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a b s t r a c t

This paper investigates the problem of discretization and digital output feedback control design for
continuous-time linear parameter-varying (LPV) systems subject to a time-varying networked-induced
delay. The proposed discretization procedure converts a continuous-time LPV system into an equivalent
discrete-time LPV system based on an extension of the Taylor series expansion and using an event-based
sampling. The scheduling parameters are continuously measured and modeled as piecewise constant.
A new transmission of the measured output to the controller is triggered by significant changes in the
parameters, yielding time-varying transmission intervals. The obtained discretized model has matrices
with polynomial dependence on the time-varying parameters and an additive norm-bounded term
representing the discretization residual error. A two step strategy based on linear matrix inequality
conditions is then proposed to synthesize a digital static scheduled output feedback control law that
stabilizes both the discretized and the LPV model. The conditions can also be used to provide robust (i.e.,
independent of the scheduling parameter) static output feedback controllers. The viability of the proposed
design method is illustrated through numerical examples.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Due to technological advances, in many practical applications,
the use of communication channels to implement control projects
has considerably increased [1]. For instance, the exchange of data
between control system components can be done by employing
a networked control system (NCS) architecture. Some advantages
of this framework are the use of plug-and-play devices, ease of
system maintenance and diagnosis, increased system agility, and
reduction in system wiring. However, despite of those benefits,
some well known NCS drawbacks, like packet dropouts, multiple-
packet transmission, bandwidth requirements, and network-
induced delay [2,1] can restrict its use. Such disadvantages have
received considerable attention from the control community,
which is continuously looking for solutions to overcome the
difficulties arising from the use of an NCS architecture [3–7].

In an NCS framework, the control strategy usually comprises
a continuous-time plant controlled by a discrete-time controller
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interfaced by analog-to-digital (A/D) and digital-to-analog (D/A)
devices. This structure gives rise to two important matters that
must be jointly dealt with: first, the continuous-time system can
be affected by uncertainties, which occur owing to parameter
variations, external perturbations, noises, the inaccuracy of sensors
and actuators or related to hidden dynamics [8]; and, second, the
necessity to design a digital controller that assures the stability of
the closed-loop hybrid system (continuous-time plant and digital
controller).

For the first problem, a possible solution is the employment of
the linear parameter-varying (LPV) system theory, see [9,10] and
references therein. LPV modeling has increasingly evolved in the
last years, mainly to represent non-linear systems in terms of a
family of linear models and to describe systems whose dynamic
is affected by parameters that can vary arbitrarily fast or have
known bounds on the their rate of variation [11]. The second
issue, generally, requires a procedure to discretize the continuous-
time equations which represent the plant model (see [12] for
a more detailed discussion on different ways to design digital
controllers). An important observation regarding this issue is that
most of the discretization approaches can only deal with plants
free of uncertainties (i.e., precisely known systems) [13], or use
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approximated numerical methods that neglect the discretization
error [14].

An interesting digital control approach that deals with impul-
sive systems and hybrid methods considering the inter-sampling
behavior is presented in [15]. Following similar lines, a simpli-
fied assumption of control design for continuous-time LPV systems
is employed in [16] for a class of piecewise constant parameters
under constant and minimum dwell-time. Nevertheless, in the lit-
erature, there are only a few works that cope with the discretiza-
tion of LPV systems. For instance, in [17,18], the authors provide
conditions to design, respectively, state and output feedback dig-
ital controllers for LPV systems with desired performance speci-
fications by employing the lifting technique [19]. Other examples
can be found in [20,21], where a digital controller or filter is de-
signed through the same approach, assuming the time-varying pa-
rameters are piecewise constant. Those papers assume that both
the discretization procedure and the design of the controller or fil-
ter are performed in real time, that is, the time-varying parame-
ters are continuously read and, at each sample, a newdiscrete-time
model related to the continuous-time plant for the current param-
eter is computed, and the synthesis conditions are re-evaluated. In
this framework, the plant is an LTI system and the discrete-time
model is exact, because, for each fixed parameter, the continuous-
time system becomes precisely known. Nevertheless, this tech-
nique presents, as drawback, a large processing burden for its
implementation, since the discrete-time model is computed and
the design conditions are solved in real time.

This paper proposes a discretization procedure, based on an
extension of the Taylor series expansion of an arbitrary degree
ℓ, which converts a continuous-time LPV model with piecewise
constant parameters and a time-varying network-induced de-
lay into an equivalent discrete-time LPV system. The accuracy
of the discrete-time representation is strongly related to the in-
crease of degree ℓ. An event-based sampling of the output asso-
ciated to the changes of the time-varying parameters is assumed.
Thus, as discussed in [18], by considering the hypothesis of a
time-varying sampling interval that depends on the system
parameter measurements, it is possible to treat a broad class of
problems, such as engines, manufacturing systems and telerobotic
systems. For instance, one can cite an internal combustion engine
whose sampling interval is variable and depends on the engine
speed [18]. Differently from the discretization procedure proposed
in [22] for uncertain time-invariant systems, the newmethod pre-
sented in this paper considers that the network-induced delay
in the continuous-time LPV system can be time-varying. The ob-
tained discretized model, with bounds on the rate of variation of
the parameters, is described by homogeneous polynomial matri-
ces of degree ℓ on the time-varying parameters, which belong to
the Cartesian product of simplexes (called a multi-simplex [23]),
plus a norm-bounded term related to the approximation error. The
norm-bounded termdepends on the degree of Taylor series expan-
sion, the sampling time, the network-induced delay, and the origi-
nal continuous-time uncertainty domain. Estimates for the bounds
of the discretization residual error terms are computed through
a grid in the uncertainty domain. To establish a valid discrete-
time LPV representation, the time-varying parameters considered
in the continuous-time model are supposed piecewise constant
and, therefore, the parameters do not change between two consec-
utive samples. Considering that the parameters are continuously
monitored and have known bounds on their rate of variation, a
new transmission is triggered to sample the output and the sched-
uled parameters whenever a significant change occurs. Otherwise,
a new sample is acquired when a prescribed upper bound on
the transmission interval is reached. In this scheme, the assump-
tion that, during the sampling interval, the parameter variations
are insignificant and can be neglected is valid, as considered in
Fig. 1. Illustration of the networked control system investigated.

[16–18,20,21]. The value of the upper bound on the rate of vari-
ation of the parameters is used to specify a lower bound for the
sampling period and to prevent the so-called Zeno behavior [24].

Therefore, the proposed methodology can be viewed as a
parameter-based event sampling technique that can be used to
deal with a wide variety of LPV systems. Compared to the usual
strategy that imposes a constant small sample period to cope with
abrupt variations, requiring a large bandwidth and increasing the
network traffic load, the approach proposed in this paper repre-
sents an important contribution in the context of NCS.

Additionally, new conditions for state and output feedback con-
trol design of discrete-time polynomial systemswith time-varying
parameters are proposed in terms of linear matrix inequalities
(LMIs). The conditions are solved by LMI relaxations that take into
account the bounds on the rates of parameter variations. An ex-
tension of the two stage strategy [25–28] is used to provide a
stabilizing static output feedback control law: initially, a parameter-
dependent state feedback gain is synthesized; then the outcome is
applied in the second step, where a parameter-dependent output
feedback controller is determined. To implement the scheduled
output feedback control law, it is assumed that the time-varying
parameters of the continuous-time plant can be measured or esti-
mated in real time. If this is not the case, the conditions can also be
used to determine a robust control law (parameter-independent).
The use of polynomial parameter-dependent Lyapunov matrices
and slack variables of arbitrary degrees in the proposed LMI relax-
ations can reduce the conservativeness of the synthesis conditions.
The applicability of the proposedmethod is illustrated through nu-
merical examples.

The remainder of the paper is structured as follows. Section 2
presents the notation, the proposed discretization technique and
the event-triggered control modeling employed in this paper. Sec-
tion 3 introduces themain results for the state and output feedback
control design procedure. Section 4 provides numerical examples
and, finally, Section 5 summarizes the paper.

