the complex parameter �p. For
more details, we refer the reader to Ref. 11. �

The short distance behavior of G and � needed in the proof of Theorem 1 is summarized in
the next theorem.

Theorem 3: Let � ,�=0,1 ,2 ,3, e0 the unitary vector in the temporal direction, ei, ej �i , j
=1,2 ,3� the unitary vectors in the spatial directions, and � ,��=�1. The following properties,
independent of isospin labeling, hold for �G��� and �����, at �=0:

(1)

G���x� =

⎩
⎪
⎨
⎪
⎧
��� + ���O��8� , x = 0

����
2 + 2c2c6�

6 + O��8� , x = �e0

c2����
2 + 2c6�

6 + O��8� , x = �ej

����
4 + O��8� , x = 2�e0

c2����
4 + O��8� , x = 2�ej

2c2�
4 + O��8� , x = �e0 + ��e�

c2�����u
����

4 + O��8� , x = �e1 + ��e2

�2c2
2��� + ������u

− ������
��1 − ������4 + O��8� , x = �e1 + ��e3

�2c2
2��� + ������u

+ ������
��1 − ������4 + O��8� , x = �e2 + ��e3

c6
2����

6 + O��8� , x = �e0 + 2��ej

c6����
6 + O��8� , x = 2�e0 + ��ej

�2c2�����u
+ 2c2

2�����6 + O��8� , x = �e0 + ��e1 + ��e2

�6c2
2��� + c2������u

− ������
��1 − ������6 + O��8� , x = �e0 + ��e1 + ��e3

�6c2
2��� + c2������u

+ ������
��1 − ������6 + O��8� , x = �e0 + ��e2 + ��e3

����
6 + O��8� , x = 3�e0, ⎭

⎪
⎬
⎪
⎫

�24�
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where the � independent constants are given by c2= 1
4 , c6= 3

4 , and we have defined �����c
=���c

���c
, c=u ,� for �� = �� ,��, and �� c= ��c ,�c�.

(2)

����x� =

⎩
⎪
⎨
⎪
⎧
��� + �2 + 6c2

2�����4 + O��8� , x = 0

− ����
2 − ����

6 + O��8� , x = �e0

− c2����
2 + O��6� , x = �ej

O��10� , x = 2�e0

�− c2 + c2
2�����4 + O��8� , x = 2�ej

O��8� , x = �e0 + ��ej

�− c2�����u
��� + 2c2

2�����4 + O��8� , x = �e1 + ��e2

������u
− ������

��1 − �����4 + O��8� , x = �e1 + ��e3

������u
+ ������

��1 − �����4 + O��8� , x = �e2 + ��e3

O��8� , x = �e0 + 2��ej

O��10� , x = 2�e0 + ��ej

O��8� , x = �e0 + ��ei + ��ej

O��12� , x = 3�e0. ⎭
⎪
⎬
⎪
⎫

�25�

�
Proof: The proof is given in Appendix B. The second item of Theorem 3 uses the Neumann

series of Eq. �20� by using the nonintersecting paths of Eq. �B6�. �

Remark 5: The action of charge conjugation C �see Appendix A) leaves the subspace HM̄, i.e.,
the subspace of He generated by the fields of Eq. (12), stable in the sense that particle and
antiparticle states are linearly dependent (l.d.) and, hence, have the same spectral representation.

More explicitly, CM̄31,f1f2
=M̄42,f2f1

, CM̄42,f1f2
=M̄31,f2f1

, CM̄41,f1f2
=M̄41,f2f1

, CM̄32,f1f2

=M̄32,f2f1
, and so considering det �̃�p0= iw�p�� , p��=0, they have the same dispersion curves.

Remark 6: Considering Theorem 3 above, we note that for x=2�e0, x=�e0+��ej, x=�e0

+2��ej, x=2�e0+��ej, x=�e0+��ei+��ej, x=3�e0, we would expect the contributions O��6�,
O��4�, O��6�, O��8�, O��6�, O��10�, respectively, taking into account the global bound
������x��	c���2+4��x0�−1�+2�x�� from Theorem 2. The absence of lower order terms in � for �x0�
=1,2 ,3 is related to explicit cancellations in the Neumann series and improves the global bounds
obtained by the decoupling of the hyperplane method.

In the next section, starting from the basic excitation fields of Eq. �12�, we introduce a new
basis, which is the total basis, related to the individual spin and isospin basis by a real orthogonal
transformation and we show how to make the conventional identification with the pseudoscalar
and vector mesons. We also determine the meson masses, dispersion curves, and their multiplici-
ties.

III. PARTICLE BASIS: THE PSEUDOSCALAR AND VECTOR MESONS FIELDS

This section is divided into four subsections. In the first subsection, we introduce the symme-
tries at the level of correlations associated with SU�3� f such as total isospin, third component of
total isospin, and total hypercharge. The fact that these symmetries can be implemented as unitary
operators in H is devoted to the next section. The use of orthogonality relations at the level of
correlations enables us to show that the two-point function reduces to a block diagonal form. In
the second subsection, we introduce spin operators and other symmetries, namely, G-parity �Gp�
and spin flip �Fs�, used to reduce the two-point function to a simpler diagonal form. In the third
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subsection, we establish the conventional connection with the eightfold way meson states. The
final subsection is devoted to the determination of the mesons masses, dispersion curves, and their
multiplicities.

A. Flavor symmetry considerations

Here, we define as linear operators on the Grassmann algebra the total isospin, total hyper-
charge, and other operators associated with SU�3� f symmetry. For fixed �� , M�� f�� form a basis for

the 3 � 3̄ representations of SU�3� f. We define, with F as a function of Grassmann fields suppress-
ing the gauge field dependence,

W�U�F = F�Ū�,Ū��, Ū = U†. �26�

In Sec. VI, we show how to implement this operator as a unitary operator in the physical Hilbert
space H.

Letting U=ei�Fj, we define the operators Aj, j=1,2 , . . .8, by

AjF = lim
�↘0

�W�U� − 1�
i�

F , �27�

where Fj =� j /2 are the traceless self-adjoint Gell-Mann matrices given by

�1 = �0 1 0

1 0 0

0 0 0
�, �2 = �0 − i 0

i 0 0

0 0 0
�, �3 = �1 0 0

0 − 1 0

0 0 0
�, �4 = �0 0 1

0 0 0

1 0 0
� ,

�5 = �0 0 − i

0 0 0

i 0 0
�, �6 = �0 0 0

0 0 1

0 1 0
�, �7 = �0 0 0

0 0 − i

0 i 0
�, �8 = 1

�3�1 0 0

0 1 0

0 0 − 2
� .

For F=M̄�� f�, Aj = Ij, j=1,2 ,3, in Eq. �27�, we define the components of Isospin �where “�”
means complex conjugation� as

Ij = i j � 1 − 1 � ī j , �28�

where i j =Fj �j=1,2 ,3�. Similarly, we have for total hypercharge, U=ei�F8,

YF =
2
�3

lim
�↘0

�W�U� − 1�
i�

F ,

from which we get

Y = y � 1 − 1 � ȳ , �29�

with y= 2
�3

F8. Also, we define the isospin raising and lowering operators by letting i�=i1� ii2 as

I� = i� � 1 − 1 � �ī1 � ī2� ,

=i� � 1 − 1 � i�, �30�

the total isospin squared as
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I�2 = �
j=1

3

Ij
2 =

1

2
�I+I− + I−I+� + I3

2, �31�

raising and lowering operators for SU�3� f as

U� = u� � 1 − 1 � u�, u� = F6 � iF7, �32�

V� = v� � 1 − 1 � v�, v� = F4 � iF5, �33�

and the quadratic Casimir as

C2 = �
j=1

8

Aj
2. �34�

The operators above obey the commutation relations as follows:

�I+,I−� = 2I3, �I3,I�� = � I�, �Ij,I�
2� = 0,

�Y,I�� = 0, �Y,I3� = 0,

�I3,U�� = �
U�

2
, �Y,U�� = � U�,

�I3,V�� = �
V�

2
, �Y,V�� = � V�,

�C2,Aj� = 0.

Here, we follow the convention of Ref. 3.
From the commutation relations above, we can see that I� changes I3 by �1 but does not

change Y, U� changes I3 by � 1
2 and changes Y by �1, and V� changes I3 by � 1

2 and changes Y
by �1.

