Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorErcole, Grey-
dc.contributor.authorEspírito Santo, Júlio César do-
dc.contributor.authorMartins, Eder Marinho-
dc.identifier.citationERCOLE, G.; ESPÍRITO SANTO, J. C. do.; MARTINS, E. M. Computing the first eigenpair of the p-Laplacian in annuli. Journal of Mathematical Analysis and Applications, v. 422, p. 1277-1307, 2015. Disponível em: <>. Acesso em: 23 mar. 2017.pt_BR
dc.description.abstractWe propose a method for computing the first eigenpair of the Dirichlet p-Laplacian, p > 1, in the annulus Ωa,b = {x ∈ RN : a < |x| < b}, N > 1. For each t ∈ (a, b), we use an inverse iteration method to solve two radial eigenvalue problems: one in the annulus Ωa,t, with the corresponding eigenvalue λ−(t) and boundary conditions u(a) = 0 = u (t); and the other in the annulus Ωt,b, with the corresponding eigenvalue λ+(t) and boundary conditions u (t) = 0 = u(b). Next, we adjust the parameter t using a matching procedure to make λ−(t) coincide with λ+(t), thereby obtaining the first eigenvalue λp. Hence, by a simple splicing argument, we obtain the positive, L∞-normalized, radial first eigenfunction up. The matching parameter is the maximum point ρ of up. In order to apply this method, we derive estimates for λ−(t) and λ+(t), and we prove that these functions are monotone and (locally Lipschitz) continuous. Moreover, we derive upper and lower estimates for the maximum point ρ, which we use in the matching procedure, and we also present a direct proof that up converges to the L∞-normalized distance function to the boundary as p → ∞. We also present some numerical results obtained using this method.pt_BR
dc.subjectFirst eigenpairpt_BR
dc.subjectInverse iteration methodpt_BR
dc.titleComputing the first eigenpair of the p-Laplacian in annuli.pt_BR
dc.typeArtigo publicado em periodicopt_BR
dc.rights.licenseO periódico Journal of Mathematical Analysis and Applications concede permissão para depósito deste artigo no Repositório Institucional da UFOP. Número da licença: 4073071202962.pt_BR
Appears in Collections:DEMAT - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ARTIGO_ComputingFirstEigenpair.pdf1,1 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.