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a b s t r a c t 

Synthesizing human motion through learning techniques is becoming an increasingly popular approach 

to alleviating the requirement of new data capture to produce animations. Learning to move naturally 

from music, i.e. , to dance, is one of the more complex motions humans often perform effortlessly. Each 

dance movement is unique, yet such movements maintain the core characteristics of the dance style. 

Most approaches addressing this problem with classical convolutional and recursive neural models un- 

dergo training and variability issues due to the non-Euclidean geometry of the motion manifold struc- 

ture. In this paper, we design a novel method based on graph convolutional networks to tackle the 

problem of automatic dance generation from audio information. Our method uses an adversarial learn- 

ing scheme conditioned on the input music audios to create natural motions preserving the key move- 

ments of different music styles. We evaluate our method with three quantitative metrics of generative 

methods and a user study. The results suggest that the proposed GCN model outperforms the state-of- 

the-art dance generation method conditioned on music in different experiments. Moreover, our graph- 

convolutional approach is simpler, easier to be trained, and capable of generating more realistic mo- 

tion styles regarding qualitative and different quantitative metrics. It also presented a visual movement 

perceptual quality comparable to real motion data. The dataset and project are publicly available at: 

https://www.verlab.dcc.ufmg.br/motion-analysis/cag2020 . 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

One of the enduring grand challenges in Computer Graphics is 

o provide plausible animations to virtual avatars. Humans have a 

arge set of different movements when performing activities such 

s walking, running, jumping, or dancing. Over the past several 

ecades, modeling such movements has been delegated to motion 

apture systems. Despite remarkable results achieved by highly 

killed artists using captured motion data, the human motion has 

 rich spatiotemporal distribution with an endless variety of dif- 

erent motions. Moreover, human motion is affected by complex 

ituation-aware aspects, including the auditory perception, physi- 
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al conditions such as the person’s age and its gender, and cultural 

ackground. 

Synthesizing motions through learning techniques is becoming 

n increasingly popular approach to alleviating the requirement of 

apturing new real motion data to produce animations. The mo- 

ion synthesis has been applied to a myriad of applications such 

s graphic animation for entertainment, robotics, and multimodal 

raphic rendering engines with human crowds [1] , to name a few. 

ovements of each human being can be considered unique hav- 

ng its particularities, yet such movements preserve the character- 

stics of the motion style ( e.g. , walking, jumping, or dancing), and 

e are often capable of identifying the style effortlessly. When an- 

mating a virtual avatar, the ultimate goal is not only retargeting a 

ovement from a real human to a virtual character but embodying 

otions that resemble the original human motion. In other words, 

 crucial step to achieve plausible animation is to learn the mo- 

ion distribution and then draw samples ( i.e. , new motions) from 

t. For instance, a challenging human movement is dancing, where 

he animator does not aim to create avatars that mimic real poses 
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Fig. 1. Our approach is composed of three main steps: first, given a music sound as input, we classify the sound according to the dance style; second, we generate a temporal 

coherent latent vector to condition the motion generation, i.e. , the spatial and temporal position of joints that define the motion; third, a generative model based on a graph 

convolutional neural network is trained in an adversarial manner to generate the sequences of human poses. To exemplify an application scenario, we render animations of 

virtual characters performing the motion generated by our method. 
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ut to produce a set of poses that match the music’s choreography, 

hile preserving the quality of being individual. 

In this paper, we address the problem of synthesizing dance 

ovements from music using adversarial training and a convo- 

utional graph network architecture (GCN). Dancing is a repre- 

entative and challenging human motion. Dancing is more than 

ust performing pre-defined and organized locomotor movements, 

ut it comprises steps and sequences of self-expression. In dance 

oves, both the particularities of the dancer and the character- 

stics of the movement play an essential role in recognizing the 

ance style. Thus, a central challenge in our work is to syn- 

hesize a set of poses taking into account three main aspects: 

rstly, the motion must be plausible, i.e. , a blind evaluation should 

resent similar results when compared to real motions; secondly, 

he synthesized motion must retain all the characteristics present 

n a typical performance of the music’s choreography; third, each 

ew set of poses should not be strictly equal to another set, in 

ther words, when generating a movement for a new avatar, we 

ust retain the quality of being individual. Fig. 1 illustrates our 

ethodology. 

Creating motions from sound relates to the paradigm of em- 

odied music cognition. It couples perception and action, physi- 

al environmental conditions, and subjective user experiences (cul- 

ural heritage) [2] . Therefore, synthesizing realistic human mo- 
12 
ions regarding embodying motion aspects remains a challenging 

nd active research field [3,4] . Modeling distributions over move- 

ents is a powerful tool that can provide a large variety of mo- 

ions while not removing the individual characteristics of each 

ample that is drawn. Furthermore, by conditioning these distri- 

utions, for instance, using an audio signal like music, we can se- 

ect a sub-population of movements that match with the input 

ignal. Generative models have demonstrated impressive results in 

earning data distributions. These models have been improved over 

he decades through machine learning advances that broadened 

he understanding of learning models from data. In particular, ad- 

ances in the deep learning techniques yielded an unprecedented 

ombination of effective and abundant techniques able to predict 

nd generate data. The result was an explosion in highly accurate 

esults in tasks of different fields. The explosion was felt first and 

oremost in the Computer Vision community. From high accuracy 

cores in image classification using convolutional neural networks 

CNN) to photo-realistic image generation with the generative ad- 

ersarial networks (GAN) [5] , Computer Vision field has been ben- 

fited with several improvements in the deep learning methods. 

oth Computer Vision and Computer Graphics fields also achieved 

ignificant advances in processing multimodal data present in the 

cene by using several types of sensors. These advances are as- 

igned to the recent rise of learning approaches, especially con- 
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olutional neural networks. Also, these approaches have been ex- 

lored to synthesize data from multimodal sources, and the audio 

ata is one that is achieving the most impressive results, as the 

ork presented by Cudeiro et al. [6] . 