In Sec. IV, we show how to lift I�2, I3, Y, and C2 to operators in H �we recall the notation Ǎ
for an operator in H if A is the Grassmann algebra operator�. We use the eigenvectors of the

commuting set I�̌2 , Ǐ3 , Y̌ , Č2� to form a new basis for each fixed �� . The vectors are denoted by

M̄��L, �35�

where L= �I , I3 ,Y ,C2� denotes the eigenvalues of I�̌2, Ǐ3, Y̌, and Č2; really, I�I+1� is the eigenvalue

of I�̌2, but we drop this from the notation and, for simplicity, we write I.
Explicitly, following the usual procedure to pass from one vector to another inside the nonet,

we can start, for example, with ̄a,�1,ua,�2,d, and apply the operators I�, U�, V� to generate eight
basis vectors. These eight vectors all have the same value of C2, which is conveniently calculated

on the vector U+̄a,�1,ua,�2,d. For this vector, C2= I�2+V−V++V3+U−U++U3+ 3
4Y2 reduces to C2

= I�2+ 3
2Y + 3

4Y2 since V+ and U+ are zero acting on this vector and V3 and U3 add to give 3Y /2.
Thus, C2 takes the value 3.

Furthermore, for the vector
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M̄��
0 = 1

3 �̄a,��,ua,�u,u + ̄a,��,da,�u,d + ̄a,��,sa,�u,s� ,

it is seen that I�2, U+, V+, Y acting on it give zero, so that C2 has the eigenvalue 0.
In this way, for fixed �� = ��� ,�u�, we decompose the basis into the direct sum of irreducible

representations of SU�3� f: a one-dimensional flavor singlet �denoted by M̄��
0 with C2=0� and an

eight-dimensional octet �M̄��
k �k=1

8 with C2=3� and the labeling distinguishes between them. These
states with their quantum numbers are displayed in Fig. 1 where for simplicity we have labeled

them by M̄��
k �k=0,1 , . . . ,8�. We list M̄��

k � as follows:

M̄��
0 = 1

3 �̄a,��,ua,�u,u + ̄a,��,da,�u,d + ̄a,��,sa,�u,s� ,

M̄��
1 = 1

3�2
�̄a,��,ua,�u,u + ̄a,��,da,�u,d − 2̄a,��,sa,�u,s� ,

M̄��
2 = 1

�6
�̄a,��,ua,�u,u − ̄a,��,da,�u,d� ,

M̄��
3 = 1

�3
̄a,��,ua,�u,d,

M̄��
4 = 1

�3
̄a,��,ua,�u,s, �36�

M̄��
5 = 1

�3
̄a,��,da,�u,s,

M̄��
6 = 1

�3
̄a,��,da,�u,u,

M̄��
7 = 1

�3
̄a,��,sa,�u,u,

M̄��
8 = 1

�3
̄a,��,sa,�u,d.

The set M̄��
k � is related to M̄�� f�� by a real orthogonal transformation B. Explicitly, by using the

M̄�� f� ordering f�= �u ,u�, �d ,d�, �s ,s�, �u ,d�, �u ,s�, �d ,s�, �d ,u�, �s ,u�, �s ,d� with fixed �� , B is
given by

FIG. 1. Graphical representation of the tensor product decomposition 3 � 3̄=8 � 1. M̄��
0 is the singlet state and the

remaining fields M̄��
k �k=1

8 are members of the octet.
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B = B3 � I6, �37�

with

B3 = �
1
�3

1
�3

1
�3

1
�6

1
�6 − �2

3
1
�2

− 1
�2 0

� . �38�

From the above, by recalling the normalization 
M�� f�M̄�� f���0�=1, we have 
M��
k M̄��

k ��0�=1.

The graphical representation of the tensor product decomposition is 3 � 3̄=8 � 1. M̄��
0 is the

singlet state and the remaining fields M̄��
k �k=1

8 are members of the octet.
The two-point function is given by the following equation, where we recall the convenient

notation L= �I , I3 ,Y ,C2� labeling the quantum numbers of each member of the nonet:

G��L,��L��u,v� = 
M��L�u�M̄��L��v���u0	v0 + 
M̄��L�u�M��L��v��*�u0�v0, �39�

which decomposes into eight identical �4�4� blocks and one �4�4� block associated with the
octet and flavor singlet, respectively. We remark that for the two-point function of Eq. �39�, the
product structure still holds because the states M��L� are related to M�� f�� by an orthogonal
transformation �see Eqs. �37� and �38��, and we still have the faster decay in � for the convolution
inverse �see Theorem 2�.

B. Block diagonalization of the two-point function: Spin operators and other
symmetries

Now, we want to further reduce these �4�4� blocks of G by using additional symmetries.
Then, we will make the conventional identification with meson particles. Here, we list the sym-
metries and leave details for Appendix A. The time reversal T and parity P symmetries are used
to show that the two-point matrix function for fixed u and v is self-adjoint.

We introduce a generalized Gp symmetry, which is a composition of charge conjugation and
discrete SU�3� f symmetry, namely, permutations of flavor indices. For F as a function of the field
algebra, we define the linear operator Gp by following equation, suppressing the gauge fields:

GpFc�̄,� = Fc�P̄,P� , �40�

where Fc�̄ ,�=CF�̄ ,�, C is the charge conjugation linear operator, and P�SU�3� f is one of
the six permutations of the flavor indices, i.e., of u, d, s. For example, if P permutes u and d, we
take

P � Pud = �0 1 0

1 0 0

0 0 − 1
� . �41�

Gp is implemented by a unitary operator on H �see Sec. IV�. We use this symmetry to further
decompose the space of excitations, which will be seen to correspond to the decomposition into

pseudoscalar and vector excitations. Taking P to be the permutation of �f1 , f2�, Gp acts on M̄�� f� as

M̄31,f1f2
→ M̄42,f1f2

,

M̄42,f1f2
→ M̄31,f1f2

,

�42�
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M̄41,f1f2
→ M̄41,f1f2

,

M̄32,f1f2
→ M̄32,f1f2

.

For fixed L, we decompose the space M̄��L into eigenvectors of Gp given by �suppressing all but
the spin index�

1
�2

�M̄31 + M̄42� with eigenvalue 1,

M̄32,
1
�2

�M̄31 − M̄42�,M̄41 with eigenvalue − 1. �43�

We denote the vectors in Eq. �43� by M̄J, which are related to M̄�� by a real orthogonal trans-
formation explicitly given by

A =�
1
�2

1
�2 0 0

0 0 0 1
1
�2

− 1
�2 0 0

0 0 1 0
� , �44�

recalling the ordering for �� such as �3,1�, �4,2�, �4,1�, and �3,2�.
We now turn to the definition of the spin operator. In the continuum, we identify the compo-

nents of the total angular momentum with the generators of infinitesimal rotations about the
coordinate axis. Starting from a state ��x� created by a local single or composite field, we
consider a zero spatial momentum improper state �0=	��x�dx�. �0 is expected to have a zero
spatial angular momentum, i.e., only spin angular momentum, and the rotation operator reduces to
a rotation in spin space.

On the lattice, a � /2 rotation about any one of the coordinate axes x, y, z is a symmetry giving
rise to a unitary operator

Y̌�U� = �
−�

�

ei�dE��� , �45�

which is a lift from the linear transformation

Y�U�F = F�U��xr�,Ū��xr�� , �46�

with xr denoting the coordinates of the rotated point and U=U2 � U2�ei�j, where U2=ei��/2��x,y,z,
�=� /2. By the spectral theorem, we can define Mx,y,z, which are the components of a lattice total
angular momentum, by

M̌ =
2

i�
ln Y̌�U� =

2

i�
�

−�

�

�dE��� . �47�

If we consider the zero spatial momentum improper state �0=�x���x�� �expected to have only spin
angular momentum� for the special case, omitting all indices,

��x� = M̄�x� = ̄�x� ,

then

072301-18 Francisco Neto, O’Carroll, and Faria da Veiga J. Math. Phys. 49, 072301 �2008�



Y�U��0 = �
x�

�Ū��Ū��x�� ,

such that only the spin space is transformed and the total angular momentum is expected to reduce
to spin angular momentum only. We define the components Jx,y,z of the total spin J, acting on �0

by

J�0 =
2

i�
ln Y̌�U��0 = �

x�
��j̄� − ̄� j̄���x� ,

where we have used the spectral theorem with U=ei��/2�j =�ei��/2��P�, and for a function f�w�
=�nanwn,

f�Y�U���0 = �
x�

�
�1,�2

f�ei��/2���1−�2��P�1
̄P�2

 .

The argument of ln is well defined for �max �Jz � �� /2
�, which includes the meson states, i.e.,
�Jz�=0,1. On the other hand, J�0 is precisely what we obtain from the continuous rotation limit

lim
�↘0

�Z�U� − 1�
i�

�0,

where Z�U�F=F�Ū� , Ū��.
Jx,y,z obey the usual angular momentum algebra. Below, we will show that the correlations for

different spin states of zero-momentum states within a member of the nonet, are related by the
usual raising and lowering operations, which implies that the masses of the �J ,Jz�= �1,1� and
�J ,Jz�= �1,0� spin states are equal.

