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1. Abstract
The Multiprotocol Label Switching (MPLS) is a popular routing technique for IP networks, where the
core problem is to find a route (called LSP) that satisfy all the capacity constraints imposed by a specific
traffic. Genetic algorithms come as a simple, appealing solution approach, but one that requires careful
choices concerning initial population generation, crossover, mutation and selection. The present paper
discusses the influence of different crossover and selection methods in achieving a fast and accurate
convergence of the genetic algorithm, when solving the MPLS allocation problem. The experimental
results, using different network topologies such as Carrier, Dora, and Mesh, have shown that uniform
crossover and Stochastic Remainder Sampling selection are the most suitable combination to solve the
problem.

2. Keywords: Computer Networks, Quality of Service and Genetic Algorithms.

3. Introduction
The ever-growing need for multimedia applications and the network increasing capacity have made
feasible services like video on-demand, videoconference and IP telephony. Actually, those applications
have become the main concern when dealing with traffic engineering and quality of service issues. In
this context, the development of new transmission and optimization mechanisms is crucial, specially for
networks that act as main traffic backbones

Nowadays, different classes of multimedia applications dispute network resources along with data
applications. Every application has its own differentiated requirements and the network must satisfy
each one according to the application individual needs. Traffic requirements may be fully identified by
means of four parameters: reliability, time delay, jitter (delay variation) and bandwidth. These four
parameters establish a level of Quality of Service (QoS) for each one of the traffic flows. Techniques
based on QoS, like integrated and differentiated services, allow a significant improvement, although they
are all based on the conventional routing algorithm still in use on IP networks.

To assure the correct packet flow through the network, one can use the Multiprotocol Label Switching
(MPLS) framework. MPLS consists in routing packets based on a label, which is inserted in every packet
between the corresponding link and network headers. The complexity reduction of the routing process of
IP packets and the introduction of traffic engineering are two of the main motivations for using MPLS.

Traffic engineering is a management technique that works to guarantee that the network resources
can satisfy all the traffic needs of the applications. However, the current resource allocation can be non-
optimized and, as a consequence, the future requests may not succeed, even though there are available
resources spread over the network. Thus, optimization applied to resource allocation is essential to
achieve high performance and maximum utilization in a given network. Traffic engineering deals with
different aims like maximization of the used bandwidth and re-routing caused by congestion or failure.
MPLS can be used to implement traffic engineering, as explicit routes can be defined between sources
and destinations. Since route assignment is a NP-hard problem, heuristics like genetic algorithms are
generally used in order to find an acceptable solution.
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Solving the route assignment problem through genetic algorithms has been gradually accepted by
specialized literature and, in this sense, many methods and techniques have already been proposed.
However, use of those methods implies on the preliminary definition of a number of parameters, which
can cause deep effects on the results, leading effectively to the algorithm success or failure. This work
aims to identify, as much as possible, the contribution of the selection and crossover methods for the
success of the genetic algorithm, relating them to the overall efficiency in finding best route definition
to a given set of requisitions in a MPLS network. This efficiency is considered in terms of processor
time consumption and solution convergence. Based on experiments, one can demonstrate that genetic
algorithm performance shows relevant improvements, when specific selection and crossover methods are
combined.

In this context, previous research work uses orthogonal crossover as the solving method to the
assignment problem [10, 2], while others combines genetic algorithms to local search, producing hybrid
and memetic algorithms [3, 4]. Especially, a genetic algorithm to solve multi-objective optimization
problems in MPLS networks is proposed in [5]. In this work, the one-point crossover method is adopted,
the crossover and mutation rates are about 75% and 5%, respectively, and no elitism has been used.
Pedro et al. [15] adopt different parameters: simple elitism, 60 individuals, crossover rate of 70%, and
mutation rate of 7%.

The present paper is organized as follows. In Section 4, basic concepts related to genetic algorithms
are presented. Mathematical modeling and implementation details are shown in Section 5. Section 6
contains the computational results and concluding remarks are given in Section 7.

4. Genetic Algorithm - an overview
Genetic algorithms are search and combinatory optimization methods based on the natural selection
conceived by Charles Robert Darwin. The natural selection states that the most adapted generation
remain while the less adapted disappear with time. Genetic algorithms are evolutionary algorithms,
which initially consider an initial population and evolve through the genetic operators of selection,
crossover, and mutation.

A genetic algorithm can be defined as a kind of biased random search technique, developed by Holland
[6], able to get optimal global solution in a complex multidimensional space. One of the advantages of
genetic algorithms is that they deal with a population of simultaneous points, selecting the best ones,
making possible to create a subset from the original population not only near the global solution but
also in other regions of the search space.

Evolution in a given population happens when selection, crossover and mutation operators are applied
to several generations. These methods affect the success of a genetic algorithm and the associated effects
can vary according to the kind of problem [7]. Factors such as crossover and mutation rates, population
sizes and elitism techniques must be evaluated when a genetic algorithm is intended to a given problem.