Most recently, networks operating on graphs have emerged as 

romising and effective approaches to deal with problems which 

tructure is known a priori . A representative approach is the work 

f Kipf and Welling [7] , where a convolutional architecture that 

perates directly on graph-structured data is used in a semi- 

upervised classification task. Since graphs are natural representa- 

ions for the human skeleton, several approaches using GCN have 

een proposed in the literature to estimate and generate human 

otion. Yan et al. [4] , for instance, presented a framework based 

n GCNs that generates a set of skeleton poses by sampling ran- 

om vectors from a Gaussian process (GP). Despite being able to 

reate sets of poses that mimic a person’s movements, the frame- 

ork does not provide any control over the motion generation. As 

tated, our methodology synthesizes human movements also us- 

ng GCN, but unlike Yan et al.’s work, we can control the style of 

he movement using audio data while preserving the plausibility of 

he final motions. We argue that movements of a human skeleton, 

hich has a graph-structured model, follow complex sequences of 

oses that are temporal related, and the set of defined and or- 

anized movements can be better modeled using a convolutional 

raph network trained using adversarial regime. 

In this context, we propose an architecture that manages audio 

ata to synthesize motion. Our method starts encoding a sound 

ignal to extract the music style using a CNN architecture. The 

usic style and a spatial-temporal latent vector are used to con- 

ition a GCN architecture that is trained in an adversarial regime 

o predict 2D human body joint positions over time. Experiments 

ith a user study and quantitative metrics showed that our ap- 

roach outperforms the state-of-the-art method and provides plau- 

ible movements while maintaining the characteristics of different 

ance styles. 

The contribution of this paper can be summarized as follows: 

• A new conditional GCN architecture to synthesize human mo- 

tion based on auditory data. In our method, we push further 

the adversarial learning to provide multimodal data learning 

with temporal dependence; 
• A novel multimodal dataset with paired audio, motion data and 

videos of people dancing different music styles. 

. Related work 

Sound and motion Recently, we have witnessed an overwhelm- 

ng growth of new approaches to deal with the tasks of transfer- 

ing motion style and building animations of people from sounds. 

or example, Bregler et al. [8] create videos of a subject saying 

 phrase they did not speak originally, by reordering the mouth 

mages in the training input video to match the phoneme se- 

uence of the new audio track. In the same direction, Weiss [9] ap- 

lied a data-driven multimodal approach to produce a 2D video- 

ealistic audio-visual “Talking Head”, using F0 and Mel-Cepstrum 

oefficients as acoustical features to model the speech. Aiming to 

ynthesize human motion according to music characteristics such 

s rhythm, speed, and intensity, Shiratori and Ikeuchi [10] es- 

ablished keyposes according to changes in the rhythm and per- 

ormer’s hands, feet, and center of mass. Then, they used music 

nd motion feature vectors to select candidate motion segments 

hat match the music and motion intensity. Despite the impressive 

esults, the method fails when the keyposes are in fast segments 

f the music. 

Cudeiro et al. [6] presented an encoder-decoder network that 

ses audio features extracted from DeepSpeech [11] . The network 
13 
enerates realistic 3D facial animations conditioned on subject la- 

els to learn different individual speaking styles. To deform the 

uman face mesh, Cudeiro et al. encode the audio features in a 

ow-dimensional embedding space. Although their model is capa- 

le of generalizing facial mesh results for unseen subjects, they re- 

orted that the final animations were distant from the natural cap- 

ured real sequences. Moreover, the introduction of a new style is 

umbersome since it requires a collection of 4D scans paired with 

udios. Ginosar et al. [3] enable translation from speech to ges- 

ure, generating arms and hand movements by mapping audio to 

ose. They used an adversarial training, where a U-Net architec- 

ure transforms the encoded audio input into a temporal sequence 

f 2D poses. In order to produce more realistic results, the dis- 

riminator is conditioned on the differences between each pair of 

ubsequently generated poses. However, their method is subject- 

pecific and does not generalize to other speakers. 

More related work to ours is the approach proposed by 

ee et al. [12] . The authors use a complex architecture to synthe- 

ize dance movements (expressed as a sequence of 2D poses) given 

 piece of input music. Their architecture is based on an elaborated 

ecomposition-to-composition framework trained with an adver- 

arial learning scheme. Our graph-convolutional based approach, 

n its turn, is simpler, easier to be trained, and generates more re- 

listic motion styles regarding qualitative and different quantitative 

etrics. 

Generative graph convolutional networks 

Since the seminal work of Goodfellow et al. [5] , generative ad- 

ersarial networks (GAN) have been successfully applied to a myr- 

ad of hard problems, notably for the synthesis of new information, 

uch as of images [13] , motion [14] , and pose estimation [15] , to

ame a few. Mirza and Osindero [16] proposed Conditional GANs 

cGAN), which provides some guidance into the data generation. 

eed et al. [17] synthesize realistic images from text, demonstrat- 

ng that cGANs can also be used to tackle multi-modal problems. 

raph Convolutional Networks (GCN) recently emerged as a pow- 

rful tool for learning from data by leveraging geometric prop- 

rties that are embedded beyond n-dimensional Euclidean vector 

paces, such as graphs and simplicial complex. In our context, con- 

ersely to classical CNNs, GCNs can model the motion manifold 

pace structure [4,18,19] . Yan et al. [19] applied GCNs to model 

uman movements and classify actions. After extracting 2D hu- 

an poses for each frame from the input video, the skeletons are 

rocessed by a Spatial-Temporal Graph Convolutional Network (ST- 

CN). Yan et al. proceeded in exploiting the representation power 

f GCNs and presented the Convolutional Sequence Generation 

etwork (CSGN) [4] . By sampling correlated latent vectors from a 

aussian process and using temporal convolutions, the CSGN archi- 

ecture was capable of generating temporal coherent long human 

ody action sequences as skeleton graphs. Our method takes one 

tep further than [4,19] . It generates human skeletal-based graph 

otion sequences conditioned on acoustic data, i.e. , music. By con- 

itioning the movement distributions, our method learns not only 

reating plausible human motion, but it also learns the music style 

ignature movements from different domains. 