The vectors in Eq. �43� are eigenvectors of J�2 and Jz with eigenvalues �0,0�, �1,1�, �1,0�,
�1,−1�. It turns out that these eigenvalues and eigenvectors in the total spin basis correspond to
those of Gp. It should be noted that Gp does not distinguish among the states �J ,Jz�
= �1,1� , �1,0� , �1,−1�. We will label the vectors in Eq. �43� by M̄J with this total spin notation
J= �J ,Jz� in the order given above. The associated two-point function in the total spin basis is
denoted by GJJ��x� and has the structure

GJJ��x� =�
a 0 0 0

0 b c d

0 c* e f

0 d* f* g
� ,

where a ,b ,e ,g are real �see Lemma 1 in Appendix A�.
We obtain further relations among the elements of GJJ��x� by exploiting a new local antilinear

symmetry that we call spin flip, which is denoted by Fs. This symmetry is the composition

Fs = − iTCT , �48�

where T is time reversal, C is the charge conjugation, and T is the time reflection �see Refs. 20, 21,
and 31� symmetries. Fs can be implemented as a antiunitary transformation in H �see Refs. 20 and
21�. These symmetries are discussed in more detail in Appendix A. By using this symmetry, we
obtain the structure
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GJJ��x� =�
a 0 0 0

0 b c d

0 c* e c

0 d* c* b
� . �49�

It is interesting to observe the symmetry of GJJ� about the secondary diagonal in the lower right
�3�3� block. The convolution inverse, which is denoted by �JJ��x�, has the same structure of Eq.
�49�.

There is a partial restoration of continuous rotational symmetry. In particular, fixing a nonet
member, we show that the zero-momentum two-point correlation diagonal elements are identical
for fixed J and all Jz. Of course, in the continuum, for the model with rotational symmetry fixing
the energy, this is true for all spatial momentum. We already know from previous symmetry
considerations, i.e., the spin flip symmetry, that they only depend on �Jz�.

To see the lattice result, we write ̄ for a typical term of a meson creating field. By the � /2

spatial rotation symmetry, we have, with u= �u0 ,0��,


̄�u��Ū��Ū��v�� = 
�U��̄Ū��u�̄�vr�� ,

where vr= �v0 ,v�r� is the rotated point. By summing over v�r, v�r can be replaced by v� and the
identity holds for powers of U and for linear combinations of correlations. By using the spectral
theorem for U=��e

i�/2P� as before and for a function f�z�=�nanzn, we obtain

�
v�
�̄�u� �

�1,�2

f�ei�/2��1−�2���Ū��Ū��v�� = �
v�
� �
�1,�2

�U��̄Ū��u�f�ei�/2��1−�2��̄�v�� .

For the function f�x�=2 / �i��ln x, we get

�
v�


̄�u��J̄�34�v�� = �
v�


�̄J�12�u�̄�v�� ,

where J= j�1−1� j̄, j= jx,y,z.
Multiplying by w̄34, v12 and summing over components, we have

�Jw,Rv� = �w,RJv� ,

where we have used the usual complex Hilbert space notation and that j is self-adjoint. In the

above, �Jw ,Rv�= �Jw���R����v�� , where R���� =�v�
M���u�M̄���v��. Thus, letting J�=Jx� iJy, we have

�J+w,Rv� = �w,RJ−v� ,

and taking v=�J,Jz
, w=�J,Jz−1, where �Jm is the normalized eigenfunction of total spin J and

z-component m, we get

��J,Jz−1,R�J,Jz−1� = ��J,Jz
,R�J,Jz

� ,

so that for diagonal elements of the nonets �x�GJ,Jz
�x0 ,x��=�x�GJ,Jz−1�x0 ,x��,

G̃J,Jz
�p0 = p� = 0�� = G̃J,Jz−1�p0 = p� = 0��

and the same for �̃J,Jz−1�p0= p� =0��.
For p� �0� , the determinant of �̃JJ��p

0= i� , p�� factorizes using the formula for the roots of a

cubic equation. For p� =0� , �̃JJ��p
0= i� , p� =0�� is diagonal by using additional symmetries of � /2

rotations about e3. We can obtain further relations among the diagonal elements in �̃JJ��p
0

= i� , p� =0��, i.e., for �̃J= �̃JJ, �̃�1,1�= �̃�1,−1�, by using the symmetry of reflection in e1 �for more
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details, see Appendix A�. It is interesting to observe that to obtain these properties for p� =0� , we do
not need the spin flip symmetry Fs. We use the auxiliary function method in Sec. III D to obtain

convergent expansions for the masses M =M��� in det �̃JJ��p
0= iM , p� =0��=0.

C. Particle identification and basic excitation states

We make some remarks about the basis for the octet and flavor singlet and the identification

of particles. Applying I−�I+� to ̄ud�̄du�, which is identified with the M̄3 �M̄6� state of Fig. 1

where we suppress spin and gauge indices for simplicity, we obtain ̄uu− ̄dd; by applying U+,

U−, V+, V− to the outer four octet members �i.e., to M̄8, M̄5, M̄7, M̄4 in Fig. 1, respectively� on

the outer rim, we generate the vectors ̄ss− ̄dd and ̄ss− ̄uu. These three vectors are l.d. and
we can take the linear combinations

w1 = ̄uu − ̄dd,

w2 = 2̄ss − ̄uu − ̄dd,

which are identified with M̄2 and M̄1, respectively, together with the six outer rim vectors to form

a basis for the eight-dimensional representation of SU�3� f in the decomposition 3 � 3̄=8 � 1. The
quantum numbers of w1 ,w2 are

w1: I = 1, I3 = 0, Y = 0, C2 = 3,

w2: I = 0, I3 = 0, Y = 0, C2 = 3.

On the other hand, the basis vector for the one-dimensional representation is the flavor singlet

�M̄0�,

w0 = ̄uu + ̄dd + ̄ss,

with quantum numbers

w0: I = 0, I3 = 0, Y = 0, C2 = 0,

so that the three vectors w0 ,w1 ,w2 have distinct quantum numbers.
We now consider the identification of physical particles for broken SU�3� f. The outer rim

vectors are identified with particles as well as w0= �, w1=�0, and w2= for pseudoscalar me-
sons; for vector mesons, w1 is identified with �0 and the  and ! seem to be best described as
strong mixtures of w0 and w2. In order to make the conventional identification of states presented
in Fig. 1 with particles, the pseudoscalar and vector mesons along with the associated quantum

numbers are depicted in Figs. 2 and 3. Referring to Fig. 1, we see that M̄��
0 → �, M̄��

1 → ,

M̄��
2 →�0, M̄��

3 →�+, and so on. Note that since the baryon number for the mesons is zero, we get
S=Y −B=Y. The charges verify the Gell-Mann and Nishijima relation Q= I3+Y /2.

Note that  �,  , and �0 are invariant under charge conjugation. Also, C��=��, CK�=K�,

and CK0= K̄0. Hence, charge conjugation C changes the sign of the hypercharge Y and the third
component of total isospin I3 of a pseudoscalar state.

D. Mesonic eightfold way masses and dispersion curves

We now turn to the exact determination of the mesonic eightfold way dispersion curves and
masses. In what follows, in our determination of meson masses and dispersion curves due the
restriction of ���, the �=0 behavior dominates and we will explicitly carry out the analysis for
�=0. At the end, we show what modifications are needed for ��0. We explicitly determine the
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masses �dispersion curves� up to and including O��4� �O��2�� at �=0; for this, we need the short
distance behavior of G and � of Theorem 3. Fixing a member of the octet or singlet, the mass-

determining equation is det �̃JJ��p
0= iM , p� =0��=0. �̃JJ� is seen to be diagonal by using the

symmetry of � /2 rotations about the e3 axis, as shown in Appendix A, and is seen to have the
diagonal structure of Eq. �49� by using e1 reflections. We have one equation for each factor

�̃JJ�=0, and for notational simplicity, we write �̃J. We note that the same global bounds of
Theorem 2 hold for �J�x�. The short distance behavior of �J�x� is related to the behavior in the
individual spin basis given in Theorem 3 by the similarity transformation with the orthogonal
transformation B given in Eqs. �37� and �38�.

The solution of det �̃J=0 for all p� approaches infinity as � goes to zero. To find the solutions

of det �̃J=0 without approximation, we make a nonlinear transformation from p0 to an auxiliary

variable w and introduce an auxiliary matrix function HJJ��w ,� , p�� �for p� =0� we have the mass�
to bring the solution for the nonsingular part w�p��+2 ln � of the dispersion curves from infinity to
close to w=0 for small �. With this function, we can cast the problem of determining dispersion
curves and masses into the framework of the analytic implicit function theorem. To this end, we
introduce the new variable with c2�p���c2� j=1

3 2 cos pj and we recall from Theorem 3 that c2= 1
4 ,

w = 1 − c2�p���2 − �2e−ip0
, �50�

and the auxiliary function HJ�w ,� , p�� such that

�̃J�p0,p�� = HJ�w = 1 − c2�p���2 − �2e−ip0
,�,p�� ,

where HJ�w ,� , p�� is defined by the following using ��x0 ,x��=��−x0 ,x�� �see Lemma 1, item �2�, in
appendix A�:

FIG. 2. The pseudoscalar mesons �J=0�. The hypercharge �Y�, strangeness �S�, total isospin �I�, and third component of
total isospin �I3� are indicated.