2. Problem statement

Consider a continuous-time time-varying linear system con-
trolled through a network communication channel by a digital con-
troller, as illustrated in Fig. 1.

For control purposes, the following continuous-time LPVmodel
with piecewise constant parameters is usedẋ(t) = E(α1(t))x(t) + F(α1(t))u(t − τ(t))
y(t) = G(α1(t))x(t)
t ≥ 0, x(0) = 0, u(V) = 0, V ∈ {−τ(t), 0},

(1)

where x(t) ∈ Rnx is the state space vector, u(t) ∈ Rnu is
the control signal, and τ(t) is the network-induced time-varying
delay with known bounds, τ(t) ∈ [τ1, τ2]. Matrices E(α1(t)) ∈
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Rnx×nx , F(α1(t)) ∈ Rnx×nu , and G(α1(t)) ∈ Rny×nx are parameter-
dependent and can be written as a convex combination of N1
known vertices

(E, F ,G)(α1(t)) =

N1
i=1

α1i(t)(Ei, Fi,Gi) (2)

where α1(t) = (α11(t), . . . , α1N1(t)) is assumed to be a piecewise
constant parameter vector belonging to the unit simplex, given by

ΛNm =


(ζ1, . . . , ζNm ) ∈ R

Nm :

Nm
i=1

ζi = 1, ζi ≥ 0, i = 1, . . . ,Nm


. (3)

The main objective of this paper is to synthesize an output
feedback digital controller that stabilizes system (1). In order to
implement the digital control law, it is necessary to define a
technique to sample the output signal y(t) and the time varying-
parameters α1(t).

The next subsection details the sampling scheme employed in
this paper.

2.1. Event-based sampling technique

Consider a parameter vector ρ(t) of a typical LPV system that
varies continuously and is measured in real-time. The absolute
value of the time derivative of ρ(t) is upper bounded by σ > 0,
that is, ∥ρ̇(t)∥ ≤ σ . Whenever a significant change of ρ(t) occurs,
that is, ∥1ρ(t)∥ ≥ ϵ, where 1ρ(t) = ρ(t)−ρ(tk), t is the current
instant, tk < t is the last sampling instant of ρ(t), and ϵ > 0
is chosen by the designer, a new sample of y(t) and ρ(t) is sent
through the network. The parameter vector α1(t), considered in
the continuous-time model (1), is defined as α1(t) = ρ(tk), ∀t ∈

[tk, tk+1). Thus, by choosing a convenient value for ϵ, the parameter
variations during the sampling interval are insignificant and can
be neglected [17,18,20,21]. Since ∥ρ̇(t)∥ ≤ σ , the minimum value
of the elapsed time between two consecutive samples, T (α2(t)), is
given by1

Tmin =
ϵ

σ
, (4)

because
dρ(t)
dt

≃
1α1(kT (α2(t)))

T (α2(t))
≤

ϵ

Tmin
= σ

where

1α1(kT (α2(t)))

= ∥α1

(k + 1)T (α2(t))


− α1


kT (α2(t))


∥ ≤ ϵ. (5)

If no significant changes of ρ(t) occurs, a new sample is
triggered after time Tmax is elapsed from the previous sample.
The threshold Tmax, chosen by the designer, is related with the
maximum allowable transmission interval [29]. Thus, T (α2(t))
varies inside the interval [Tmin, Tmax] and α2(t) is a piecewise
constant parameter belonging to the unit simplex ΛN2 , N2 = 2.

In this paper, T (α2(t)) is supposed to be greater than τ(t) and,
as the network-induced delay lies inside the interval [τ1, τ2], it
can be rewritten as τ(α3(t)) =

2
i=1 α3i(t)τi, where α3(t) is a

piecewise constant parameter belonging to the unit simplex ΛN3 ,
N3 = 2. Thus T (α2(t)) ≥ τ(α3(t)), ∀α2(t), ∀α3(t).

Based on these assumptions, a discretization procedure is
proposed in the following subsection.

1 Note that, due to the sampling scheme adopted in this paper, the effect of
chattering can be avoided, since Tmin depends on a parameter ϵ chosen by the
designer. Additionally, the Zeno Behavior phenomenon [24], i.e., the sampling
period tending to zero, does not occur.
2.2. Discretization procedure

This paper proposes an equivalent discrete-time LPV model for
system (1), as accurate as possible, represented by2
x(k + 1) = A(α(k))x(k) + B(α(k))u(k) + Bd(α(k))u(k − 1)
y(k) = C(α(k))x(k). (6)

Since the time-varying parameters are considered piecewise
constant they do not vary between two consecutive sampling
instants, that is, α(t) = α(k), ∀t ∈ [tk, tk+1), matrices A(α(k)),
B(α(k)) and Bd(α(k)) can be written as

A(α(k)) = eE(α1(t))T (α2(t))

B(α(k)) =

 Υ (α2,α3)

0
eE(α1(t))sds


F(α1(t))

Bd(α(k)) = eE(α1(t))Υ (α2,α3)

 τ(α3(t))

0
eE(α1(t))sds


F(α1(t)),

(7)

where Υ (α2, α3) = T (α2(t)) − τ(α3(t)).
The time-varying parameters affecting the system, the sam-

pling interval and the delay can be gathered in a vector α(k) =

(α1(k), α2(k), α3(k)) that belongs to the multi-simplex domain
ΛN , given by the Cartesian product of the unit simplexesΛNm , m =

1, 2, 3, as defined below.

Definition 1 (Multi-Simplex [23]). A multi-simplex ΛN is the
Cartesian productΛN1 ×· · ·×ΛNr of a finite number r of simplexes
ΛN1 , . . . , ΛNr . The dimension of theΛN is defined as the indexN =

(N1, . . . ,Nr). For ease of notation,RN denotes the spaceRN1+···+Nr .
A given element α ∈ ΛN is a vector belonging to RN and can be
decomposed as (α1, α2, . . . , αr) according to the structure of ΛN
and, subsequently, each αm (being in ΛNm ⊂ RNm ), m = 1, . . . , r ,
is decomposed in the form


αm1, αm2, . . . , αmNm


.

To circumvent the difficulty of dealing with the exponential
of parameter-dependent matrices, a systematic procedure based
on Taylor series expansion is proposed to compute, as accurate as
possible, the expressions in (7). Therefore, the matrices of system
(6) can be written as3

A(α) = Aℓ(α) + 1Aℓ(α),

B(α) = Bℓ(α) + 1Bℓ(α),

Bd(α) = Bdℓ(α) + 1Bdℓ(α)

C(α) = G(α1)

(8)

with

Aℓ(α) =

ℓ
j=0

E(α1)
j

j!
T (α2)

j (9)

Bℓ(α) =

ℓ
j=1

E(α1)
j−1

j!
Υ (α2, α3)

jF(α1) (10)

Bdℓ(α) =

ℓ
i=0

ℓ
j=1

E(α1)
iE(α1)

j−1

i! j!
Υ (α2, α3)

iτ(α3)
jF(α1) (11)

and

1Aℓ(α) = eE(α1)T (α2) − Aℓ(α)

2 For simplicity of notation, the instant kT (α2(t)) is denoted by k.
3 For simplicity of notation, the dependence of α(·) on time is omitted hereafter.
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1Bℓ(α) =

 Υ (α2,α3)

0
eE(α1)sds


F(α1) − Bℓ(α) (12)

1Bdℓ(α) = eE(α1)Υ (α2,α3)

 τ(α3)

0
eE(α1)sds


F(α1) − Bdℓ(α1)

where1Aℓ(α),1Bℓ(α) and1Bdℓ(α) are the residues of the ℓ-order
Taylor series expansion.