Estimating and forecasting human pose 

Motion synthesis and motion analysis problems have been ben- 

fited from the improvements in the accuracy of human pose esti- 

ation methods. Human pose estimation from images, for its turn, 

reatly benefited from the recent emergence of large datasets [20–

2] with annotated positions of joints, and dense correspondences 

rom 2D images to 3D human shapes [22–28] . This large amount 

f annotated data has made possible important milestones towards 

redicting and modeling human motions [29–33] . The recent trend 

n time-series prediction with recurrent neural networks (RNN) be- 

ame popular in several frameworks for human motion predic- 

ion [31,32,34] . Nevertheless, the pose error accumulation in the 
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Fig. 2. Motion and skeleton notations. In our method, we used a skeleton with 25 2D joints. 
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3

redictions allows mostly predicting over a limited range of future 

rames [30] . Gui et al. [30] proposed to overcome this issue by 

pplying adversarial training using two global recurrent discrim- 

nators that simultaneously validate the sequence-level plausibil- 

ty of the prediction and its coherence with the input sequence. 

ang et al. [33] proposed a network architecture to model the 

patial and temporal variability of motions through a spatial com- 

onent for feature extraction. Yet, these RNN models are known 

o be difficult to train and computationally cumbersome [35] . As 

lso noted by Lee et al. [12] , motions generated by RNNs tend to

ollapse to certain poses regardless of the inputs. 

Transferring style and human motion 

Synthesizing motion with specific movement style has been 

tudied in a large body of prior works [14,36–39] . Most methods 

ormulate the problem as transferring a specific motion style to an 

nput motion [36,40] , or transferring the motion from one charac- 

er to another, commonly referred as motion retargeting [41–43] . 

ecent approaches explored deep reinforcement learning to model 

hysics-based locomotion with a specific style [37,44,45] . Another 

ctive research direction is transferring motion from video-to- 

ideo [14,38,39] . However, the generation of stylistic motion from 

udio is less explored, and it is still a challenging research field. 

illegas et al. [46] presented a video generation method based on 

igh-level structure extraction, conditioning the creation of new 

rames on how this structure evolves in time, therefore prevent- 

ng pixel-wise error prediction accumulation. Their approach was 

mployed on long-term video prediction of humans performing ac- 

ions by using 2D human poses as high-level structures. 

Wang et al. [47] discussed how adversarial learning could be 

sed to generate human motion by using a sequence of autoen- 

oders. The authors focused on three tasks: motion synthesis, con- 

itional motion synthesis, and motion style transfer. As our work, 

heir framework enables conditional movement generation accord- 

ng to a style label parameterization, but there is no multimodal- 

ty associated with it. Jang et al. [48] presented a method inspired 

y sequence-to-sequence models to generate a motion manifold. 

s a significant drawback, the performance of their method de- 

reases when creating movements longer than 10s, which makes 

he method inappropriate to generate long sequences. Our ap- 

roach, on the other hand, can create long movement sequences 

onditioned on different music styles, by taking advantage of the 
e

14 
dversarial GCN’s power to generate new long, yet recognizable, 

otion sequences. 

. Methodology 

Our method has been designed to synthesize a sequence of 2D 

uman poses resembling a human dancing according to a music 

tyle. Specifically, we aim to estimate a motion M that provides 

he best fit for a given input music audio. M is a sequence of N

uman body poses defined as: 

 = [ P 0 , P 1 , . . . , P N ] ∈ R 

N×25 ×2 , (1) 

here P t = [ J 0 , J 1 , . . . , J 24 ] is a graph representing the body pose in 

he frame t and J i ∈ R 

2 the 2D image coordinates of i th node of

his graph (see Fig. 2 ). 

Our approach consists of three main components, outlined in 

ig. 3 . We start training a 1D-CNN classifier to define the input 

usic style. Then, the result of the classification is combined with 

 spatial-temporal correlated latent vector generated by a Gaus- 

ian process (GP). The GP allows us to sample points of Gaussian 

oise from a distribution over functions with a correlation between 

oints sampled for each function. Thus, we can draw points from 

unctions with different frequencies. This variation in the signal 

requency enables our model to infer which skeleton joint is re- 

ponsible for more prolonged movements and explore a large va- 

iety of poses. The latent vector aims at maintaining spatial coher- 

nce of the motion for each joint overtime. At last, we perform the 

uman motion generation from the latent vector. In the training 

hase of the generator, we use the latent vector to feed a graph 

onvolutional network that is trained in an adversarial regime on 

he dance style defined by an oracle algorithm. In the test phase, 

e replace the oracle by the 1D-CNN classifier. Thus, our approach 

as two training stages: (i) The training of the audio classifier to 

e used in the test phase and (ii) The GCN training with an ad- 

ersarial regime that uses the music style to condition the motion 

eneration. 