FIG. 3. The vector mesons �J=1�.
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HJJ��w,�,p�� = �
x�
�JJ��x

0 = 0,x��e−ip� ·x� + �
n�1,x�

�JJ��x
0 = n,x��e−ip� ·x���1 − w − c2�p���2

�2 �n

+ � �2

1 − w − c2�p���2�n� , �51�

with J=J�. By the global bounds of Theorem 2, H is jointly analytic in w and � for �w� and ���
small.

The mass-determining equation becomes

HJ�w,�� � HJJ�w,�,p� = 0�� = 0. �52�

In the sequel, we determine the masses up to and including O��4�.
Remark 7: We have not found any symmetry that allows us to show that the flavor singlet

masses are the same as the octet masses. Our calculation shows that their masses are the same up
to and including O��4�.

For convenience, we separate the time zero and one and the remaining contributions to HJ
=HJ�w ,��, and we use the short distance behavior of �J in the total spin basis �see Eq. �49��. The
contributions are

n = 0:�1 + c0�
4� − c2�0���2 + c2�0��c4�

4 + aJ�
4 + O��6� ,

where c0=2+6c2
2, c4=c2−1 and aJ�

4 are the �4 contributions from all points of the form x=�ei

+��ej, i , j=1,2 ,3, which are called angle contributions,

n = 1: − �4 − �1 − w − c2�0���2� −
�4

�1 − w − c2�0���2�
+ O��6� ,

n � 2: O��6� .

Thus, we can write HJ�w ,�� in the form, with bJ=−1+c0+c2�0��c4,

HJ = w + bJ�
4 −

�4

1 − w − c2�0���2
+ aJ�

4 + �6rJ�w,�� ,

where rJ�w ,�� is jointly analytic in w and �. We see that HJ�0,0�=0 and ��HJ /�w��0,0�=1 so
that the analytic implicit function theorem applies and yields the analytic function wJ��� such that

HJ�wJ���,�� = 0. �53�

The solution wJ��� has the form

wJ��� = �4 − �aJ + bJ��4 + O��6� .

By returning to Eq. �50�, the mass is given by

MJ = ln e−i�p0=iMJ� = − 2 ln � + ln�1 − wJ − c2�0���2� = − 2 ln � + �− 1 + c0 + 6c2c4��4 − 6c2�
2

− 1
262c2

2�4 + aJ�
4 + O��6� . �54�

Suppressing in what follows the subscript J from the notation, the implicitly defined wJ���
for each J has an explicit representation in terms of the Cauchy integral,
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w��� =
1

2�i
�

�w�
�

w

H�w,��
�H

�w
�w,��dw , �55�

where ��0 is sufficiently small �see Ref. 39�. From this representation, we see that w��� is
analytic in �. We note that the integral formula of Eq. �55� permits us to deduce an explicit
formula for wn= �1 /n!�dnw�0� /d�n, which is the nth Taylor coefficient of the analytic function
w���, implicitly defined by Eq. �53�. For the general procedure to obtain wn from Eq. �55�, we
refer the reader to Ref. 40.

By noting that aJ=4��J�e1+e2�+�J�e1+e3�+�J�e2+e3��, we find

aJ = ��− 3 + 4!c2
2��4 = − 3�4/2, J = 0

�− 1 + 4!c2
2��4 = �4/2, J = 1, Jz = 0,− 1,1.

� �56�

Thus, we see that there is a mass splitting between the total spin one and total spin zero states
given by

M�1,Jz�
− M�0,0� = 2�4 + O��6� .

For ��0, ���, the arguments above hold and the nonsingular contribution to the mass is
jointly analytic in � and �. In particular, the mass splitting persists for ��0. The implicit function
w�� ,�� is given by the above integral representation of Eq. �55� making the obvious replacements
H�w���� by H�w�� ,��� in the integrant.

We now turn to the determination of dispersion curves. We recall the block decomposition of
GJJ� in Eq. �49�, which is the same as �JJ�. We write �JJ�=D1 � D3 �where Dn a n�n matrix�,
which implies that for the pseudoscalar meson, i.e., the number D1, we can still apply the auxiliary
function method to determine the dispersion curves wp�p��. They are given by

wp�p�� = − 2 ln � − 6c2�
2 + c2�

2�
j=1

3

2�1 − cos pj� + �4rp��,p�� , �57�

with rp�� , p�� jointly analytic in �, Im pj for ���, �Im pj� small.
By considering the �3�3� block, for fixed � and p� , we can apply a Rouché’s theorem

argument to the analytic function

f�w� � det H�w,�� = det�wI3� + �det H�w,�� − det�wI3�� = g�w� + h�w� .

In the disk �w�	c�4, c�1, g�w��h�w�, so that the equations f�w�=0 and g�w�=0 have the same
number of solutions. Since g�w�=w3=0 has three solutions, we see that g�w�=0 has exactly three
not necessarily distinct solutions for the dispersion curves.

From the relation between w and p0 of Eq. �50�, the dispersion curves are given by

w�p�� = − 2 ln � − 6c2�
2 + c2�

2�
j=1

3

2�1 − cos pj� + O��4� . �58�

We still do not know if the dispersion curves are the same for the singlet flavor and octet.
By recalling Eq. �49�, we note that for the vector mesons, we can use Cardano’s formula for

the roots of a cubic equation to obtain factorization of the 3�3 determinant. Each factor is a sum
of terms with square and cubic roots of polynomials of maximum degree 6 in the matrix elements

of �̃. The expressions are lengthy and we will not present them here but they can be viewed by
using standard mathematical softwares such as MAPLE. The presence of the square of cubic roots

and the lack of knowledge of the order in � where �̃00− �̃11 is nonzero prevent us from solving the
equations for the dispersion curves using the auxiliary function method.
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IV. ISOSPIN, HYPERCHARGE, SPIN FLIP, AND Gp OPERATORS IN H

In this section, by following Refs. 20 and 21 and inspired by the treatment of point groups
given in Ref. 23, we construct the total isospin, total hypercharge, Gp, and spin flip defined in Eqs.
�28�, �29�, �40�, and �48�, respectively, as self-adjoint operators acting on the physical Hilbert
space H. The spin flip symmetry and its implementation by an antiunitary operator is treated in
Refs. 20 and 21. The spin operators are defined on the field algebra but not in the physical Hilbert
space. For a function F on the field algebra and U�SU�3�, we define a linear operator W�U� by
using Eq. �26�. By using the FK formula and for functions F and G of the basic fields of finite

support, we define the Hilbert space operator W̆�U� by the sesquilinear form

�G,W̌�U�F�H = 
�W�U�F��G� ,

so that by using Eq. �26�, we have

�G,W̌�U�F�H = 
F�U†�,Ū���G��,̄��� = 
F��,̄���G�U�,U†̄��� = 
F�W�U†�G�

= �W̌�U†�G,F�H, �59�

where W�U�†=W�U†� and where we have used the SU�3� f symmetry on the correlation functions
in the RHS. Furthermore, we have

�W̌�U�G,W̌�U�F�H = 
�W�U�F���W�U�G�� = 
F�G� = �G,F�H.

Hence, W̆�U� is an isometry, i.e., W̆�U�†W̆�U�=1. Interchanging U and U†, we also have

W̆�U�W̆�U�†=1. Then, W̆�U�† is also isometric, which implies that W̆ is unitary. The isometry

property of W̆�U� is seen by first considering F and G monomials and then extending to F and G

elements of H by continuity. That W̆ in Eq. �59� is well defined follows from the fact that taking
F=G�N �recall that N denotes the set of nonzero F such that 
F�F�=0� and then if F�N,

W̆�U�F is also in N. We note that Gp is a composition of unitary operators �charge conjugation and

discrete flavor permutations� and can lift to a unitary operator in H. Generators Àj associated with
the eight one parameter subgroups of SU�3� f are self-adjoint by Stone’s theorem.37

We see that W̆�U� commutes with time evolution Ť0
x0

by noting that W�U�T0
x0

F=T0
x0
W�U�F.