Using the definitions related toN-tuples andmultinomial series
presented in A, one can write (9) as

Aℓ(α) = I + T (α2)E(α1) +
T (α2)

2

2
E(α1)

2
+ · · · +

T (α2)
ℓ

ℓ!
E(α1)

ℓ

=

ℓ
s=0


N1
i=1

α1i

ℓ−s  2
i=1

α2i

ℓ−s
T (α2)

s

s!
E(α1)

s

=


k∈KN1 (ℓ)×K2(ℓ)×K2(0)

αk

×


ℓ

j=0


k̂∈KN1 (ℓ−j)×K2(ℓ−j)×K2(0)

k≽k̂


k̃∈KN (j)×K2(j)×K2(0)

k−k̂≽k̃
v∈R(k̃1)

((ℓ − j)!)2

k̂! k̃2!
Tk̃2Ev


,


k∈KN1 (ℓ)×K2(ℓ)×K2(0)

αkAk

=


k1∈KN1 (ℓ)


k2∈K2(ℓ)


k3∈K2(0)

α
k1
1 α

k2
2 α

k3
3 Ak1k2k3 , (13)

matrix (10) can also be written as

Bℓ(α) = Υ (α2, α3)F(α1) +
Υ (α2, α3)

2

2
E(α1)F(α1)

+ · · · +
Υ (α2, α3)

ℓ

ℓ!
E(α1)

ℓ−1F(α1)

=

ℓ
s=1


N1
i=1

α1i

ℓ−s  2
i=1

α2i

ℓ−s  2
i=1

α3i

ℓ−s
Υ (α2, α3)

s

s!

× E(α1)
s−1F(α1)

=


k∈KN (ℓ1)

αk


ℓ

j=1


k̂∈KN ((ℓ−j)1)

k≽k̂


i∈{1,...,N1}

k1−k̂1−ei≽0


k̃∈KN1 (j)×K4(j)

k−k̂≽k̃
v∈R(k̃1−ei)

×

(−1)k3−k̂3−k̃3 ((ℓ − j)!)3
2

i=1
k̃2i

2
i=1

k̃3i

k̂! k̃2! k̃3!(k2 − k̂2 − k̃2)!(k3 − k̂3 − k̃3)!
Tk2−k̂2−k̃2

τk3−k̂3−k̃3
EvFi


,


k1∈KN1 (ℓ)


k2∈K2(ℓ)


k3∈K2(ℓ)

αkBk

=


k1∈KN1 (ℓ)


k2∈K2(ℓ)


k3∈K2(ℓ)

α
k1
1 α

k2
2 α

k3
3 Bk1k2k3 , (14)

and, finally, (11) can also bewritten as Eq. (15) given in Box I,where
ei is defined as a null vector with ith component equal to one, 1 is
the vector (1, 1, 1), and Ak, Bk, and Bdk are the coefficients of the
discretized system polynomial matrices Aℓ(α), Bℓ(α), and Bdℓ(α),
respectively.

2.3. Modeling of the parametric domain

When dealing with time-varying parameters lying in the unit
simplex, many researches assume that the parameters can vary
arbitrarily fast. A less conservative result was proposed in [30],
where the rate of variation of the parameters is supposed to be
limited by an a priori known bound b ∈ R, such that

− b ≤ 1αmi(k) ≤ b, for i = 1, . . . ,Nm, m = 1, 2, 3 (16)

where 1αmi(k) = αmi(k+1)−αmi(k) and b ∈ [0, 1]. In this paper,
the value of b is given by ϵ defined by (5).

Since αm(k) ∈ ΛNm , it is possible to prove that

Nm
i=1

1αmi(k) =

Nm
i=1

αmi(k + 1) −

Nm
i=1

αmi(k) = 0. (17)

Vectors αm(k) and 1αm(k) are gathered and lifted into an
augmented space, called γ -space and the region where the vector
(αm(k), 1αm(k)) assumes values can be modeled by the polytope

Γb =


δ ∈ R

2Nm : δ ∈ co

z1, . . . , zMm


,

z i =


f i

hi


, f i ∈ R

Nm , hi
∈ R

Nm ,

Nm
j=1

hi
j = 0 and

Nm
j=1

f ij = 1, with f ij ≥ 0,

∀j = 1, . . . ,Nm, ∀i = 1, . . . ,Mm


(18)

defined as the convex combination of Mm vectors z i, where Mm is
the number of vertices of the mth unit simplex in γ -space. The
vectors f i and hi of the set Γb are obtained following the lines
presented in [30,31]. The following convex characterization relates
α and γ domains

(αm(k), 1αm(k)) =

Mm
i=1


f i

hi


γmi(k) =


Fm
Hm


γm(k) (19)

with Fm = [f 1 · · · f Mm ], Hm = [h1
· · · hMm ] and γm(k) ∈ ΛMm . The

time-varying parameter γ (k) = (γ1(k), γ2(k), . . . , γr(k)) belongs
to the multi-simplex domain ΛM , whereM = (M1,M2, . . . ,Mr) ∈

Nr , given by the Cartesian product of the unit simplexesΛMm , m =

1, . . . , r .
Suppose that each time-varying parameter αi(k) has limited

variation. Then, there exists a linear relation αi = Fiγi, with
Fi ∈ RNi×Mi , αi ∈ ΛNi and γi ∈ ΛMi , for all i = 1, . . . , r . In
this case, given a homogeneous polynomial matrix R(α) of degree
p = (p1, p2, . . . , pr) ∈ Nr on variable α ∈ ΛN ,

R(α) =


s∈KN (p)

αsRs

=


s1∈KN1 (p1)


s2∈KN2 (p2)

· · ·


sr∈KNr (pr )

α
s1
1 α

s2
2 · · · αsr

r Rs1s2···sr , (20)

there exists an equivalent homogeneous polynomialR(γ ) =


t∈KM (p)

γ tRt

=


t1∈KM1 (p1)


t2∈KM2 (p2)

· · ·


tr∈KMr (pr )

γ
t1
1 γ

t2
2 · · · γ tr

r
Rt1t2···tr (21)

of degree p, such that R(α) ≡ R(Fγ ) ≡ R(γ ), with F =

(F1,F2, . . . ,Fr). Thus, adapting for the multi-simplex domain the
development presented in [31, A.2], the coefficientsRt ofR(γ ) can
be constructed from the coefficients Rs of R(α), using the following
linear combinationRt = Rt1t2···tr =


s1∈KN1 (p1)


s2∈KN2 (p2)

· · ·


sr∈KNr (pr )
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5)
Bdℓ(α) =


I + Υ (α2, α3)E(α1) + · · · +

Υ (α2, α3)
ℓ

ℓ!
E(α1)

ℓ


τ(α3)F(α1) +

τ(α3)
2

2
E(α1)F(α1) + · · · +

τ(α3)
ℓ

ℓ!
E(α1)

ℓ−1F(α1)



=

ℓ
s=0

ℓ
q=1

s
p=0


N1
i=1

α1i

2ℓ−s−q  2
j=1

α2j

ℓ−s+p  2
j=1

α3j

2ℓ−p−q
(−1)p

p!(s − p)!q!
T (α2)

s−pτ(α3)
p+qE(α1)

s+q−1F(α1)

=


k∈KN1 (2ℓ)×K2(ℓ)×K2(2ℓ)

αk
 ℓ

s=0

ℓ
q=1

s
p=0

(−1)p

p!(s − p)!q!

×


k̂∈KN1 (2ℓ−s−q)×K2(ℓ−s+p)×K2(2ℓ−p−q)

k≽k̂


i∈{1,...,N1}

k1−k̂1−ei≽0

v∈R(k1−k̂1−ei)


2

i=1
k2i − k̂2i


!


2

i=1
k3i − k̂3i


!

k̂! (k2 − k̂2)!(k3 − k̂3)!

× (2ℓ − s − q)!(ℓ − s + p)!(2ℓ − p − q)! Tk−k̂2
τk−k̂3

EvFi


,


k∈KN1 (2ℓ)×K2(ℓ)×K2(2ℓ)

αkBdk =


k1∈KN1 (2ℓ)


k2∈K2(ℓ)


k3∈K2(2ℓ)

α
k1
1 α

k2
2 α

k3
3 Bdk1k2k3 (1

Box I.
×


k1∈KM1N1

(s1)

N1
j=1

k1 j=t1


k2∈KM2N2

(s2)

N2
j=1

k2 j=t2

· · ·


kr∈KMr Nr

(sr )

Nr
j=1

kr j=tr


r

i=1

si!
ki!