.1. Sound processing and style feature extraction 

Our motion generation is conditioned by a latent vector that 

ncodes information from the music style. In this context, we 
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Fig. 3. Motion synthesis conditioned on the music style. (a) GCN Motion Generator G ; (b) GCN Motion Discriminator D ; and (c) an overview of the adversarial training 

regime. 
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i

t

sed the SoundNet [49] architecture as the backbone to a one- 

imensional CNN. The 1D-CNN receives a sound in waveform and 

utputs the most likely music style considering three classes. The 

lassifier is trained in a dataset composed of 107 music files and 

ivided into three music-dance styles: Ballet , Salsa , and Michael 

ackson (MJ) . 

To find the best hyperparameters, we ran a 10-fold cross- 

alidation and kept the best model to predict the music style to 

ondition the generator. Different from works [50,51] that require 

D pre-processed sound spectrograms, our architecture is one- 

imensional and works directly in the waveform. 

.2. Latent space encoding for motion generation 

In order to create movements that follow the music style, while 

eeping particularities of the motion and being temporally coher- 

nt, we build a latent vector that combines the extracted music 

tyle with a spatiotemporal correlated signal from a Gaussian pro- 

ess. It is noteworthy that our latent vector differs from the work 

f Yan et al. [4] , since we condition our latent space using the

nformation provided by the audio classification. The information 

sed to condition the motion generation, and to create our latent 

pace, is a trainable dense feature vector representation of each 

usic style. The dense music style vector representation works as 

 categorical dictionary, which maps a dance style class to a higher 

imensional space. 

Then, we combine a temporal coherent random noise with the 

usic style representation in order to generate coherent motions 

ver time. Thus, the final latent vector is the result of concate- 

ating the dense trainable representation of the audio class with 

he coherent temporal signal in the dimension of the features. This 

oncatenation plays a key role in the capability of our method 

o generate synthetic motions with more than one dancing style 

hen the audio is a mix of different music styles. In other words, 

nlike a vanilla conditional generative model, which conditioning 

s limited to one class, we can condition over several classes over 

ime. 
15 
The coherent temporal signals are sampled from Radial Basis 

unction kernel (RBF) [52] to enforce temporal relationship among 

he N frames. A zero-mean Gaussian process with a covariance 

unction κ is given by (z (c) 
t ) ∼ GP (0 , κ) , where (z (c) 

t ) is the c th

omponent of z t . The signal comprises c functions with t ∈ R 

N/ 16 

emporally coherent values. This provides a signal with a shape of 

 C , T , V ), where C is interpreted as the channels (features) of our

raph, T is related to the length of the sequence we want to gen- 

rate, and V is the spatial dimension of our graph signal. The co- 

ariance function κ is defined as: 

(t , t ′ ) = exp 

(
−| t − t ′ | 2 

2 σ 2 
c 

)
. (2) 

n our tests, we used C = 512 , T = 4 , V = 1 and σc = σ
( c i 

C 

)
, where

= 200 was chosen empirically and c i varies for every value from 

 to C . 

The final tensor representing the latent vector has the size (2 C , 

 , V ), where the sizes of C and T are the same as the coherent tem-

oral signal. Note that the length of the final sequence is propor- 

ional to T used in the creation of the latent vector. The final mo- 

ion, after propagation in the motion generator, will have 16 T = N

rames; thus, we can generate samples for any FPS and length by 

hanging the dimensions of the latent vector. Moreover, as the di- 

ensions of the channels condition the learning, we can change 

he conditioning dance style over time. 

The Gaussian process generates our random noise z and the 

ense representation of the dance style is the variable used to con- 

ition our model y . The combination of both data is used as input 

or the generator. 

.3. Conditional adversarial GCN for motion synthesis 

To generate realistic movements, we use a graph convolutional 

eural network (GCN) trained with an adversarial strategy. The key 

dea in adversarial conditional training is to learn the data distribu- 

ion while two networks compete against each other in a minimax 
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Fig. 4. Graph scheme for upsampling and downsampling operations. (For interpre- 

tation of the references to color in this figure, the reader is referred to the web 

version of this article.) 
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ame. In our case, the motion generator G seeks to create motion 

amples similar to those in the motion training set, while the mo- 

ion discriminator D tries to distinguish generated motion samples 

fake) from real motions of the training dataset (real). Fig. 3 illus- 

rates the training scheme. 

Generator 

The architecture of our generator G is mainly composed of three 

ypes of layers: temporal and spatial upsampling operations, and 

raph convolutions. When using GCNs, one challenge that appears 

n an adversarial training is the requirement of upsampling the la- 

ent vector in the spatial and temporal dimensions to fit the mo- 

ion space M ( Eq. (1) ). 

The temporal upsampling layer consists of transposed 2D con- 

olutions that double the time dimension, ignoring the input shape 

f each layer. Inspired by Yan et al. [4] , we also included in our ar-

hitecture a spatial upsampling layer. This layer operates using an 

ggregation function defined by an adjacency matrix A 

ω that maps 

 graph S ( V , E ) with V vertices and E edges to a bigger graph S ′ ( V 

′ ,
 

′ ) (see Fig. 4 ). The network can learn the best values of A 

ω that

eads to a good upsampling of the graph by assigning different im- 

ortance of each neighbor to the new set of vertices. 