Thus, the SU�3� f generators defined as operators in H also commute with Ť0
x0

.
We now turn to the spin flip symmetry defined in Refs. 20, 21, and 31. From a consideration

of the composition of the symmetries of time reversal T, charge conjugation C, and time reflection
T given in Appendix A, the local spin flip operator is defined by Fs=−iTCT, which acts on single

Fermi fields by ��x�→A����x�, ̄��x�→ ̄��x�B��, where

A = �i�2 0

0 i�2
�

is real antisymmetric and B=A−1=−A. For functions of the gauge fields, f�gxy�→ f̄�g
xy
* �, where *

denotes the complex conjugate. More explicitly, ̃1→ ̃2, ̃2→−̃2, ̃3→ ̃4 and ̃4→−̃3.
In more detail, if F is a polynomial �not necessarily local� in the gauge and Fermi fields,

suppressing the lattice site arguments,

F = � a�mng�̄mn,

then extend Fs by
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FsF = � a
�mn
* g��̄B�m�A�n

and take Fs to be order preserving. Note that Fs is antilinear but not in the same sense as � �no
complex conjugation of g for Fs�.

With these definitions, the action of Eq. �2� is termwise invariant and the symmetry operation
is a symmetry of the system satisfying 
F�= 
FsF�*. For the �4�4� block of G, applying Fs gives
the structure presented in Appendix A. For the implementation of Fs as an antiunitary operator in
H, we refer the reader to Refs. 20 and 21.

V. UPPER GAP PROPERTY AND EXTENSION OF THE SPECTRAL RESULTS FROM
HM̄ TO ALL He

Up to now, we have considered the spectrum generated by vectors in HM̄�He. As in Refs. 10
and 11, we use a correlation subtraction method �see Ref. 22� to show that the eightfold way
meson spectrum is the only spectrum in all He, up to near the two-meson threshold of
�−4 ln �. For L�He, we have the spectral representation and FK formula �with as P� the
projection onto the vacuum state ��1�

��1 − P��L,Ť0
�v0−u0�−1T�̌v�−u��1 − P��L�H = G�u,v�, u0 � v0,

where, with M = �1− P��L,

G�u,v� = GMM�u,v��u0	v0 + GMM�ut,vt��u0�v0 = GMM�u,v��u0	v0 + G
MM
* �u,v��u0�v0,

and we have used the notation zt= �−z0 ,z�� if z= �z0 ,z��.
M may have contributions to the energy spectrum in the interval �0,−�4−��ln �� that arise

from states not in HM̄. We show that this is not the case by considering the decay of the subtracted
function

F = G − P�Q , �60�

where the kernels of P, �, and Q are given by

P�u,w� = GMM̄�u,w��u0	w0 + GMM̄�ut,wt��u0�w0 = GMM̄�u,w��u0	w0 + G
MM̄
* �u,w��u0�w0,

Q�z,v� = GM̄M�z,v��z0	v0 + GM̄M�zt,vt��z0�v0 = GM̄M�z,v��z0	v0 + G
M̄M

* �z,v��z0�v0,

J�w,z� = GM̄M̄�w,z��w0	z0 + GM̄M̄�wt,zt��w0�z0 = GM̄M̄�w,z��w0	z0 + G
M̄M̄
* �w,z��w0�z0,

with ��w ,z�=J−1�w ,z�. The identities above are obtained by using time reversal, which gives

GMM�ut,vt� = G
MM
* �u,v�, GMM̄�ut,wt� = G

MM̄
* �u,w� ,

GM̄M�zt,vt� = G
M̄M

* �z,v�, GM̄M̄�wt,zt� = G
M̄M̄
* �w,z� .

The motivation for the definitions of the kernels of G P, �, and Q is such that time reflected points
give the same value for the u0
v0 and u0�v0 definitions.

The kernels of P and Q also have spectral representations for noncoincident temporal points
given by

�M,Ť0
�v0−u0�−1T�̌v�−u�M̄�H = P�u,v�, u0 � v0,
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�M̄,Ť0
�v0−u0�−1T�̌v�−u�M�H = Q�u,v�, u0 � v0.

We remark that in the two equations above, we made use of 
M̄�u��= 
M�u��=0 by parity
symmetry. Using the hyperplane decoupling method, we show below that F�r��u ,v�=0, r

=0,1 ,2 ,3 for �u0−v0��2, which implies that F̃�p� is analytic in p0 in the strip �Im p0�	−�4
−��ln �. Again, only the expansion in �p is needed because of our restriction ���. However,

F̃�p�= G̃�p�− P̃�p��̃�p�Q̃�p� so that possible singularities of G̃�p� in the strip are canceled by those

in the term P̃�p��̃�p�Q̃�p�. From their spectral representations, it is seen that P̃�p� and Q̃�p� only

have singularities at the one-meson particle spectrum and the same holds for P̃�p��̃�p�Q̃�p� since

�̃�p� is analytic in the strip. Thus, the singularities of G̃�p� and the spectrum generated by L in the
interval �0,−�4−��ln �� are contained in the one-meson spectrum.

By expanding F in Eq. �60� in powers of �p, we get

F = F�0��p
0 + F�1��p + F�2��p

2 + O��p
3� = �G�0� − P�0���0�Q�0���p

0 + �G�1� − P�1���0�Q�0� − P�0���1�Q�0�

− P�0���0�Q�1���p + �G�2� − P�2���0�Q�0� − P�0���2�Q�0� − P�0���0�Q�2� − P�1���1�Q�0�

− P�1���0�Q�1� − P�0���1�Q�1���p
2 + O��p

3� .

That F�r��u ,v�=0 �r=0,1 ,3� follows from gauge integration and imbalance of fermion fields
appearing in the expectations. The second derivative of F�u ,v� for the time ordering u0	p
v0 is

F�2� = G�2� − P�0���0�Q�2� − P�0���2�Q�0� − P�2���0�Q�0� = A1 + A2 + A3 + A4.

We will use in the sequel for r0	p
s0 the following special cases of Eq. �14�:

GMM
�2� �r,s� = �G

MM̄
�0�

� GM̄M

�0� ��r,s�, G
MM̄
�2� �r,s� = �G

MM̄
�0�

� GM̄M̄
�0� ��r,s� ,

GM̄M

�2� �r,s� = �GM̄M̄
�0�

� GM̄M

�0� ��r,s�, GM̄M̄
�2� �r,s� = �GM̄M̄

�0�
� GM̄M̄

�0� ��r,s� .

For the A2 term, we have

A2 = − �
w0,z0	p

P�0��u,w���0��w,z��GM̄M̄
�0�

� GM̄M

�0� ��z,v� = − �
w�

P�0��u,�p,w� ��GM̄M

�0� ��p + 1,w� �,v�

= − �G
MM̄
�0�

� GM̄M

�0� ��u,v� = − A1,

where in the equation above we have extended the sum to all z by using the support properties of
��0� and G�0�.

For the A4 term, we similarly get A4=A2. Now, we consider the A3 term,

A3 = − �
w0	p,z0�p+1

P�0��u,w���2��w,z�Q�0��z,v� .

However, for w0	p, z0�p+1, ��2��w ,z�=−���0�J�2���0���w ,z�, which is obtained by taking the
second derivative of the relation �J=1 and observing that ���0�J�1���1���w ,z�= ���1�J�1���0��
��w ,z�=0 for w0	p, z0�p+1. With these restrictions on sums, we get

J�2��x,y� = GM̄M̄
�2� �x,y� = �GM̄M̄

�0�
� GM̄M̄

�0� ��x,y� ,

so that
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A3 = �
w0,x0	p,

z0,y0�p+1

P�0��u,w���0��w,x��GM̄M̄
�0�

� GM̄M̄
�0� ��x,y���0��y,z�Q�0��z,v� .

By extending the sum to all x0 and y0, we get

A3 = �
w�

P�0��u,�p,w� ��Q�0���p + 1,w� �,v� = �G
MM̄
�0�

� GM̄M

�0� ��u,v� = A1.

By collecting the results above, we have F�2��u ,v�=0 for u0	p
v0.
The treatment for the other time ordering is more intricate but similar. For u0�p�v0, we

have

F�2� = G�2� − P�0���0�Q�2� − P�0���2�Q�0� − P�2���0�Q�0� = A1� + A2� + A3� + A4�. �61�

By considering the A2� term in the expression above, we get

A2� = − �
w0,z0�p

P�0��u,w���0��w,z��G
M̄M̄

�0�*
� G

M̄M

�0�* ��z,v� = − �
w0,z0�p

P�0��u,w���0��w,z�G
M̄M̄

�0�*

��z,�p + 1,w� ��G
M̄M

�0�* ��p,w� �,v� . �62�

We write

G
M̄M̄

�0�* �z,�p + 1,w� �� = G
M̄M̄

�0�* �z,�p + 1,w� ���z0�p+1 + GM̄M̄
�0� �z,�p + 1,w� ���z0	p+1

+ G
M̄M̄

�0�* �z,�p + 1,w� ���z0,p+1 − GM̄M̄
�0� �z,�p + 1,w� ���z0,p+1 = A5� + A6� + A7� + A8�

�63�

under the w0 ,z0 summations. The idea behind this decomposition is that, as we will show below,
A2�=−A1�.