×

r
v=1


Nv
i=1

Mv
j=1

Fv(i, j)kv ij

Rs, (22)

where the notation
ki∈KMiNi

(si)

Ni
j=1

kij=ti

(23)

implies that in this summation over ki ∈ KMiNi
(pi), only those

terms should be considered for which ti =
Ni

j=1 kij, for all i =

1, . . . , r , where the vector MiNi = (Mi,Mi, . . . ,Mi) ∈ NNi and the
set KMiNi

(si) denotes the Cartesian product

KMiNi
(si) = KMi(si1) × KMi(si2) × · · · × KMi(siNi).

To simplify the LMI conditions presented in this paper, only
the parameters related to the dynamic matrices of the continuous-
time system are considered to have limited variation, while α2(k)
and α3(k), associated respectively to the sampling interval and
the network-induced delay, are supposed to vary arbitrarily fast.
Such choices are due to: (1) the event that triggers the sampling
is associated to the maximum known variation of ρ(t); (2) the
elapsed timebetween two consecutive samples can vary arbitrarily
inside the interval [Tmin, Tmax] since, as soon as the previous
sampling has occurred, T (α2) can assume the minimum value,
when ∥1α1(t)∥ = ϵ, or the maximum value, when the variation
of ρ(t) is insignificant in the interval 1t < Tmax; and (3) although
it is possible to obtain the maximum and minimum bounds of
the network-induced delay, usually, the behavior of τ between
two samples cannot be easily estimated, thus, no assumptions are
made about the time derivative of τ(α3(t)). In cases (2) and (3), as
discussed in [32], the parameters in the advanced instant k + 1
are independent of the current instant k and belong to distinct
simplexes, that is α2(k + 1) = β2(k) and α3(k + 1) = β3(k).
Therefore, the change of variables (22) can be adapted to cope
with all the above cases, by introducing two new simplexes to deal
with the advanced time instants of parameters α2 and α3.Rt = Rt1t2t3t4t5 =


s1∈KN1 (p1)


s2∈K2(p2)


s3∈K2(p3)


s4∈K2(p4)


s5∈K2(p5)

×


k1∈KM1N1

(s1)

N1
j=1

k1 j=t1


k2∈KM22

(s2)

2
j=1

k2 j=t2


k3∈KM32

(s3)

2
j=1

k3 j=t3


kr∈KM42

(s4)

2
j=1

k4 j=t4

×


k5∈KM52

(s5)

2
j=1

k5 j=t5

5
i=1

si!
ki!

×


N1
i=1

M1
j=1

G(i, j)k1 ij


×

5
v=2


2

i=1

2
j=1

I(i, j)kv ij


Rs, ∀t ∈ KM(p), (24)

where I is an identity matrix and the argument (i, j) indicates,
respectively, the row and column of thematrix element. In the case
where matrix R depends on the current time instant k, the degree
is given by p = g = (g1, g2, 0, g3, 0) andG = F1 obtained by (19).
On the other hand, when matrix R depends on the advanced time
instant k + 1, p = g = (g1, 0, g2, 0, g3) and G = F1 + H1 with F1
andH1 computed by (19). Note that R(α) depends polynomially on
parameters α1, α2, and α3 with degrees g1, g2, and g3, respectively.

3. Stabilization

To design digital stabilizing controllers for system (1), consider
that (6) is rewritten as an augmented discrete-timemodel given by
(25), for k ∈ N,
z(k + 1) = A(α)z(k) + Bu(k + 1)
y(k) = C(α)z(k) (25)

whereA(α) = Aℓ(α) + 1Aℓ(α),

Aℓ(α) =

Aℓ(α) Bℓ(α) Bdℓ(α)
0 0 0
0 I 0


,
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1Aℓ(α) =


1Aℓ(α) 1Bℓ(α) 1Bdℓ(α)

0 0 0
0 0 0


,

B =

0
I
0


, C(α) =

C(α)′

0
0

′

, z(k) =

 x(k)
u(k)

u(k − 1)


.

The additive term 1Aℓ(α) represents the discretization resid-
ual error, and can be bounded by ∥1Aℓ(α)∥ ≤ δ, defined as

δ = sup
α∈ΛN

∥1Aℓ(α)∥. (26)

The upper bound for the discretization error can be computed,
for instance, using interval analysis methods [33,34], but the
obtained value of δ is usually very conservative. In this paper,
estimates of this bound are calculated by performing a search in a
grid of values of α ∈ ΛN (inner approximation). For the examples
presented in the paper, tight outcomes have been obtained by
making the grid points increasingly dense inside the domain.
Although such procedure augments the computational burden, all
the calculations are done off-line.

Matrix Aℓ(α), with level ℓ ∈ N of Taylor series expansion,
has elements Aℓ(α), Bℓ(α) and Bdℓ(α) with different degrees in α,
requiring a homogenization procedure,4

Âℓ(α) =


k∈KN1 (2ℓ)×K2(ℓ)×K2(2ℓ)

αk1


A11 A12 Bdk
0 0 0
0 I 0



=


k∈KN1 (2ℓ)×K2(ℓ)×K2(2ℓ)

αk1Ak, (27)

with

A11 =


k̃∈KN1 (ℓ)×K2(0)×K2(2ℓ)

k≥k̃

ℓ!(2ℓ)!

k̃!
Ak−k̃,

A12 =


k̃∈KN1 (ℓ)×K2(0)×K2(ℓ)

k≥k̃

(ℓ!)2

k̃!
Bk−k̃,

I =
(2ℓ)!ℓ!(2ℓ)!

k!
I.

The representation of C(α) in the multi-simplex domain is

C(α) =


k∈KN1 (1)×K2(0)×K2(0)

αk1Ck.

In some applications, the states of the system may not
be available for feedback due to, for instance, high cost of
implementation related to a large number of sensors or, when
the states cannot be directly measured. Consequently, a more
effective technique is the design of output feedback gains, which is
accomplished in this paper using the two stage approach [25–28].
In this technique, firstly, a scheduled state feedback controller is
synthesized as described in Section 3.1, then this gain is employed
as an input in the second step presented in Section 3.2, where a
parameter-dependent output feedback controller is determined.

Therefore, new LMI based conditions for synthesis of stabilizing
state and output feedback controllers for polynomially parameter-
dependent discrete-time systems with additive norm-bounded
uncertainties are proposed in the next subsections.

4 All monomials of the polynomial matrix are set to have the same degree.
3.1. State feedback design conditions

Consider the problem of designing a stabilizing parameter-
dependent state feedback control law

u(k) = K(α)z(k) (28)

bymeans of sufficient LMI conditions presented in Theorem1.Note
that, in the two stage strategy, the parameter-dependent state
feedback gain K(α) is employed only as an intermediate step in
the search for an output feedback gain.

Theorem 1. The parameter-dependent state feedback gain K(α) =

Z(α)Y−1, stabilizes system (25) or (6), and, consequently, (1), if there
exist symmetricmatrices Pk ∈ R(nx+2nu)×(nx+2nu), k ∈ KN(g1, g2, g3),
matrices Zk ∈ Rnu×(nx+2nu), k ∈ KN(h1, h2, h3), and Y ∈

R(nx+2nu)×(nx+2nu), a scalar variable λ, Pólya’s relaxation degrees d =

(d1, d2, d3, d4, d5) ∈ N5, and δ computed by (26), such that the
following LMIs hold

Ω1 +


k̄∈KM (w−g)

k≥k̄

Ω2 +


k′∈KM (w−ḡ)

k≥k′

Ω3 +


k̂∈KM (w−h)

k≥k̂

Ω4

+


k̆∈KM (w−ℓv)

k≥k̆

Ω5 < 0, ∀k ∈ KM(w) (29)

where

Ω1 =
w!

k!