The first spatial upsampling layer starts from a graph with one 

ertex and then increases to a graph with three vertices. When 

reating the new vertices, the features f j from the initial graph S 

re aggregated by A 

ω as follows: 

 

′ 
i = 

∑ 

k, j 

A 

ω 
ki j f j , (3) 

here f ′ 
i 

contains the features of the vertices in the new graph S ′ 
nd k indicates the geodesic distance between vertex j and vertex 

 in the graph S ′ . 
In the first layer of the generator, we have one node containing 

 total of N features; these features represent our latent space (half 

rom the Gaussian Process and a half from the audio representa- 

ion). The features of the subsequent layers are computed by the 

perations of upsampling and aggregation. The last layer outputs 

 graph with 25 nodes containing the ( x , y ) coordinates of each

keleton joint. For instance, in Fig. 4 from right to left, we can see

he upsampling operation, where we move from a graph with one 

ertex S to a new graph containing three vertices S ′ . The aggrega- 

ion function in A 

ω is represented by the red links connecting the 

ertices between the graphs and the topology of graph S ′ . When 

 = 0 , vertex v is directly mapped to vertex v ′ ( i.e. , the distance be-

ween v 0 and v ′ is 0) and all values are zeros except the value of

0 

16 
 = 0 , j = 0 then f ′ 0 = A 

ω 
0 , 0 , 0 

f 0 . Following the example, when k = 1 ,

e have f ′ 0 = A 

ω 
1 , 0 , 0 

f 0 and f ′ 1 = A 

ω 
1 , 1 , 0 

f 0 . 

After applying the temporal and spatial upsampling opera- 

ions, our generator uses the graph convolutional layers defined by 

an et al. [19] . These layers are responsible for creating the spatio- 

emporal relationship between the graphs. Then, the final architec- 

ure comprises three sets of temporal, spatial, and convolutional 

ayers: first, temporal upsampling for a graph with one vertex fol- 

owed by an upsampling from one vertex to 3 vertices, then one 

onvolutional graph operation. We repeat these three operations 

or the upsampling from 3 vertices to 11, and finally from 11 to 25 

ertices, which represents the final pose. Fig. 3 (a) shows this GCN 

rchitecture. 

Discriminator 

The discriminator D has the same architecture used by the gen- 

rator but using downsampling layers instead of upsampling lay- 

rs. Thus, all transposed 2D convolutions are converted to standard 

D convolutions, and the spatial downsampling layers follow the 

ame procedure of upsampling operations but using an aggrega- 

ion matrix B φ with trainable weights φ, different from the weights 

earned by the generator. Since the aggregation is performed from 

 large graph G 

′ to a smaller one G , the final aggregation is given

y 

 i = 

∑ 

k, j 

B 

φ
ki j 

f ′ j . (4) 

In the discriminator network, the feature vectors are assigned 

o each node as follows: the first layer contains a graph with 25 

odes, where their feature vectors are composed of the ( x , y ) coor-

inates on a normalized space and the class of the input motion. 

n the subsequent layers, the features of each node are computed 

y the operations of downsampling and aggregation. The last layer 

ontains only one node that outputs the classification of the input 

ata being fake or real. Fig. 3 (b) illustrates the discriminator archi- 

ecture. 

Adversarial training 

Given the motion generator and discriminator, our conditional 

dversarial network aims at minimizing the binary cross-entropy 

oss: 

 cGAN (G, D ) = min 

G 
max 

D 

(
E x ∼p data 

(x )[ log D (x | y )] 

+ E z∼p z (z)[ log (1 − D (G (z| y )))] ) , (5) 

here the generator aims to maximize the error of the discrimi- 

ator, while the discriminator aims to minimize the classification 

ake-real error shown in Eq. (5) . In particular, in our problem, p data 

epresents the distribution of real motion samples, x = M τ is a real 

ample from p data , and τ ∈ [0 − D size ] and D size is the number of

eal samples in the dataset. Fig. 3 (c) shows a concise overview of 

he steps in our adversarial training. 

The latent vector, which is used by the generator to synthesize 

he fake samples x ′ , is represented by the variable z , the coher- 

nt temporal signal. The dense representation of the dance style 

s determined by y , and p z , which is a distribution of all possible

emporal coherent latent vectors generated by the Gaussian pro- 

ess. The data used by the generator G in the training stage is the 

air of temporal coherent latent vector z , with a real motion sam- 

le x , and the value of y given by the music classifier that infers

he dance style of the audio. 

To improve the generated motion results, we use a motion re- 

onstruction loss term applying L 1 distance in all skeletons over 

he N motion frames as follows: 

 rec = 

1 

N 

N ∑ 

i =1 

L pose 

(
P t , P 

′ 
t 

)
, (6) 
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Fig. 5. Video samples of the multimodal dataset with carefully annotated audio and 2D human motions of different dance styles. 
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1 The dataset and project are publicly available at: https://www.verlab.dcc.ufmg. 

br/motion-analysis/cag2020 . 
ith P t ∈ M being the generated pose and P 

′ 
t ∈ M 

′ a real pose

rom the training set and extracted with the OpenPose [23] . The 

ose distance is computed as L pose = 

∑ 24 
i =0 | J i − J ′ 

i 
| 1 / 25 , following 

he notation shown in Eq. (1) . 

Thus, our final loss is a weighted sum of the motion reconstruc- 

ion and cGAN discriminator losses given by 

 = L cGAN + λL rec , (7) 

here λ weights the reconstruction term. The λ value was chosen 

mpirically, and was fixed throughout the training stage. The initial 

uess regarding the magnitude of λ followed the values chosen by 

ang et al. [38] . 

We apply a cubic-spline interpolation in the final motion to re- 

ove eventual high frequency artifacts from the generated motion 

rames M . 

. Audio-visual dance dataset 

We build a new dataset composed of paired videos of people 

ancing different music styles. The dataset is used to train and 

valuate the methodologies for motion generation from audio. We 

plit the samples into training and evaluation sets that contain 

ultimodal data for three music/dance styles: Ballet, Michael Jack- 

on, and Salsa. These two sets are composed of two data types: vi- 

ual data from careful-selected parts of publicly available videos of 

ancers performing representative movements of the music style 

nd audio data from the styles we are training. Fig. 5 shows some 

ata samples of our dataset. 