Recall that

J�z,�p + 1,w� �� = GM̄M̄�z,�p + 1,w� ���z0	p+1 + G
M̄M̄
* �z,�p + 1,w� ���z0�p+1.

For the first two terms in Eq. �63�, going back to Eq. �62�, we have

− P�0��u,x���0��x,y��A5� + A6���y,z�G
M̄M

* �z,v�

= − �
w�

P�0��u,w���0��w,z�J�0��z,�p + 1,w� ��G
M̄M

* ��p,w� �,v�

= − �
w�

P�0��u,w���w0,p+1�G
M̄M

* ��p,w� �,v�

= − �
w�

G
MM̄

�0�* �u,�p + 1,w� ��G
M̄M

* ��p,w� �,v�

= − �
w�

G
MM̄

�0�*
� G

M̄M

* �u,v� = − A1�,

for u0�p+1. For the remaining terms, we get

A7� + A8� = G
M̄M̄

�0�* �z,�p + 1,w� ���z0,p+1 − GM̄M̄
�0� �z,�p + 1,w� ���z0,p+1,

which is zero by time reversal symmetry T.
In the sequel, we show that A3�=A1�. For the A3�, term we have
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A3� = − �
w0�p,z0�p

P�0��u,w���2��w,z�Q�0��z,v� .

With this w0 ,z0 restrictions, we have

��2��w,z� = − �
x0�p,y0�p

��0��w,x�J�2��x,y���0��y,z� .

With the x0 ,y0 restrictions, we have

J�2��x,y� = G
M̄M̄

�2�* �x,y� = �G
M̄M̄

�0�*
� G

M̄M̄

�0�* ��x,y� .

Thus,

A3� = �
w0,x0�p,

z0,y0	p

P�0��u,w���0��w,x��G
M̄M̄

�0�*
� G

M̄M̄

�0�* ��x,y���0��y,z�Q�0��z,v� .

By considering x ,y sums in the second and fifth factors above, we get, r0= p+1,

A3� = �
x0�p,y0	p

��0��w,x��G
M̄M̄

�0�* �x,r��x0�p+1 + GM̄M̄
�0� �x,r��x0	p+1 + G

M̄M̄

�0�* �x,r��x0,p+1

− GM̄M̄
�0� �x,r��x0,p+1�G

M̄M̄

�0�* �r,y���0��y,z� .

The x sum for x0= p+1, which upon using Eq. �63�, gives

�w0,p+1 + �
x�
��0��w,x��G

M̄M̄

�0�* �x,�p + 1,r��� − GM̄M̄
�0� �x,�p + 1,r����

and using time reversal, the term in �·� is zero. Similarly, the sum in y gives �p,z0.
By returning to A3�, we have for u0�p+1, v0
p,

A3� = �
w�

P�0��u,�p + 1,w� ��Q�0�*��p,w� �,v� = �
w�

G
MM̄

�0�* �u,�p + 1,w� ��G
M̄M

�0�* ��p,w� �,v�

= �G
MM̄

�0�*
� G

M̄M

�0�* ��u,v� = A1�.

Similarly, we have A4�=A2�. Thus, F�2��u ,v�=0 for u0�p+1 or v0
p so we have a minimum
separation of �u0−v0��2 to get that F�2��u ,v�=0 and we are done.

VI. CONCLUDING REMARKS

We completed the exact determination of the one-particle E-M spectrum associated with the
3+1 Wilson’s lattice QCD model with three quark flavors initiated in Refs. 20 and 21 for the odd
sector Ho of the physical Hilbert space, where the baryons �of asymptotic mass −3 ln �� lie. Here,
we analyzed the even sector He and obtained the eightfold way mesons �of asymptotic mass
−2 ln �� from first principles, i.e., directly from the quark-gluon dynamics. We obtain a spectral
representation for the two-point correlation. The nonsingular parts of the eightfold way meson
masses are given by a function jointly analytic in � and �. In this way, in particular, we control the
expansion of the mass to all orders in � and �. We obtain a pseudoscalar vector meson mass
splitting given by 2�4+O��6� at �=0 and, by analyticity, the splitting persists for ��0, ���. Up
to and including O��4� at �=0, there is no isospin singlet-octet mass splitting. The splitting may
occur at higher orders of � and � or may take place by breaking the SU�3� f symmetry with a
heavier strange quark mass. For the splitting in the continuum model, see the U�1� problem �see
Ref. 30�. A correlation subtraction method is used to guarantee that there is no other spectrum in
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all He except that generated by the eightfold way mesons up to near the two-meson threshold
��−4 ln ��. By combining this result with a similar one for baryons in Refs. 20 and 21, the
one-hadron E-M spectrum in all H�He � Ho, up to near the two-meson threshold, is the one
generated by the Gell-Mann and Ne’eman eightfold gauge-invariant meson and baryon fields.
Thus, confinement is proved up to near the two-meson threshold.

The determination of the one-meson spectrum is an essential step toward the analysis of the
existence of two-hadron bound states as we previously did in simpler QCD models. Hence, our
present work opens the way to attack interesting open questions such as the existence of tetraquark
and pentaquark states, for example, meson-meson and meson-baryon bound states.
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APPENDIX A: SYMMETRY CONSIDERATIONS

Now, we list several symmetries used to obtain the general structure of Eq. �49� and the
relations among G’s for distinct lattice points. Those properties are used to simplify the proof of
Theorem 3 devoted to Appendix B. Before we list the symmetries and determine the properties of
the two-point function of Eq. �16�, we remark that the use of Gp plays a fundamental role in our
analysis. The �4�4� matrix in the total spin basis �GJJ�� can be reduced to an even more diagonal
form. More precisely, it breaks into a direct sum with one block �1�1� associated with the
labeling total spin zero �the pseudoscalar meson� and a �3�3� block related to total spin 1 �the
vector meson�. Before we prove the lemma, we recall various symmetry results of Theorem 4 in
Ref. 10. The required symmetries are summarized as follows, omitting color and flavor indices.

• Time reversal T: ��x�→ ̄��xt�A��, ̄��x�→B����xt�, A=B=B−1=�0, f�gxy�→ f*�gxtyt
�,

with zt= �−z0 ,z��.
• Parity P: ��x�→A����xp�, ̄��x�→ ̄��xp�B��, A=B=B−1=�0, f�gxy�→ f�gxpyp

�, with zp

= �z0 ,−z��.
• Charge conjugation C: ��x�→ ̄��x�A��, ̄��x�→B����x�,

A = − B = B−1 = � 0 i�2

i�2 0
� ,

f�gxy�→ f�g
xy
* �.

• Time Reflection T: ��x�→A����x�, ̄��xt�→ ̄��xt�B��, where

B = A−1 = � 0 − iI2

iI2 0
� ,

f�gxy�→ f�gxtyt
�; recall that zt= �−z0 ,z��.

• Rotation r3 by � /2 about e3: ��x�→A����xr�, ̄�→ ̄��xr�B��, where A=B−1

=diag�e−i� , ei� , e−i� , ei��, f�gxy�→ f�gxryr
�, with zr= �z0 ,−z2 ,z1 ,z3� and �=� /4.

• Reflection in e1: ��x�→A����xr̄�, ̄�→ ̄��xr̄�B��, where

A = A−1 = B = �− �1 0

0 �1 � ,

f�gxy�→ f�gxr̄yr̄
�, with zr̄= �z0 ,−z1 ,z2 ,z3�.

The above symmetries are defined on single fields, extended linearly to polynomials, and
taken to be order preserving, except for T, which is antilinear, and C, both of which are order
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reversing. For all of them, the action is invariant and the transformed fields equal the field average,
except for time reversal where the transformed field equals the complex conjugate of the field
average.

We are now ready to state the following lemma.
Lemma 1: The following properties of symmetry holds for G, �, G, and �.

(1) G���x�=G
��
* �x�.

(2) G���xt�=G
��
* �x�=G���x�.

(3) G���x�=G���xt�=G
��
* �x�, and the same for G, �, and �.

(4) Using the ordering �=1= �3,1�, �=2= �4,2�, �=3= �4,1�, and �=4= �3,2�, for fixed iso-
spin and hypercharge, �G��� has the following structure, with a ,d�R, and b ,c ,e�C:

�G��� =�
a b c c*

b* a − c − c*

c* − c* d e

c − c e* d
� . �A1�

Hence the �4�4� matrix �GJJ�� in the total spin basis has the following structure:

�GJJ�� =�
a 0 0 0

0 b c d

0 c* e c

0 d* c* b
� , �A2�

and the same structure holds for ��JJ��.
(5) For ��R, let p0= i�. We obtain G̃JJ��i� , p��= G̃J�J

* �i� , p��.

(6) When p� =0� , G̃JJ��p
0 , p� =0��=diag�ã , b̃ , ẽ , b̃�, ã , b̃ , ẽ�R, and the same for the matrix �.