λδ2I ⋆ ⋆
0 −Y − Y ′ ⋆
0 Y −λI

 ,

Ω2 =
(w − g)!

k̄!
diag

 0Pk−k̄
0

 ,

Ω3 =
(w − ḡ)!

k′!
diag

−P̄k−k′

0
0

 ,

Ω4 =
(w − h)!

k̂!

 0 ⋆ ⋆Z ′

k−k̂
B

′ 0 ⋆

0 0 0

 ,

Ω5 =
(w − ℓv)!

k̆!

 0 ⋆ ⋆

Y ′A′

k−k̆
0 ⋆

0 0 0

 ,

ℓv = (2ℓ, ℓ, 0, ℓ, 0), g = (g1, g2, 0, g3, 0), ḡ = (g1, 0, g2, 0, g3),
h = (h1, h2, 0, h3, 0) and w = max {g, ḡ, h, ℓv} + d. MatricesAk,Zk,Pk, and P̂k are the coefficients of the homogeneous polynomial
matricesA(γ ),Z(γ ),P(γ ), and P̄(γ ) obtained by employing change
of variables (24), with, respectively, Rs = Ak, p = ℓv , Rs = Zk, p = h,
Rs = Pk, p = g, and Rs = Pk, p = ḡ , where Ak, Zk, and Pk are the
coefficients of matrices Âℓ(α), Z(α), and P(α).

Proof. First, note that
5

j=1

Mj
i=1 γmi

dj
= 1 for any dj ∈ N, j =

1, . . . , 5 and m = 1, . . . , 5. Defining the closed-loop matrix
Asf

ℓ (γ ) = Aℓ(γ ) + BZ(γ )Y−1, and choosing

Q = diag

−P̄(γ ) + λδ2I, P(γ ), − λI


,

B =

Asf
ℓ (γ )
−I
I

′

, B⊥
=

 I 0
Asf

ℓ (γ )′ I
0 I

 , X =

 0
Y ′

0


,

where B⊥ denotes a arbitrary base for the null space of B, one has

Q + XB + B ′X′ < 0 (30)
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which is (29) multiplied by γ k, summed up for k ∈ KM(w). Such
conditions are equivalent toP̄(γ ) − λδ2I ⋆ ⋆P(γ )Asf

ℓ (γ ) P(γ ) ⋆

0 P(γ ) λI

 > 0, (31)

which was obtained from (30) by multiplying B⊥′ on the left,
B⊥ on the right and applying Schur’s complement in the (1, 1)
element. If (31) is verified, then the following condition, obtained
by applying the change of variables (24) and Schur’s complement,
is also valid
P(α + 1α) ⋆

P(α)Asf
ℓ (α)′ P(α)


− λ


δI
0

 
δI
0

′

−λ−1


0
P(α)

 
0

P(α)

′

> 0. (32)

Next, employing the following expression [35], for a given positive
scalar λ,

XY + Y ′X ′
≤ λXX ′

+ λ−1Y ′Y , (33)

and knowing that 1Aℓ(α)1Aℓ(α)′ < δ2I , one obtains
P(α + 1α) ⋆

P(α) (Aℓ(α) + 1Aℓ(α) + BK)′ P(α)


> 0. (34)

Finally, multiply (34) on the left by T ′ and on the right by T , with

T =


0 P(α + 1α)−1

P(α)−1 0


,

to obtain
P(α)−1 ⋆

P(α + 1α)−1 (Aℓ(α) + 1Aℓ(α) + BK) P(α + 1α)−1


> 0,

or

(Aℓ(α) + 1Aℓ(α) + BK)′ P(α + 1α)−1

× (Aℓ(α) + 1Aℓ(α) + BK) − P(α)−1 < 0,

which certifies the closed-loop stability of system (25) or (6),
and, consequently, of (1), by the Lyapunov function v(x, α) =

x′P(α)−1x. �

Theorem 1 can be straightforward adapted to deal with a
constant network-induced delay τ , as shown below.

Corollary 1. The parameter-dependent state feedback gain K(α) =

Z(α)Y−1, stabilizes system (25) or (6), and, consequently, (1), with
a constant network-induced delay, if there exist symmetric matrices
Pk ∈ R(nx+2nu)×(nx+2nu), k ∈ KN(g1, g2), matrices Zk ∈ Rnu×(nx+2nu),
k ∈ KN(h1, h2), and Y ∈ R(nx+2nu)×(nx+2nu), a scalar variable λ,
Pólya’s relaxation degrees d = (d1, d2, d3) ∈ N3, and δ computed
by (26), such that (29) hold with ℓv = (2ℓ, ℓ, 0), g = (g1, g2, 0),
ḡ = (g1, 0, g2), h = (h1, h2, 0) and w = max {g, ḡ, h, ℓv} + d. The
matrices Ak,Zk,Pk, and P̂k are the coefficients of the homogeneous
polynomial matrices A(γ ), Z(γ ), P(γ ), and P̄(γ ) obtained by
applying change of variables (24) excluding the last two simplexes,
with, respectively, Rs = Ak, p = ℓv , Rs = Zk, p = h, Rs = Pk,
p = g, and Rs = Pk, p = ḡ , where Ak, Zk, and Pk are the coefficients
of matrices Âℓ(α), Z(α), and P(α).
3.2. Output feedback design conditions

In the second stage, both α(k) and y(k) are supposed sampled
and a parameter-dependent output feedback control law is defined
as
u(k) = L(α)y(k) = L(α)C(α)z(k). (35)
Thus, the following theorem is formulated for the output feedback
stabilization of system (25) or (6), and, consequently, of (1).

Theorem 2. The static parameter dependent output feedback gain
L(α) = H(α)−1J(α) robustly stabilizes system (25), (6) and, conse-
quently, (1), if there exist symmetric matrices Pk ∈ R(nx+2nu)×(nx+2nu),
k ∈ KN(g1, g2, g3), matrices Hk ∈ Rnu×nu and Jk ∈ Rnu×ny , k ∈

KN(v1, v2, v3), Yk ∈ R(nx+2nu)×(nx+2nu) and Fk ∈ R(nx+2nu)×(nx+2nu),
k ∈ KN(f ), with f = (f1, f2, f3, f4, f5) ∈ N5, a scalar variable λ,
Pólya’s relaxation degrees d = (d1, d2, d3, d4, d5) ∈ N5, given ma-
trices Kk ∈ Rnu×(nx+2nu), k ∈ KN(h1, h2, h3), solutions of Theorem 1,
and δ computed by (26), such that the following LMIs hold

w!

k!
Ω1 +


k′∈KM (w−v)

k≥k′

(w − v)!

k′!
Ω2 +


k̂∈KM (w−g)

k≥k̂

(w − g)!

k̂!
Ω3

+


k̇∈KM (w−ḡ)

k≥k̇

(w − ḡ)!
k̇!

Ω4 +


k̆∈KM (w−f )

k≥k̆

(w − f )!

k̆!
Ω5

+


k′∈KM (w−v−φ)

k≥k′


k̃∈K(φ)

k≥k′+k̃

(w − v − φ)!

k′!
Ω6

+


k′∈KM (w−v−h)

k≥k′


k̄∈K(h)
k≥k′+k̄

(w − v − h)!
k′!