In order to collect meaningful audio information, several 

laylists from YouTube were chosen with the name of the 

tyle/singer as a search query. The audios were extracted from the 

esulting videos of the search and resampled to the standard audio 

requency of 16KHz. For the visual data, we started by collecting 

ideos that matched the music style and had representative moves. 

ach video was manually cropped in parts of interest, by selecting 

epresentative moves for each dance style present in our dataset. 

hen, we standardize the motion rate throughout the dataset and 

onvert all videos to 24 frames-per-second (FPS), maintaining a 

onstant relationship between the number of frames and speed 
17 
f movements of the actors. We annotate the 25 2D human joint 

oses for each video by estimating the pose with OpenPose [23] . 

ach motion sample is defined as a set of 2D human poses of 64 

onsecutive frames. 

To improve the quality of the estimated poses in the dataset, 

e handled the miss-detection of joints by exploiting the body dy- 

amics in the video. Since abrupt motions are not expected in the 

oints in a short interval of frames, we recreate a missing joint and 

pply the transformation chain of its parent joint. In other words, 

e infer the missing-joint position of a child’s joint by making it 

ollow its parent movement over time. Thus, we can keep frames 

ith a miss-detected joint on our dataset. 

.1. Motion augmentation 

We also performed motion data augmentation to increase the 

ariability and number of motion samples. We used the Gaussian 

rocess described in Section 3.2 to add temporally coherent noise 

n the joints lying in legs and arms over time. Also, we performed 

emporal shifts (strides) to create new motion samples. For the 

raining set, we collected 69 samples and applied the temporal co- 

erent Gaussian noise and a temporal shift of size 32. In the evalu- 

tion set, we collected 229 samples and applied only the temporal 

hift of size 32 for Salsa and Ballet and 16 for Michael Jackson be- 

ause of the lower number of samples (see Table 1 ). The temporal 

aussian noise was not applied in the evaluation set. The statis- 

ics of our dataset are shown in Table 1 . The resulting audio-visual 

ataset contains thousands of coherent video, audio, and motion 

amples that represent characteristic movements for the consid- 

red dance styles. 1 

We performed evaluations with the same architecture and hy- 

erparameters, but without data augmentation, the performance 

n the Fréchet Inception Distance (FID) metric was worse than 

hen using data augmentation. Moreover, we observed that the 

otions did not present variability, the dance styles were not well 

https://www.verlab.dcc.ufmg.br/motion-analysis/cag2020
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Table 1 

Statistics of our dataset. The bold values are the number of samples used in the experiments. 

Setup Training dataset Evaluation dataset 

Ballet MJ Salsa Total Ballet MJ Salsa Total 

W/o data augmentation 16 26 27 69 73 30 126 229 

W/ data augmentation 525 966 861 2352 134 102 235 471 
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Table 2 

Quantitative metrics from the user perceptual study. 

Dance style Difficulty Index 1 Discrimination Index 2 

D2M Ours Real D2M Ours Real 

Ballet 0.183 0.943 0.987 0.080 0.080 0.033 

MJ 0.403 0.760 0.843 0.140 0.240 0.120 

Salsa 0.286 0.940 0.820 0.100 0.030 0.180 

Average 0.290 0.881 0.883 0.106 0.116 0.111 
1 Better closer to 1. 2 Better closer to 1. 
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ictured, and in the worst cases, body movements were difficult to 

otice. 

. Experiments and results 

To assess our method, we conduct several experiments evaluat- 

ng different aspects of motion synthesis from audio information. 

e also compared our method to the state-of-the-art technique 

roposed by Lee et al. [12] , hereinafter referred to as D2M. We 

hoose to compare our method to D2M since other methods have 

ajor drawbacks that make a comparison with our method unsuit- 

ble, such as different skeleton structures in [3] . Unfortunately, due 

o the lack of some components in the publicly available imple- 

entation of D2M, few adjustments were required in their audio 

reprocessing step. We standardized the input audio data by se- 

ecting the maximum length of the audio divisible by 28, defined 

s L , and reshaping it to a tensor of dimensions 
(

L 
28 , 28 

)
to match 

he input dimensions of their architecture. 

The experiments are as follows: (i) We performed a perceptual 

ser study using a blind evaluation with users trying to identify 

he dance style of the dance moves. For a generated dance video, 

e ask the user to choose what style (Ballet, Michael Jackson (MJ), 

r Salsa) the avatar on the video is dancing; (ii) Aside from the 

ser study, we also evaluated our approach on commonly adopted 

uantitative metrics in the evaluation of generative models, such 

s Fréchet Inception Distance (FID), GAN-train, and GAN-test [53] . 

.1. Implementation and training details 

Audio and poses preprocessing 

Our one-dimensional audio CNN was trained for 500 epochs, 

ith batch size equal to 8, Adam optimizer with β1 = 0 . 5 and β2 =
 . 999 , and learning rate of 0.01. Similar to [54] , we preprocessed

he input music audio using a μ − law non-linear transformation 

o reduce noise from audio inputs not appropriately recorded. We 

erformed 10-fold cross-validation to choose the best hyperparam- 

ters. 