�
Proof: Items �1�, �2�, and �3� directly follow by applying parity and time reversal symmetries.

To prove item �4�, we apply the spin flip symmetry Fs=−iTCT and use the fact that the matrix
�G��� is self-adjoint, as follows from previous items. Hence, in the individual spin basis, we get
the structure

�G��� =�
a d c e

d* a − e* − c*

c* − e b f

e* − c f* b
� .

Next, we use charge conjugation followed by permutation of isospin indices. Explicitly, for the

block associated with M̄��
3 or M̄��

6 , we consider the permutation matrix acting on the isospin degree
of freedom, U� Pud�SU�3� f, which interchanges �u�d� and is given by Eq. �41�. By the global
flavor symmetry, we get, suppressing all but the isospin index,


�U†� f1
�̄U� f2

�̄U� f3
�U†� f4

� = 
 f1
̄ f2

̄ f3
 f4

� , �A3�

from which c=e* and, hence, Eq. �A1� follows. The treatment for the other blocks is similar,
except by the flavor permutation matrix, which, according to the isospin indices of each block,
interchanges �d�s� and �u�s�. We now pass to the total spin basis, which is related to the
individual spin basis by the matrix A of Eq. �44�, i.e., �GJJ��=A�G���AT and we get Eq. �A2�.

To prove item �5� recalling that
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G̃JJ��i�,p�� = �
x0,x�

e�x0
e−ip� .x�GJJ��x

0,x�� ,

we obtain, by the first item of this lemma,

G̃JJ��i�,p�� = �
x0,x�

e�x0
e−ip� .x�GJ�J

* �x0,x�� = ��
x0,x�

e�x0
eip� .x�GJJ��x

0,x���* = G̃J�J
* �i�,− p�� ,

and using parity symmetry, GJJ��x
0 ,x��=GJJ��x

0 ,−x��, which implies that G̃JJ��p
0 , p��= G̃JJ��p

0 ,
−p��, and the proof of the fifth item follows.

Finally, the proof of item �6� follows by using � /2 rotations about e3. �

By using Lemmas 1 and 2 below, we only need to prove Theorem 3 for x0�0 and � ,�� ,��
=1, for ij=12,13.

Lemma 2: For � ,�=0,1 and � ,��� −1, +1�, the following relations are verified:

(1) G���0,�e0+�ei+���ej�=G���0,�e0+ei+�ej�.
(2) G���0,�e0+e1+�e3�=G���0,�e0+e2+�e3�.
(3) G12�0,�e0+e1+�e3�=−G34�0,�e0+e2+�e3�. �

Proof: Items �1�–�3� all follow by using rotation of � /2 about e3, reflections about e3, and
parity. �

APPENDIX B: SMALL DISTANCE BEHAVIOR OF G AND �

In this appendix, we consider the contributions obtained by expanding G�0,x� in powers of �,
but all we need are nonintersecting paths. In particular, we develop a general formula with
applications to the determination of the small distance behavior of G and �. Recall that � is
defined as a Neumann series according to Eq. �25�, and we will need the short distance behavior
of � until and including O�Gn

5�,

� = �
i=0

5

�− 1�i�Gn�i + O�Gn
6� , �B1�

where we made use of Gd
−1=1+O��8�. When x�0, G�0,x�=Gn�0,x� and Eq. �B6� furnishes us

with a formula to determine Gn�0,x� in Eq. �B1� for nonintersecting paths.
In Theorems 2 and 3, we will use gauge integrals with two overlapping bonds of opposite

orientation given by

I2 =� Ua1b1
�g�Ua2b2

−1 �g�d��g� =� ga1b1
ga2b2

−1 d��g� = 1
3�a1b2

�a2b1
. �B2�

Although we will not use the gauge integral for three bonds with the same orientation, namely, I3,
in Theorems 2 and 3, we present it here since I3 was used in the determination of the coefficient
GLL

�0,3� in Eq. �9�,

I3 =� ga1b1
ga2b2

ga3b3
d��g� = 1

6�a1a2a3
�b1b2b3

. �B3�

Also, we will need gauge integrals with four and six overlapping bonds �in which case we use
the convenient notation �123����a1b1� , �a2b2� , �a3b3��, �132����a1b1� , �a3b3� , �a2b2��, etc.�,

I4 =� ga1b1
ga2b2

−1 ga3b3
ga4b4

−1 d��g� = 1
8 ��a1b2

�a3b4
�b1a2

�b3a4
+ �a2 � a4;b2 � b4��

− 1
24��a1b2

�a3b4
�b1a4

�b3a2
+ �a2 � a4;b2 � b4�� , �B4�
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I6 =� ga1b1
ga2b2

ga3b3
ga4b4

−1 ga5b5

−1 ga6b6

−1 d��g� = 1
90�a1a2a3

�b1b2b3
�a4a5a6

�b4b5b6

+ 1
30�a1b6

�a2b5
�a3b4

�a4b3
�a5b2

�a6b1
+ ��123� → �132�� + ��123� → �213�� + ��123� → �231��

+ ��123� → �312�� + ��123� → �321��� + 1
180�a1b6

�a2b5
�a3b4

��a4b1
�a5b3

�a6b2
+ �a4b2

�a5b1
�a6b3

�

+ ��123� → �132�� + ��123� → �213�� + ��123� → �231�� + ��123� → �312�� + ��123�

→ �321��� . �B5�

In nonintersecting paths, only I2 occurs. The general formula for nonintersecting path is given by


M�� f��0�M̄�� f���x��=p��2�
2L

� f� f�������

p ��u�u

−p , �B6�

where we recall that �� = ��� ,�u�, �� = ��� ,�u�, f�= �f1 , f2�, f��= �f3 , f4�, and L is the length of the
path. The subscript p in Eq. �B6� above means that we take only the contribution coming from
nonintersecting paths, with any consecutive points of the path linked by two overlapping bonds of
opposite orientation.

The notation ���
p ����

−p � means that the �� element of the ordered product of � matrices along
the path that connects 0 to x �x to 0�. For example, if x=e0+e1+e2 and the path is chosen such that
0→e0→e0+e1→e0+e1+e2, hence, �p=�0�1�2 where we have used the notation ��e

�
����. On

the one hand, for the reversing path, the product of the � matrices is in the opposite order, i.e.,
�−p=�−2�−1�−0. In general, if the path goes as 0→x1→x2→¯→xn→x, then �p��0→x

=�x1�x2−x1
¯�xn−xn−1�x−xn and L=n+1. On the other hand, we have �−p��x→0

=�−�x−xn��−�xn−xn−1�
¯�−�x2−x1��−x1.

We give a brief deduction of the general formula �B6�. Expanding the exponential of the

action in the numerator of 
M�� f��0�M̄�� f��x��, we pick up two overlapping bonds with opposite
orientation for each bond of the path. Using I2 and carrying out the Fermi integration over the
intermediate fields, we arrive at two kinds of products of � matrices—one of them is zero using
the come and go property, i.e., ���−�=0. For the remaining product, we get


M�� f��0�M̄�� f���x��=p
1

9
��

2
�2L


a,��,f1
̄a,�u,f2

̄a1,�1,g1
a1,�2,g2

�0���0�

� 
a2,�1,g1
̄a2,�2,g2

̄b,��,f3
b,�u,f4

�x���0���1�1

p ��2�2

−p , �B7�

where 
·��0� is the expectation with the hopping parameter � set to zero in the action S. Note that
the expectations in Eq. �B7� can be easily calculated and the result is


a,��,f1
̄a,�u,f2

̄a1,�1,g1
a1,�2,g2

�0���0�/3 = �����1
��2�u

− ����u
��2�1

�� f�g� � det�������� f�g� �B8�

and


a2,�1,g1
̄a2,�2,g2

̄b,��,f3
b,�u,f4

�0���0�/3 = ���1��
��u�2

− ��1�2
��u��

��g� f�� � det���������g� f��,

�B9�

where we made use of the following notation, for the matrices ������� and ��������:

������� = �����1
����u

��2�1
��2�u

�, �������� = ���1��
��1�2

��u��
��u�2

� . �B10�

From Eq. �B7�–�B9�, and by carrying out the sum over g� , we get
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M�� f��0�M̄�� f���x��=p��2�
2L

� f� f���det���������det�����������1�1

p ��2�2

−p �B11�

or, more explicitly,


M�� f��0�M̄�� f���x��=p��2�
2L

� f� f��������

p ��u�u

−p − ��u��
����1

p ��1�u

−p − ����u
��1��

p ��u�1

−p

+ ����u
��u��

��1�1

p ��1�1

−p � . �B12�

Formula �B6� follows from Eq. �B12� by observing that ����u
=��u��

=0 since �� ,��� and �u ,�u�
are lower and upper spin index sets, respectively.

