Please use this identifier to cite or link to this item: http://www.repositorio.ufop.br/jspui/handle/123456789/8058
Title: SR59230A, a beta-3 adrenoceptor antagonist, inhibits ultradian brown adipose tissue thermogenesis and interrupts associated episodic brain and body heating.
Authors: Ootsuka, Youichirou
Kulasekara, Keerthi
Menezes, Rodrigo Cunha Alvim de
Blessing, William W.
Keywords: Thermoregulation
Sympathetic nerve activity
Arousal and biological rhythm
Issue Date: 2011
Citation: OOTSUKA, Y. et al. SR59230A, a beta-3 adrenoceptor antagonist, inhibits ultradian brown adipose tissue thermogenesis and interrupts associated episodic brain and body heating. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, v. 301, p. R987-R994, 2011. Disponível em: <http://ajpregu.physiology.org/content/301/4/R987.long>. Acesso em: 20 mar. 2017.
Abstract: SR59230A, a beta-3 adrenoceptor antagonist, inhibits ultradian brown adipose tissue thermogenesis and interrupts associated episodic brain and body heating. Am J Physiol Regul Integr Comp Physiol 301: R987–R994, 2011. First published August 3, 2011; doi:10.1152/ajpregu.00085.2011.—Brown adipose tissue (BAT) thermogenesis occurs episodically in an ultradian manner approximately every 80–100 min during the waking phase of the circadian cycle, together with highly correlated increases in brain and body temperatures, suggesting that BAT thermogenesis contributes to brain and body temperature increases. We investigated this in conscious Sprague-Dawley rats by determining whether inhibition of BAT thermogenesis via blockade of beta-3 adrenoceptors with SR59230A interrupts ultradian episodic increases in brain and body temperatures and whether SR59230A acts on BAT itself or via sympathetic neural control of BAT. Interscapular BAT (iBAT), brain, and body temperatures, tail artery blood flow, and heart rate were measured in unrestrained rats. SR59230A (1, 5, or 10 mg/kg ip), but not vehicle, decreased iBAT, body, and brain temperatures in a dose-dependent fashion (log-linear regression P 0.01, R2 0.3, 0.4, and 0.4, respectively, n 10). Ultradian increases in BAT, brain, and body temperature were interrupted by administration of SR59230A (10 mg/kg ip) compared with vehicle, resuming after 162 24 min (means SE, n 10). SR59230A (10 mg/kg ip) caused a transient bradycardia without any increase in tail artery blood flow. In anesthetized rats, SR59230A reduced cooling-induced increases in iBAT temperature without affecting cooling-induced increases in iBAT sympathetic nerve discharge. Inhibition of BAT thermogenesis by SR59230A, thus, reflects direct blockade of beta-3 adrenoceptors in BAT. Interruption of episodic ultradian increases in body and brain temperature by SR59230A suggests that BAT thermogenesis makes a substantial contribution to these increases.
URI: http://www.repositorio.ufop.br/handle/123456789/8058
metadata.dc.identifier.uri2: http://ajpregu.physiology.org/content/301/4/R987.long
metadata.dc.identifier.doi: https://doi.org/10.1152/ajpregu.00085.2011
ISSN: 1522-1490
Appears in Collections:DECBI - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ARTIGO_SR59230ABetaAdrenoceptor.pdf
  Restricted Access
859,25 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.