In order to handle different shapes of the actors and to reduce 

he effect of translations in the 2D poses of the joints, we normal- 

zed the motion data used during the adversarial GCN training. We 

anaged changes beyond body shape and translations, such as the 

ituations of actors lying on the floor or bending forward, by se- 

ecting the diagonal distance of the bounding box encapsulating all 

D body joints P t of the frame as scaling factor. The normalized 

oses are given by: 

 ̄i = 

1 

δ

(
J i −

(

u 

2 

, 

v 
2 

))
+ 0 . 5 , (8) 

here δ = 

√ 

(
u ) 2 + (
v ) 2 , and (
u, 
v ) are the differences be- 

ween right-top position and left-bottom position of the bounding 

ox of the skeleton in the image coordinates (u, v ) . 
Training 

We trained our GCN adversarial model for 500 epochs. We ob- 

erved that additional epochs only produced slight improvements 

n the resulting motions. In our experiments, we select N = 64 

rames, roughly corresponding to motions of three seconds at 24 

PS. We select 64 frames as the size of our samples to follow a 
18 
imilar setup presented in [3] . Moreover, the motion sample size 

n [12] also adopted motion samples of 32 frames. In general, the 

otion sample size is a power of 2, because of the nature of 

he conventional convolutional layers adopted in both [3,12] . How- 

ver, it is worth noting that our method can synthesize long mo- 

ion sequences. We use a batch size of 8 motion sets of N frames 

ach. We optimized the cGAN with Adam optimizer for the gen- 

rator with β1 = 0 . 5 and β2 = 0 . 999 with learning rate of 0.002.

he discriminator was optimized with Stochastic Gradient Descent 

SGD) with a learning rate of 2 × 10 −4 . We used λ = 100 in Eq. (7) .

ropout layers were used on both generator and discriminator to 

revent overfitting. 

Avatar animations 

As an application of our formulation, we animate three virtual 

vatars using the generated motions to different music styles. The 

mage-to-image translation technique vid2vid [38] was selected 

o synthesize videos. We trained vid2vid to generate new images 

or these avatars, following the multi-resolution protocol described 

n [38] . For inference, we feed vid2vid with the output of our GCN. 

e highlight that any motion style transfer method can be used 

ith few adaptations, as for instance, the works of [14,39] . 

.2. User study 

We conducted a perceptual study with 60 users and collected 

he age, gender, Computer Vision/Machine Learning experience, 

nd familiarity with different dance styles for each user. Fig. 6 

hows the profiles of the participants. 

The perceptual study was composed of 45 randomly sorted 

ests. For each test, the user watches a video (with no sound) syn- 

hesized by vid2vid using a generated set of poses. Then we asked 

hem to associate the motion performed on the synthesized video 

s belonging to one of the audio classes: Ballet, Michael Jackson, 

r Salsa. In each question, the users were supposed to listen to 

ne audio of each class to help them to classify the video. The 

et of questions was composed of 15 videos of movements gen- 

rated by our approach, 15 videos generated by D2M [12] , and 

5 videos of real movements extracted from our training dataset. 

e applied the same transformations to all data and every video 

ad an avatar performing the motion with a skeleton with approxi- 

ately the same dimensions. We split equally the 15 videos shown 

etween the three dance styles. 

From Table 2 and Fig. 6 , we draw the following observations: 

rst, our method achieved similar motion perceptual performance 

o the one obtained from real data. Second, our method outper- 

ormed the D2M method with a large margin. Thus, we argue that 
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Fig. 6. The plots (a)–(d) show the profile distribution of the participants of our user study; The plots (e)–(h) show the results of the study. In the plots of semi-circles are 

shown the results of the user evaluation; each stacked bar represents one user evaluation and the colors of each stacked bar indicates the dance styles (Ballet = yellow, 

Michael Jackson (MJ) = blue, and Salsa = purple). (e) We show the results for all 60 users that fully answered our study; (f) Results for the users which achieved top 27% 

scores and the 27% which achieved the bottom scores; (g) Results for the 27% user which achieved top scores; (h) Results for the 27% users which achieved worst scores. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Results of our approach in comparison to D2M [12] for Ballet , the dance style 

shared by both methods. 
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Fig. 8. Qualitative results using audio sequences with different styles. In each se- 

quence: first row: input audio; second row: the sequence of skeletons generated 

with our method; third row: the animation of an avatar by vid2vid using our skele- 

tons. 
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ur method was capable of generating realistic samples of move- 

ent taking into account two of the following aspects: (i) Our per- 

ormance is similar to the results from real motion data in a blind 

tudy; (ii) Users show higher accuracy in categorizing our gener- 

ted motion. Furthermore, as far as the quality of a movement be- 

ng individual is concerned, Figs. 7 and 8 show that our method 

as also able to generate samples with motion variability among 

amples. 

We ran two statistical tests, Difficulty Index and Item Discrim- 

nation Index , to test the validity of the questions in our study. 

he Difficulty Index measures how easy to answer an item is by 

etermining the proportion of users who answered the question 

orrectly, i.e. , the accuracy. On the other hand, the Item Discrimi- 

ation Index measures how a given test question can differentiate 

etween users that mastered the motion style classification from 

hose who have not. Our methodology analysis was based on the 

uidelines described by Luger and Bowles [55] . Table 2 shows the 

verage values of the indexes for all questions in the study. One 

an clearly observe that our method’s questions had a higher dif- 

culty index value, which means it was easier for the participants 

o answer them correctly and, in some cases, even easier than the 

eal motion data. Regarding the discrimination index, we point out 

hat the questions cannot be considered good enough to separate 

he ability level of those who took the test, since items with dis- 

rimination indexes values between 0 and 0.29 are not considered 
19 
ood selectors [56] . These results suggest that our method and the 

ideos obtained from real sequences look natural for most users, 

hile the videos generated by Lee et al. [12] were confusing. 