Ω7

+


k̆∈KM (w−f−h)

k≥k̆


k̄∈KM (h)
k≥k̆+k̄

(w − f − h)!

k̆!
Ω8

+


k̆∈KM (w−f−ℓv)

k≥k̆


k̃∈KM (ℓv )

k≥k̆+k̃

(w − f − ℓv)!

k̆!
Ω9 > 0,

∀k ∈ KM(w) (36)

where

Ω1 = diag

−λδ2I, 0, 0, λI


,

Ω2 = diag

0, 0, −Hk−k′ −H ′

k−k′ , 0

,

Ω3 = diag
Pk−k̂, 0, 0, 0


, Ω4 = diag


0, − P̄k−k̇, 0, 0


,

Ω5 =


0 ⋆ ⋆ ⋆

−Fk−k̆ Yk−k̆ + Y ′

k−k̆
⋆ ⋆

−B
′F ′

k−k̆
B

′Y ′

k−k̆
0 ⋆

F ′

k−k̆
Y ′

k−k̆
0 0

 ,

Ω6 =

 0 ⋆ ⋆ ⋆
0 0 ⋆ ⋆Jk−k′−k̃Ck̃ 0 0 ⋆
0 0 0 0

 ,

Ω7 =

 0 ⋆ ⋆ ⋆
0 0 ⋆ ⋆

−Hk−k′−k̄
Kk̄ 0 0 ⋆

0 0 0 0

 ,

Ω8 =


−K ′

k̄B
′F ′

k−k̆−k̄
− Fk−k̆−k̄B

Kk̄ ⋆ ⋆ ⋆

Yk−k̆−k̄B
Kk̄ 0 ⋆ ⋆

0 0 0 ⋆
0 0 0 0

 ,
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Ω9 =

−A′

k̃
F ′

k−k̆−k̃
− Fk−k̆−k̃Ak̃ ⋆ ⋆ ⋆

Yk−k̆−k̃Ak̃ 0 ⋆ ⋆
0 0 0 ⋆
0 0 0 0

 ,

ℓv = (2ℓ, ℓ, 0, ℓ, 0), g = (g1, g2, 0, g3, 0), ḡ = (g1, 0, g2, 0, g3),
h = (h1, h2, 0, h3, 0), v = (v1, v2, 0, v3, 0), φ = (1, 0, 0, 0, 0),
and w = max {g, ḡ, v + φ, f + h, h + v, f + ℓv} + d. MatricesAk,Ck, Hk,Jk,Kk,Pk, and P̄k are the coefficients of the homogeneous
polynomial matrices A(γ ),C(γ ),H(γ ),J(γ ),K(γ ),P(γ ), and P̄(γ )
obtained with change of variables (24), with, respectively, Rs = Ak,
p = ℓv , Rs = Ck, p = φ, Rs = Hk and Rs = Jk, both with p = v,
Rs = Pk, p = g, and Rs = Pk, p = ḡ , where Ak, Ck, Hk, Jk, and Pk are
the coefficients of matrices Âℓ(α), C(α), H(α), J(α), and P(α).

Proof. First, note that with Asf
ℓ (γ ) = Aℓ(γ ) + BK(γ ), previously

defined, and Aof
ℓ (γ ) = Aℓ(γ ) + BL(γ )C(γ ), one has

P(γ ) − Asf
ℓ

′

(γ )F ′(γ )

−F(γ )Asf
ℓ (γ ) − λδ2I


⋆ ⋆ ⋆

−F ′(γ ) + Y (γ )Asf
ℓ (γ ) Y (γ ) + Y ′(γ ) − P̄(γ ) ⋆ ⋆

B′F ′(γ ) B′Y ′(γ ) 0 ⋆
F ′(γ ) Y ′(γ ) 0 λI


  

Q

+

0
0
I
0


  

U

H(γ )  
X

S ′(γ )
0
−I
0


′

+

S ′(γ )
0
−I
0


  

V

H ′(γ )

0
0
I
0


′

> 0 (37)

which is (36) multiplied by γ k and summed up for k ∈ KM(w),
with S(γ ) = H(γ )−1J(γ )C(γ ) −K(γ ). Choosing

NV =

 I 0 S(γ ) 0
0 I 0 0
0 0 0 I

′

, NU =

 I 0 0 0
0 I 0 0
0 0 0 I

′

,

one has that (37) is equivalent, by the Projection Lemma [35,36],
toP(γ ) − Acl

ℓ (γ )′F(γ )′ − F(γ )Acl
ℓ (γ ) − λδ2I ⋆ ⋆

−F(γ )′ + Y (γ )Acl
ℓ (γ ) −P̄(γ ) + Y (γ ) + Y (γ )′ ⋆

F(γ )′ Y (γ )′ λI


> 0 (38)

which is the multiplication of Q in (37) by N ′

V on the left and by NV

on the right, replacingAcl
ℓ (γ ) in (38) byAof

ℓ (γ ), or themultiplication
by NU on the right and on the left by its transpose, replacing Acl

ℓ (γ )

in (38) by Asf
ℓ (γ ), where the columns of NV and NU form bases of

the null spaces of V and U , respectively. By Schur’s complement,
(38) can be rewritten asP(γ ) − Acl

ℓ (γ )′F(γ )′

−F(γ )Acl
ℓ (γ )


⋆

−F(γ )′ + Y (γ )Acl
ℓ (γ ) Y (γ ) + Y (γ )′ − P̄(γ )


  

R

− λ−1

F(γ )
Y (γ )


  

X ′


F(γ )
Y (γ )

′

− λ


δI
0

 
δI
0

′

> 0. (39)

Observing that 1Aℓ(γ )′1Aℓ(γ ) = 1Aℓ(α)′1Aℓ(α) < δ2I , and
by using (33), one has

R −


1Aℓ(γ )

0


X − X ′


1Aℓ(γ )

0

′

> 0 (40)
which is equivalent toP(γ ) − Acl(γ )′F(γ )′ − F(γ )Acl(γ ) ⋆

−F(γ )′ + Y (γ )Acl(γ ) −P̂(γ ) + Y (γ ) + Y (γ )′


> 0 (41)

where Acl(γ ) = Acl
ℓ (γ ) + 1Aℓ(γ ). Finally, multiplying (41) by

B ′
=

−I Acl(γ )′


on the left and by B on the right and, then,

applying the change of variables (24), one obtains

Acl(α)′P(α + 1α)Acl(α) − P(α) < 0

which guarantees the stability for the closed-loop system (25) or
(6) with the output feedback control law (35), replacing Acl(α) by
Aof

ℓ (α) + 1Aℓ(α), or with the state feedback, replacing Acl(α) by
Asf

ℓ (α) + 1Aℓ(α).
Although the stabilizability of a discrete-time LPV system,

obtained from discretization procedures available in the literature,
usually does not imply that the original continuous-time LPV
system is also stabilizable, in the proposed approach the output
feedback control law (35) guarantees the stability of the closed-
loop continuous-time LPV system (1), since the time-varying
parameters are piecewise constant and the approximation error
of the discretization procedure is taken into account. The
demonstration of the previous statement is given in B. �

As done for Theorem 1, Theorem 2 can be modified to handle
constant network-induced delays.

Corollary 2. The static parameter dependent output feedback gain
L(α) = H(α)−1J(α) robustly stabilizes system (25), (6) and,
consequently, (1), with a constant network-induced delay, if there
exist symmetric matrices Pk ∈ R(nx+2nu)×(nx+2nu), k ∈ KN(g1, g2),
matrices Hk ∈ Rnu×nu and Jk ∈ Rnu×ny , k ∈ KN(v1, v2), Yk ∈

R(nx+2nu)×(nx+2nu) and Fk ∈ R(nx+2nu)×(nx+2nu), k ∈ KN(f ), with
f = (f1, f2, f3) ∈ N3, a scalar variable λ, Pólya’s relaxation degrees
d = (d1, d2, d3) ∈ N3, given matrices Kk ∈ Rnu×(nx+2nu), k ∈

KN(h1, h2), solutions of Corollary 1, and δ computed by (26), such
that (36) hold ℓv = (2ℓ, ℓ, 0), g = (g1, g2, 0), ḡ = (g1, 0, g2),
h = (h1, h2, 0), v = (v1, v2, 0), φ = (1, 0, 0), and w =

max {g, ḡ, v + φ, f + h, h + v, f + ℓv} + d. Matrices Ak, Ck, Hk,Jk,Kk,Pk, and P̄k are the coefficients of the homogeneous polynomial
matricesA(γ ),C(γ ),H(γ ),J(γ ),K(γ ),P(γ ), and P̄(γ ) obtained by
using change of variables (24) excluding the last two simplexes, with,
respectively, Rs = Ak, p = ℓv , Rs = Ck, p = φ, Rs = Hk and Rs = Jk,
both with p = v, Rs = Pk, p = g, and Rs = Pk, p = ḡ , where Ak, Ck,
Hk, Jk, and Pk are the coefficients of matrices Âℓ(α),C(α), H(α), J(α),
and P(α).