Using the crossover, it is possible to explore new points on the search space. This operation is executed
based on the crossover probability index (pc). This probability range is defined as 0.5 ≤ pc ≤ 1.0 and
it is always associated with two or more individuals. Crossover allows the exchange of genetic content
between individuals, by combination among binaries values of their respective parents. There are many
ways of doing the crossover, such as the one-point crossover, the two-point crossover, the uniform, and
the orthogonal crossovers [8]. Some of them are explained below:

• In the one-point crossover, a random number defines the segment reference that splits off the
chromosome into two parts. The children are generated through the region combination (generated
by the segment point) of the two parents, selecting genetic material belonging to one and another
parent in an alternating way. A variation of this method, known as the two-point crossover, consists
in considering two (instead of one) segmentation of the chromosome.

• In the uniform crossover, a random vector of bits of the same size of the chromosome is used. In
order to generate any child, one must simply choose the mask, bit by bit. If the chosen bit is
zero, the current parent is picked up; if the chosen bit is one, one must take the other parent.
When the first child has been generated, the value zero in the mask means that one bit is copied
from parent A and the value one in that same mask indicates the copying of a bit from parent B.
On the other hand, when the second child is generated, zero in the mask indicates that a bit of
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the parent B must be copied and one in the same mask indicates that a bit must be copied from
parent A. Another possibility is the adoption of one point for each variable included in the problem.
So, genetic material exchanging will occur only between identical variables. This method allows
the exchange of genetic material, involving only genes in the very same locus, between distinct
individuals.

• In the orthogonal crossover [8] experimental design methods are used and, since it is impossible to
test all possibilities in many cases, the Experimental Design Method [9] allows the selection of a
small set of tests only, which is representative of the whole experiment. That is achieved through
orthogonal arrays. This concept can be applied to the crossover in genetic algorithm and was used
on some routing problems, as seen in [10, 2].

The selection algorithm defines which individuals will belong to the new generation. When we
choose only the best individuals, a premature convergence could happen. Thus, there are many selection
methods such as Roulette, Tournament, Deterministic Sampling and Stochastic Remainder Sampling,
listed below:

• in the Roulette method [11], the first step is to calculate the cumulative fitness of the whole
population through the sum of the fitness of all individuals. After that, the probability of selection
is calculated for each individual as being pseli = fi/

∑
fi. Then, an array is built containing

cumulative probabilities of the individuals. So, n random numbers are generated to the range 0 to
(0−∑

fi) and for each random number an array element which can have higher value is searched
for. Therefore, individuals are selected according to their probabilities of selection.

• In the Deterministic Sampling, the average fitness of the population apavg is calculated and the
fitness associated to each individual is divided by the average fitness, but only the integer part of
this operation is stored. If the value is equal or higher than one, the individual is copied to the
next generation. The remaining free places in the new population will be fulfilled with individuals
with the greatest fraction.

• The Stochastic Remainder Sampling has identical concepts used in the Deterministic Sampling
and the population must be formed with the integer part of the expression result api/apavg. In
this case, free places were filled based on the Roulette method.

5. LSPs allocation in MPLS networks
The LSPs allocation problem can be expressed as a routing problem with some constraints. The network
topology can be defined as a graph G = (V, E,C), where V is a set of routing nodes and E links. C is
the set of constraints of the graph. Our problem can be stated as follows: Which set of LSPs (an LSP is
a route) can be obtained in order to satisfy constraints imposed by the system and to minimize allocation
costs?

In the present work, it has been used the mathematical formulation proposed by Girish [12]. This
formulation contains the following statements: routers are designated as LSRs; U is the set of source and
destination LSRs; F is the LSP set; and D is a set of associated demands to F . However the mathematical
model has the following parameters: ul - LSR source; vl - LSR destination; µl - bandwidth; e al - link
cost.

The decision variable xij shows whether the LSP will be routed through the link:

xij =
{

1, if the LSP i ∈ F is routed to the link l ∈ E
0, otherwise (1)

The model is given by
Minimize(ZR) =

∑

l∈E

al

∑

i∈F

λixil, (2)

submitted to
∑

i∈F

λixil ≤ µl, ∀l ∈ E (3)
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∑

∀l|ul=n

xil = 1, ∀n ∈ U∀i | si = n (4)

∑

∀l|vl=n

xil = 1, ∀n ∈ U∀i | di = n (5)

∑

∀l|ul=n

xil −
∑

∀l|vl=n

xil = 0, ∀n ∈ V i | si 6= n, di 6= n (6)

xil ∈ {0, 1}, ∀i ∈ F, l ∈ E (7)

The constraint (2) assures that the link capacity will not be exceeded. The constraints (3) and (4)
assure to all LSPs that start and terminate in a LSR are routed. The constraint (5) assures that every
LSP is routed through intermediate nodes. The constraint (6) specifies that each decision variable will
assume 0 or 1.