.3. Quantitative evaluation 

For a more detailed performance assessment regarding the sim- 

larity between the learned distributions and the real ones, we use 

he commonly used Fréchet Inception Distance (FID). We computed 

he FID values using motion features extracted from the action 

ecognition ST-GCN model presented in [19] , similar to the met- 

ic used in [4,12] . We train the ST-GCN model 50 times using the 

ame set of hyperparameters. The trained models achieved accu- 

acy scores higher than 90% for almost all 50 training trials. The 

ata used to train the feature vector extractor was not used to 
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Table 3 

Quantitative evaluation according to FID, GAN-Train, and GAN-Test metrics. 

Dance style FID 1 GAN-Train 2 GAN-Test 3 

D2M Ours Real D2M Ours Real D2M Ours Real 

Ballet 20.20 ± 4.41 3.18 ± 1.43 2.09 ± 0.58 0.36 ± 0.15 0.89 ± 0.10 0.80 ± 0.12 0.07 ± 0.04 0.80 ± 0.14 0.77 ± 0.11 

MJ 4.38 ± 1.94 8.03 ± 3.55 5.60 ± 1.42 0.34 ± 0.15 0.60 ± 0.13 0.59 ± 0.04 0.70 ± 0.14 0.46 ± 0.18 0.60 ± 0.09 

Salsa 12.23 ± 3.20 4.29 ± 2.38 2.40 ± 0.75 0.32 ± 0.17 0.31 ± 0.11 0.50 ± 0.16 0.26 ± 0.14 0.96 ± 0.11 0.90 ± 0.06 

Average 12.27 ± 7.27 5.17 ± 3.33 3.36 ± 1.86 0.34 ± 0.16 0.60 ± 0.26 0.63 ± 0.17 0.34 ± 0.29 0.74 ± 0.25 0.76 ± 0.15 
1 Better closer to 0. 2 Better closer to 1. 3 Better closer to 1. 

Fig. 9. Experiment 1 shows the ability of our method to generate different se- 

quences with smooth transition from one given input audio composed of different 

music styles. Experiment 2 illustrates that our method can generate different se- 

quences from a given input music. 

t

t

w

o

c

a

m

w

a

r

s

f

d

e

l

l

t

t

o

s

5

t

c

t  

l

l

l

c

t

s

d

c

p

e

s

i

w

l

2

q

o

o

v

o

6

m

c

d

e

d

a

t

c

s

i

d

t

t

e

h

m

t

D

c

i

C

V

o

C

rain any of the methods evaluated in this paper. Table 3 shows 

he results for the FID metric. 

We also computed the GAN-Train and GAN-Test metrics, two 

ell-known GAN evaluation metrics [53] . To compute the values 

f the GAN-Train metric, we trained the ST-GCN model in a set 

omposed of dance motion samples generated by our method and 

nother set with generated motions by D2M. Then, we tested the 

odel in the evaluation set (real samples). The GAN-Test values 

ere obtained by training the same classifier in the evaluation set 

nd tested in the sets of generated motions. For each metric, we 

an 50 training rounds and reported the average accuracy with the 

tandard deviation in Table 3 . Our method achieved superior per- 

ormance as compared to D2M. 

We can also note that the generator performs better in some 

ance styles. Since some motions are more complicated than oth- 

rs, the performance of our generator can be better synthesizing 

ess complicated motions related to a particular audio class re- 

ated to a dance style. For instance, the Michael Jackson style con- 

ains a richer set of motions with the skeleton joints rotating and 

ranslating in a variety of configurations. The Ballet style, on the 

ther hand, is composed of fewer poses and consequently, easier to 

ynthesize. 

.4. Qualitative evaluation 

Figs. 7 –9 show some qualitative results. We can notice that 

he sequences generated by D2M presented some characteristics 

learly inherent to the dance style, but they are not present along 

he whole sequence. For instance, in Fig. 7 , one can see that the

ast generated skeleton/frame looks like a spin, usually seen in bal- 

et performances, but the previous poses do not indicate any corre- 
20 
ation to this dance style. Conversely, our method generates poses 

ommonly associated with ballet movements such as rotating the 

orso with stretched arms. 

Fig. 8 shows that for all three dance styles, the movement 

ignature was preserved. Moreover, the Experiment 1 in Fig. 9 

emonstrates that our method is highly responsive to audio style 

hanges since our classifier acts sequentially on subsequent music 

ortions. This enables it to generate videos where the performer 

xecutes movements from different styles. Together these results 

how that our method holds the ability to create highly discrim- 

native and plausible dance movements. Notice that qualitatively 

e outperformed D2M for all dance styles, including for the Bal- 

et style, which D2M was carefully coined to address. Experiment 

 in Fig. 9 also shows that our method can generate different se- 

uences from a given input music. Since our model is conditioned 

n the music style from the audio classification pipeline, and not 

n the music itself, our method exhibits the capacity of generating 

aried motions while still preserving the learned motion signature 

f each dance style. 

. Conclusion 

In this paper, we propose a new method for synthesizing hu- 

an motion from music. Unlike previous methods, we use graph 

onvolutional networks trained using an adversarial regime to ad- 

ress the problem. We use audio data to condition the motion gen- 

ration and produce realistic human movements with respect to a 

ance style. We achieved qualitative and quantitative performance 

s compared to state of the art. Our method outperformed Dancing 

o Music in terms of FID, GAN-Train, and GAN-Test metrics. We also 

onducted a user study, which showed that our method received 

imilar scores to real dance movements, which was not observed 

n the competitors. 

Moreover, we presented a new dataset with audio and visual 

ata, carefully collected to train and evaluate algorithms designed 

o synthesize human motion in dance scenario. Our method and 

he dataset are one step towards fostering new approaches for gen- 

rating human motions. 

As future work, we intend to extend our method to infer 3D 

uman motions, which will allow us to use the generated move- 

ents in different animation frameworks. We also plan to increase 

he dataset size by adding more dance styles. 
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