It is noteworthy to mention that, due to flexibility introduced
by the multi-simplex methodology, if any time-varying parameter
αi, i = 1, 2, 3, could not be read in real time, the LMI conditions
of Theorems 1 and 2 can provide parameter-independent (robust)
feedback gains with respect to that parameter. In this case, it
suffices to set the partial degree hi and vi equal to zero in
Theorems 1 and 2, respectively.

4. Numerical examples

As discussed in Section 1, the existing approaches in the
literature for digital control of LPV systems, which in general
require the achievement of the equivalent discrete-time model
and the control design to be performed in real time, do not
allow a direct comparison with the proposed technique, in which
the gains are previously computed and only the implementation
occurs in real time. Thus, the aim of this section is to illustrate
the applicability of the proposed method through numerical
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experiments. The computational effort associated to the control
design conditions can be inferred by the number of scalar variables
V necessary to solve the set of LMIs, given in the examples. All the
routineswere implemented inMatlab, version 7.10 (R2010a) using
Yalmip [37] and Mosek [38], in an AMD Phenom (TM) II X6 1090T
(3.2 GHz), 4 GB RAM, computer.

Example 1. Consider the unstable LPV continuous-time system
(1), with a time-varying network-induced delay τ (α3(t)) =

0.01α31(t) + 0.02α32(t), whose vertices are

E1 =


0 1.0

−2.0 0.3


, E2 = β


0 1.0

−1.0 0.5


,

F1 =


1.0
2.0


, F2 =


−0.6
1.0


,

G1 =

1.0 1.0


, G2 =


0 2.0


.

(42)

The time-varying parameter ρ(t) is continuously measured and
satisfies ∥ρ̇(t)∥ ≤ 6. To guarantee that the parameter does not
change significantlywithin one sampling interval, one chooses ϵ =

0.3 yielding Tmin = 0.3/6 = 0.05 s, following (4). If the variation of
ρ(t) between the current instant t and the previous sampling time
tk remains lower than the preset limit ϵ, that is, ∥ρ(t)−ρ(tk)∥ ≤ ϵ,
new samples are generated at Tmax = 0.1 s. Therefore, the system
is sampled with T (α2(t)) = 0.05α21(t) + 0.10α22(t) s. Two cases
are considered in this example.
Case A

In this case, β is supposed to be equal to 0.3 and the aim is to
design a scheduled output feedback digital control law that assures
the closed-loop stability of the continuous-time LPV system. In
practical applications, it is difficult to obtain the values of the
network-induced delay in real time, so the scheduled output gain
was designed to be robust with respect to τ (α3(t)).

For discretization levels ℓ < 2, the two stage technique does
not provide feasible solutions, because the maximum bound δ for
the discretization error is high. However, employing higher levels
ℓ, a more accurate dynamic description of the LPV system (42)
is obtained and it is possible to synthesize a stabilizing control
law. For instance, fixing ℓ = 2 in the discretization procedure
and applying Theorem 1, with gi = 1, hi = 0, i = 1, 2, 3,
and dj = 0, j = 1, . . . , 5, one can find a stabilizing state
feedback controller by solving an LMI problemwithV = 101 scalar
variables. Then, employing the state feedback gain as an input in
Theorem 2, with gi = 1, i = 1, 2, 3, v1 = v2 = 1, v3 = 0,
and fj = dj = 0, j = 1, . . . , 5, a parameter-dependent output
feedback gain is obtained by using V = 121 scalar variables in the
LMI conditions. For this particular example, a robust (parameter-
independent) output feedback control law could not be designed
by Theorem 2. Fig. 2 presents a time simulation of the closed-loop
behavior of the output y(t), for an initial condition x0 =


−3 2

′,
in which it is assumed that the LPV parameters ρ(t) are governed
by the following function

ρ1(t) = sin2(6t) and ρ2(t) = 1 − ρ1(t), (43)

and τ(α3(t)) has a uniform distribution inside the interval
(0.01, 0.02). For illustration, the sampling instants are shown at
the bottom of the figure.
Case B

Consider the design of stabilizing state feedback controllers
by Theorem 1 for several values of β > 0. The aim is to show
how the conservativeness of the results, in terms of the maximum
possible value of β , can be reduced by increasing the degrees
of the Lyapunov matrix and of the slack variables, as shown in
Table 1, that also provides the computational effort in terms of
Fig. 2. Controlled output trajectories of the closed-loop system (42) with ℓ = 2,
τ (α3(t)) = 0.01α31(t) + 0.02α32(t), and x0 =


−3 2

′ for Example 1.

Table 1
Upper bound of β > 0 for different degrees g of the Lyapunov matrix and h of the
slack variables in Theorem 1 for ℓ = 2 for Example 1. To illustrate the numerical
complexity, the number of scalar variables V is also presented.

g h β V

(0, 0, 0) (0, 0, 0) 0.7578 31
(0, 0, 0) (1, 0, 0) 0.9375 35
(1, 1, 1) (0, 0, 0) 1.0781 101
(0, 0, 0) (1, 1, 0) 1.1094 43
(0, 0, 0) (1, 1, 1) 1.2012 59
(1, 1, 1) (1, 1, 1) 1.4102 129

the number of scalar variables V . Note that due to the flexibility of
the proposed methodology, which allows to use different degrees
for each decision variable and different partial degrees for each
one of the unit simplexes, less conservative outcomes can be
achieved with a small increase in the computational effort. For
instance, analyzing the fourth row of Table 1, one notes that the
range of values of β is expanded in approximately 3%, using 57%
less scalar variables than the case presented in the third row of
Table 1. Additionally, by performing amore accurate discretization
procedure, Theorem 1 can provide feasible solutions for a wider
range of β . For instance, choosing ℓ = 3 and gi = hi = 0, i =

1, 2, 3, themaximum value of β is raised from 0.7578 (see Table 1)
to 0.9297.

Example 2. Consider a VTOL (Vertical Take-off and Landing)
helicopter whose linearized dynamic model, adapted from [39],
is described by (1) with a constant network-induced delay τ =

0.01 s. In this model, the components x1(t), x2(t), x3(t), x4(t)
of the state vector x(t) and u1(t), u2(t) of the control input
vector u(t) represent, respectively, the horizontal and vertical
velocities (knots), the pitch rate (degree/s), pitch angle (degrees),
the collective pitch control and the longitudinal cyclic pitch
control. The system matrices are

E(p(t)) =

−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.0100 0.0024 −4.0208
0.1002 p(t) −0.7070 1.4200
0.0000 0.0000 1.0000 0.0000

 ,

Fi =

 0.4422 0.1761
1.4200 −7.5922

−5.5200 4.4900
0.0000 0.0000

 ,
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Fig. 3. Controlled output trajectories of the closed-loop VTOL system with ℓ = 3,
τ = 0.01 s, and x0 =


−1 2 1 3

′ for Example 2.

