Please use this identifier to cite or link to this item: http://www.repositorio.ufop.br/jspui/handle/123456789/16133
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAssunção, Ronaldo Brasileiro-
dc.contributor.authorMiyagaki, Olimpio Hiroshi-
dc.contributor.authorLeme, Leandro Correia Paes-
dc.contributor.authorRodrigues, Bruno Mendes-
dc.date.accessioned2023-02-07T18:21:37Z-
dc.date.available2023-02-07T18:21:37Z-
dc.date.issued2019pt_BR
dc.identifier.citationASSUNÇÃO, R. B. et al. Existence and multiplicity results for an elliptic problem involving cylindrical weights and a homogeneous term μ. Mediterranean Journal of Mathematics, v. 16, n. 33, 2019. Disponível em: <https://link.springer.com/article/10.1007/s00009-019-1317-y>. Acesso em: 06 jul. 2022.pt_BR
dc.identifier.issn1660-5454-
dc.identifier.urihttp://www.repositorio.ufop.br/jspui/handle/123456789/16133-
dc.description.abstractWe consider the following elliptic problem ⎧⎨ ⎩ − div |∇u| p−2 ∇u |y| ap = μ |u| p−2 u |y| p(a+1) + h(x) |u| q−2 u |y| bq + f(x, u) in Ω, u = 0 on ∂Ω, in an unbounded cylindrical domain Ω := {(y, z) ∈ Rm+1 × RN−m−1 ; 0 <A< |y| <B< ∞}, where A, B ∈ R+, p > 1, 1 ≤ m<N − p, q := N p N − p(a + 1 − b), 0 ≤ μ < μ := m + 1 − p(a + 1) p p , h ∈ L N q (Ω) ∩ L∞(Ω) is a positive function and f : Ω × R → R is a Carath ́eodory function with growth at infinity. Using the Krasnoselski’s genus and applying Z2 version of the Mountain Pass Theorem, we prove, under certain assumptions about f, that the above problem has infinite invariant solutions.pt_BR
dc.language.isoen_USpt_BR
dc.rightsrestritopt_BR
dc.subjectSupercriticalpt_BR
dc.subjectDegenerate operatorpt_BR
dc.subjectVariational methodspt_BR
dc.titleExistence and multiplicity results for an elliptic problem involving cylindrical weights and a homogeneous term μ.pt_BR
dc.typeArtigo publicado em periodicopt_BR
dc.identifier.uri2https://link.springer.com/article/10.1007/s00009-019-1317-ypt_BR
dc.identifier.doihttps://doi.org/10.1007/s00009-019-1317-ypt_BR
Appears in Collections:DEMAT - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ARTIGO_ExistenceMultiplicityResults.pdf
  Restricted Access
451,13 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.