(a) Carrier topology (b) Ten-node topology

(c) Mesh topology (d) Dora topology

Figure 1: Topology Examples

For each sent requisition, k shortest paths are determined. These paths are obtained by cutting off
arcs of the minimum cost in the shortest path. That procedure achieves solution without overloading
the minimum cost arcs. The k-shortest paths are considered possible solutions to the problem, that is,
a LSP. Binary enconding was adopted to the definition of the individuals, where each possible path was
represented by a binary value.

In order to standardize tests, it was established two minimal paths for every LSP and all the topologies
were tested with a number of requisitions varying from 50 to 500 LSPs. Considering 50 LSPs and
two possible minimal paths for each LSP, we have a chromosome of 50 bit-long which implies in 250

combinations in the search space. For 500 LSPs, the search space is 2500 combinations.
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Tests were made in four topologies selected according to their nodes and arcs quantities. Carrier
topology, presented in Figure 1(a), corresponds to a modified version of an IP backbone and is commonly
used on simulations [13]. The Ten-node topology, presented in Figure 1(b), has 10 interconnected nodes
and is a contribution of this work. The Mesh topology, shown in Figure 1(c), has six nodes and is
interesting for simulations in order to get numerical results related to a more complex scenario [13]. The
Dora topology, presented in Figure 1(d), was used in [14].

From the preliminary results obtained on testing the four topologies, we have chosen to work with
populations no bigger than 30 individuals, crossover rate of 70%, mutation rate of 1%, bit by bit mu-
tation, and simple elitism. About 100 tests were executed for every possible combination of selection
algorithm (Roulette [ROL], Tournament[TOR], Determinist Sampling [DSA], and Stochastic Remainder
Sampling [SRS]), crossover method (One-point [1PT], Two-point [2PT], Uniform [UNI], and One-Point
by Variable [PTV]) and topology (Ten-node, Dora, Mesh, and Carrier). Another test using Orthogo-
nal Crossover [OCX] was performed and this algorithm was considered being a crossover and selection
method.

6. Computational Results
The system was developed using C language and tests were performed in a Pentium Core 2 Duo processor
and 1GB RAM machine. Two scenarios were proposed in order to evaluate the algorithms. On the first
scenario, we use 50 LSPs. On the second one, 500 LSPs were considered. For the 50 LSPs case, the
optimal result were known and all the simulation achieved convergence.
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(a) Carrier topology
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(b) Ten-node topology
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(c) Dora topology
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(d) Mesh topology

Figure 2: Generation number to distinct topologies

The presented results were obtained by 100 simulated tests for each combination. The maximum
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number of generation was limited to 5000 and the trust interval associated to the calculation was 95%.
The following stop criteria were adopted: maximum number of generation and non-significant improve-
ment for 10 generation.

Figure 2 shows results associated to average generation number of the 50 LSPs scenario. Regardless
to the verified topology, the patterns viewed on the plots were quite similar, better said, the fastest
convergence method was achieved by combining SRS with uniform crossover. The slowest method used
Roulette as the selection method.

Another relevant evaluation takes into consideration time spent in obtaining results and Figure 3
shows the related graphs. The convergence time depends on the generation number and the complexity
of the algorithm being executed. Again, association between the uniform crossover method and SRS
produced best results, no matter what topology was taken.
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(a) Carrier topology
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(b) Ten-node topology
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(c) Dora topology
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(d) Mesh topology

Figure 3: Average execution time for distinct topologies.

Figures 4 and 5 present the results obtained in 500 LSPs scenario. For this, the SRS selection method
achieved better results, producing the least costs. The uniform crossover method association resulted in
smaller computational times.

The orthogonal selection method presented the worst results in relation to execution time. This is
mainly due to the algorithm complexity. The other selection methods like Roulette, Tournament, and
DSA achieved times near 30 seconds, which is equivalent to an execution of 5000 generations. In those
cases, the adopted stop criterion was the generation number.

Excepting SRS crossover, all the other methods needed about 5000 generations to find the final result.
However, the least costs were obtained through association between SRS crossover method and one of
the studied selection methods. Despite of the similarity among results, combination between SRS and
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uniform crossover presented best average results.
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(c) Dora topology
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(d) Mesh topology

Figure 4: Costs to distinct topologies - 500 LSPs

7. Concluding Remarks
For the 50 LSPs scenario, where all the algorithms achieved convergence in 100% of the cases, the ratio
between the best (SRS selection and Uniform crossover) and the worst time (Roulette selection and
Uniform crossover) was higher than 10 times. For the 500 LSPs scenario, the least cost was obtained
through SRS selection and Uniform crossover combination. While the best method (SRS and Uniform)
produced the optimal result within 0.68 seconds, the worst combination method reached its optimal
result (better than the previous only by 3%) in 48.97 seconds.

Several other methods and algorithms combinations, not tested in this work, can be used to improve
the computational results, like adaptive mutation and crossover rates, space search reduction, and global
elitism. Results suggested that research involving genetic algorithm must be concerned with exhaustive
analysis of to the existing methods, in order to find better results.
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(b) Ten-node topology
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(c) Dora topology
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(d) Mesh topology

Figure 5: Computing time spent in distinct topologies - 500 LSPs scenario
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