Before we prove Theorem 3, we note that many possible configurations are shown to be zero
by using the come and go property of the � matrices ��=0,1 ,2 ,3, �=�1�,

��e
�
�−�e� = 0. �B13�

For example, if a path doubles back upon itself at an isolated point, then at this point, the
come and go property of Eq. �B13� holds to give a zero contribution. Also, possible contributions
can give zero due to an imbalance of the number of fermions or the number of fermion compo-
nents at a site.

Also, other useful properties involving � matrices ��=0,1 ,2 ,3, �=�1� used in evaluating
possible contributions are

��e
�
��e

�
= − 2��e

�
, �B14�

��e
�
���e� = 2I4 − �−��e��−�e�. �B15�

Especially, the property in Eq. �B14� shows that lattice bond segments in a straight line similarly
behave. Finally, the property of Eq. �B15� is useful to sum over different orders in a path with
fixed endpoints. Due to Lemma 2 of Appendix A, we only need to consider points x=0, e�, 2e�,
3e0, e0+e1, e1+e�, e0+e1+e�, e0+2e1, 2e0+e1 with �=0,1 and �=2,3 in the proof below.

In what follows, whenever we write x→y connecting two distinct points on the lattice x and
y, → means a link of the path, i.e., two opposite oriented bonds connecting points x and y.

We now turn to the proof of Theorem 3.
Proof of Theorem 3 item (1): The proof of the short distance behavior of G directly follows

from the nonintersecting path formula in Eq. �B6�. We give the following details.

• We begin by considering x=0. Using the symmetry of � /2 rotations about e3 shows that the
off-diagonal elements are zero. The gauge integral and Eq. �B13� show that the first nonva-
nishing contribution occurs at �8 and consists of two paths which go around a square in
opposite directions. The square has one vertex at zero.

• Now, take x=e0 ,e1. The �2 contribution is a direct application of the path formula of Eq.
�B6�. The �4 and �6 contributions of the type 0→e0→0 and 0→e0→0→e0, respectively,
are zero by the come and go property of Eq. �B13�. For x=e0, parity symmetry at the level of
correlations can also be used to show that the �4 contribution is zero. The nonvanishing �6

contribution comes from paths of the type 0→ej→e0+ej→e0, which we call U’s, which
means two oppositely oriented bonds on the three sides of the path 0→ej→e0+ej→e0. A
direct application of Eq. �B6� gives G�e0�=3�6 /8 and G�e1�=3�6 /2.

• For x=e1+e0, we have a straightforward application of the path formula. The same also holds
for x=2e0, x=2e1, x=e1+e2, x=e1+e3, x=e0+2e1, x=2e0+e1, x=e0+e1+e2, x=e0+e1+e3,
x=3e0. There are vertical �temporally oriented� U. The vertical contributions are given by the
path formula as well as the U contributions. Possible contributions which are vertical back-
tracking paths, i.e., the path 0→e0→2e0→e0→2e0→3e0, are zero by using imbalance of
fermion components at e0 or at 2e0. For the points x=�e�+��e�, the contribution of O��6� is
zero by using the come and go property of Eq. �B13�.
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Proof of Theorem 3 item (2): To prove this item, we use the simplified formula for �, as
follows from Eq. �B1�.

• For x=0, we get by using Eq. �B1� that ��0�=Gd�0�−Gn
2�0�+O��8� with Gd�0�=O�1� and

Gn
2�0�=O��4�. By noting that Gn

2�0�=Gn�0,x�Gn�x ,0� and taking into account contributions
coming from x=0,�e0 ,��ej, the result follows by using Eq. �B6�.

• For x=e1, we get by using Eq. �B1� that ��x�=Gn�x�+O��6� with Gn�x�=O��2�. A direct
application of Eq. �B6� gives the result.

• For x=e0, the �2 contributions directly comes from Eq. �B6�. The �4 contribution is zero due
to the property of Eq. �B13�. Finally, the �6 contribution is related to vertical paths, such as
those connecting 0→e0, i.e., �a� 0→e0→0→e0, �b� 0→e0→2e0→e0, and �c� 0→−e0

→0→e0 contributing to ��e0� as

�a� Gn
3�e0�=Gn�0,e0�Gn�e0 ,0�Gn�0,e0�,

�b� Gn
2�e0�=Gn�0,2e0�Gn�2e0 ,e0�, Gn

3�e0�=Gn�0,e0�Gn�e0 ,2e0�Gn�2e0 ,e0�,
�c� Gn

2�e0�=Gn�0,−e0�Gn�−e0 ,e0�, Gn
3�e0�=Gn�0,−e0�Gn�−e0 ,0�Gn�0,e0�,

respectively. They sum up to give the final result −�6. We note that U-type contributions are
canceled out in the Neumann series of Eq. �B1�.

• For x=2e0, the contribution of O��4� gives zero since Gn�2e0�=Gn
2�2e0� and

Gn�2e0� ,Gn
2�2e0�=O��4�. The contribution of O��6� gives zero by the come and go property

of Eq. �B13�. Next, there are two types of contributions of order O��8� to the series of Eq.
�B1�. One of them is a U-type contribution coming from, for example, 0→ej→e0+ej

→2e0+ej→2e0, their sum in Eq. �B1� giving zero. There are also vertical backtracking
contributions that also contribute to zero in the Neumann series. More explicitly, in the
Neumann series, we have, for example, the O��8� path, 0→e0→2e0→3e0→2e0, with

��2e0� = Gn
2�2e0� + Gn

3�2e0� + Gn
4�2e0� ,

with

Gn
2�2e0� = Gn�0,3e0�Gn�3e0,2e0� ,

Gn
3�2e0� = Gn�0,2e0�Gn�2e0,3e0�Gn�3e0,2e0� ,

Gn
3�2e0� = Gn�0,e0�Gn�e0,3e0�Gn�3e0,2e0� ,

Gn
4�2e0� = Gn�0,e0�Gn�e0,2e0�Gn�2e0,3e0�Gn�3e0,2e0� ,

and Gn
2�2e0�=Gn

3�2e0�=Gn
4�2e0�. We also need to consider 0→e0→2e0→e0→2e0, 0→e0

→0→e0→2e0 and 0→−e0→0→e0→2e0. We are left with the contribution of O��10�.
• For x=e1+e2, the first nonzero contribution comes from ��x�=Gn�x�−Gn

2�x�+O��8� with
Gn�x� ,Gn

2�x�=O��4�. Note that Gn
2�x�=Gn�0,y�Gn�y ,x� and we must take into account contri-

butions coming from y=e1 ,e2; next, the use of Eq. �B6� gives the result. The same procedure
can be applied to x=e1+e3.

• For x=e0+e1, Gn
2�x�=Gn�0,y�Gn�y ,x�, where y=e0 ,e1, and Gn�x�=O��4�, Gn�0,y� ,Gn�y ,x�

=O��2�. The contribution of O��6� is zero by the imbalance of fermion fields. We are left
with O��8�.

• For x=e0+e1+e2, we will show that ��x=e0+e1+e2�=O��8�. This result improves the
bounds coming from hyperplane decoupling method calculations, which in this case gives
���x=e0+e1+e2��	c���2���4��1−1�+2�2= ���6. Other points, such as x=�e0+2��ej, x=2�e0

+��ej, and x=3�e0, in calculating � present similar cancellations in the Neumann series and,
hence, our calculation improves the global bounds of Theorem 3. The details in those cases

072301-35 Eightfold way and confinement in lattice QCD J. Math. Phys. 49, 072301 �2008�



are left aside but can be reproduced by following the steps below. The first contribution to
��x=e0+e1+e2� that we need to consider is O��6� and comes from, recalling Eq. �B1� �in
what follows we take x=e0+e1+e2�,

Gn�0,x� = �2c2�����u
+ 2c2

2�����6

Gn�0,y�Gn�y,x� = �c2�����u
����

6, y = e0,e1 + e2

2c2
2�6, y = e1,e2,e0 + e1,e0 + e2,

�
Gn�0,y�Gn�y,z�Gn�z,x� = c2

2�6, y = e�, z = e�, �,� � 0,1,2�, �� � ,

where we made use of the nonintersecting formula �B6� to calculate Gn�u ,v�. Note that Gn
i

=O��8�, i�4, does not contribute to O��6�. By summing up, we get

�����x�� = �− �2c2�����u
+ 2c2

2���� + 2c2�����u
��� + 8c2

2��� − 6c2
2�����6 = 0.

• For x=3e0, similar to the case x=2e0, we have cancellations in the Neumann series until and
including O��8�. For contributions O��10�, we also have U-type and vertical paths. U-type
path is given by, for example, 0→e0→e0+e1→2e0+e1→2e0→3e0, etc., by summing up to
zero in Eq. �B1�. Vertical contributions, as for x=2e0, up to and including Gn

5, sum up to zero
in Eq. �B1�. �
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