Please use this identifier to cite or link to this item:
Title: A vibrational spectroscopic study of the phosphate mineral zanazziite Ca2(MgFe2+)(MgFe2+Al)4Be4(PO4)6 6(H2O).
Authors: Frost, Ray Leslie
Xi, Yunfei
Cipriano, Ricardo Augusto Scholz
Belotti, Fernanda Maria
Menezes Filho, Luiz Alberto Dias
Keywords: Raman spectroscopy
Infrared spectroscopy
Roscherite group
Issue Date: 2013
Citation: FROST, R. L. et al. A vibrational spectroscopic study of the phosphate mineral zanazziite Ca2(MgFe2+)(MgFe2+Al)4Be4(PO4)6 6(H2O). Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, v. 104, p. 250-256, 2013. Disponível em: <>. Acesso em: 07 out. 2014.
Abstract: Zanazziite is the magnesium member of a complex beryllium calcium phosphate mineral group named roscherite. The studied samples were collected from the Ponte do Piaui mine, located in Itinga, Minas Gerais. The mineral was studied by electron microprobe, Raman and infrared spectroscopy. The chemical formula can be expressed as Ca2.00(Mg3.15,Fe0.78,Mn0.16,Zn0.01,Al0.26,Ca0.14)Be4.00(PO4)6.09(OH)4.00_5.69(H2O) and shows an intermediate member of the zanazziite–greinfeinstenite series, with predominance of zanazziite member. The molecular structure of the mineral zanazziite has been determined using a combination of Raman and infrared spectroscopy. A very intense Raman band at 970 cm_1 is assigned to the phosphate symmetric stretching mode whilst the Raman bands at 1007, 1047, 1064 and 1096 cm_1 are attributed to the phosphate antisymmetric stretching mode. The infrared spectrum is broad and the antisymmetric stretching bands are prominent. Raman bands at 559, 568, 589 cm_1 are assigned to the m4 out of plane bending modes of the PO4 and HPO4 units. The observation of multiple bands supports the concept that the symmetry of the phosphate unit in the zanazziite structure is reduced in symmetry. Raman bands at 3437 and 3447 cm_1 are attributed to the OH stretching vibrations; Raman bands at 3098 and 3256 are attributed to water stretching vibrations. The width and complexity of the infrared spectral profile in contrast to the well resolved Raman spectra, proves that the pegmatitic phosphates are better studied with Raman spectroscopy.
ISSN: 1386-1425
metadata.dc.rights.license: O periódico Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy concede permissão para depósito deste artigo no Repositório Institucional da UFOP. Número da licença: 3490330364295.
Appears in Collections:DEGEO - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ARTIGO_VibrationalSpectroscopicZanazziite.pdf710,05 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.