Gi =


1 0 0 0
0 1 0 0


,

where p(t) = 0.45 + 0.1319 sin(4.56t) cos(9.12t) and i = 1, 2.
By evaluating the dynamic matrix of the system at the extreme
values of the uncertain parameter p(t) ∈


0.3181 0.5819


, a

polytope with two vertices is obtained. To convert the evolution
of p(t) into a parameter which belongs to a new convex parameter
space domain (polytopic), one can write

ρ1(t) =
1 + sin(4.56t) cos(9.12t)

2
, ρ2(t) = 1 − ρ1(t), (44)

and, therefore, ρ1(t), ρ2(t) ∈

0 1


. Time-varying parameter

ρ(t) presents a maximum time derivative of 4, that is, ∥ρ̇(t)∥ ≤

4. To assure that parameter α1(k) is a good piecewise constant
approximation of ρ(t), ϵ in (4) is chosen equal to 0.2 yielding
Tmin = 0.05 s. The upper bound of the sampling interval Tmax is
adopted equal to 0.11 s. Therefore, both horizontal and vertical
velocities are measured at instants kT (α2(t)), with T (α2(t)) =

0.05α21(t) + 0.11α22(t) s and k = 1, 2, . . . .
The aim is to design a scheduled output feedback digital

controller that assures the closed-loop stability of the (open-loop
unstable) continuous-time LPV system. For this purpose, state
feedback gains are obtainedbyusing the condition fromCorollary 1
for the discrete-time models obtained from (13)–(15) with ℓ =

1, 2, 3 and, then, the outcome is used as an input in Corollary 2.
For discretization levels ℓ < 3, the two stage technique does not

provide feasible solutions. However, employing a more accurate
discretization of the LPV system, it is possible to design a stabilizing
control law. For instance, choosing ℓ = 3, the bound to the residual
error computed by the discretization procedure is δ = 1.45×10−7.
Then, setting gi = hi = 1 and di = 0, ∀i = 1, 2, in Corollary 1,
and gi = vi = 1, ∀i = 1, 2, and fj = dj = 0, ∀j =

1, 2, 3, in Corollary 2, a parameter-dependent output feedback
gain is obtained. The involved number of scalar variables to solve
Corollaries 1 and 2 is, respectively, 273 and 305. It is noteworthy
that a stabilizing robust output feedback control law cannot be
designed by Corollary 2 for this particular example. Fig. 3 presents
a time simulation of the closed-loop behavior of the output y(t)
with the initial condition x0 =


−1 2 1 3

′. As can be seen,
the designed scheduled controller stabilizes the continuous-time
LPV system.
5. Conclusion

This paper presented a technique for the design of a digital
scheduled output feedback controller for continuous-time LPV
systems with time-varying networked-induced delay. To this end,
a discretization procedure, which converts a continuous-time LPV
system with piecewise constant parameters into an equivalent
discrete-time LPV system, based on an extension of the Taylor
series expansion and using an event-based sampling, is proposed.
Additionally, new LMI conditions are given to provide a scheduled
state or static output feedback control law for discrete-time LPV
systems with polynomial dependence on the parameters and an
additive norm bounded term. Numerical experiments illustrated
that the discrete-time scheduled control law also assures the
closed-loop stability of the continuous-time LPV system with
piecewise constant parameters.

As future topics of research, the authors are investigating
the use of δ-operator [15], a technique that seems to be more
suitable to deal with the case of fast-varying parameters, as well as
under which assumptions it could be proved that the stabilization
considering piecewise constant parameters implies the closed-
loop stability of the actual LPV system.
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Appendix A. Notations and definitions for multinomial series

As discussed in [22], products in multi-nomial series are non-
commutative for matrix-valued polynomials, requiring suitable
polynomial manipulations. As E(α1) ∈ Rnx×nx , one obtains

E(α1)
q
=


N1
i=1

α1iEi

q

=


p∈P (q)

q
i=1

α1piEpi

=


p∈P (q)

α1p1Ep1 · · · α1pqEpq

=


p∈P (q)

α1pEp, Ep = Ep1 · · · Epq

=


k1∈KN (q)

α
k1
1


p∈R(k1)

Ep (45)

where α
k1
1 = α

k11
11 α

k12
12 · · · α

k1N1
1N1

, k1 = (k11k12 · · · k1N1), α1p =

(α1p1 , α1p2 , . . . , α1pq), p = (p1p2 · · · pq) for q ∈ N,KN1(q) is the set
of N1-tuples obtained as all possible combinations of non-negative
integers k1i, i = 1, . . . ,N1, such that k11 + k12 + · · · + k1N1 = q,
that is

KN1(q) ,

k1 = (k11k12 · · · k1N1) ∈ N

N1 :

N1
j=1

k1j = q, k1j ≥ 0

,

P (q) is the set of q-tuples obtained as all possible combinations of
non-negative integers pi, i = 1, . . . , q, such that pi ∈ {1, . . . ,N1},
that is

P (q) ,

p = (p1 · · · pq) ∈ N

q
: pi ∈ {1, . . . ,N1}, i = 1, . . . , q


andR(k1), k1 ∈ KN1(q), is the subset of all q-tuples p ∈ P (q) such
that the elements j of p havemultiplicity k1j, for j = 1, . . . ,N1, that
is

R(k1) ,

p = (p1 · · · pq) ∈ N

q
: mp(j) = k1j, j = 1, . . . ,N1


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where mp(j) denotes the multiplicity of the element j in p.
By definition, the set KN(g) is the Cartesian product KN(g) =

KN1(g1)× KN2(g2)× · · ·× KNr (gr), where g = (g1, g2, . . . , gr) ∈

Nr .
For N-tuples k and k′, one writes k ≥ k′ if kmj ≥ k′

mj, m =

1, . . . , r , and j = 1, . . . ,Nr . Operations of summation k + k′ and
subtraction k− k′ (whenever k ≥ k′) are defined component-wise.
The coefficient k! is defined as

k! = k11!k12! · · · k1N ! · · · kr1!kr2! · · · krNr !

where kij! stands for the factorial of kij, that is, kij! = kij(kij−1) · · · 1.
To illustrate the definitions, consider g = (3, 1, 1) and N =

(2, 2, 2). In this case, the set KN(g) is given by

KN(g) = K2(3) × K2(1) × K2(1)
= {(30), (21), (12), (03)} × {(10), (01)} × {(10), (01)}
= {(301010), (301001), (300110), (300101), (211010),

(211001), (210110), (210101),
(121010), (121001), (120110), (120101), (031010),
(031001), (030110), (030101)}

and, for instance, choosing k1 = 21, k2 = 01, and k3 = 10,
αk

= α
k1
1 α

k2
2 α

k3
3 = α2

11α
1
12α

0
21α

1
22α

1
31α

0
32. Thus, the set R(k1) is

R(21) = {(112), (121), (211)} .

Finally, one obtains
p∈R(21)

Ep = E2
1E2 + E1E2E1 + E2E2

1 .

Appendix B. Demonstration of closed-loop continuous-time
LPV system stability

The results of this paper are obtained under the hypothesis
that, in the continuous-time representation of the LPV system,
the time-varying parameters are piecewise constant, i.e., α(t) =

α(kT (α2)) ∈ ΛN ,∀t ∈

kT (α2), (k+1)T (α2)


. Since the parameter

α(kT (α2)) is fixed inside the sampling interval, its dependence
with respect to time can be dropped. For any α ∈ ΛN and a given
sampling period T (α2), the solution of the linear system (1) over
the interval t ∈ [kT (α2), (k + 1)T (α2)] is given by

y(t) = G(α1)x(t) = G(α1)eE(α1)(t−kT (α2))x(kT (α2))

+G(α1)

 t

kT (α2)

eE(α1)(t−ŝ)F(α1)u(ŝ − τ(α3))dŝ. (46)

Assuming that signal u(t) is piecewise constant over the sampling
interval, the delayed signal u(t−τ(α3)) is also piecewise constant.
Since the delayed signal varies between two consecutive samples,
one can split the integration interval of (46) in two parts such that
u(t − τ(α3)) is constant in each part and, consequently, it can be
placed outside the integral. Hence,

y(t) = G(α1)


eE(α1)(t−kT (α2))x(kT (α2))

+

 t

kT (α2)+τ(α3)

eE(α1)(t−ŝ)dŝ

F(α1)u (kT (α2))

+

 kT (α2)+τ(α3)

kT (α2)

eE(α1)(t−ŝ)dŝ

F(α1)u


(k − 1)T (α2)


.

After performing some changes of variables, the above expression
can be rewritten as

y(t) = G(α1)


eE(α1)(t−kT (α2))x(kT (α2))
+


eE(α1)(t−kT (α2)−τ(α3))

 τ(α3)

0
eE(α1)sds


× F(α1)u ((k − 1)T (α2))

+


eE(α1)(t−(k−1)T (α2))

 T (α2)−τ(α3)

(k+1)T (α2)−t
eE(α1)sds


× F(α1)u


kT (α2)


.

Then, taking the supreme and using the triangle inequality, one has

sup
t∈[kT (α2), (k+1)T (α2)]

∥y(t)∥ ≤ ∥G(α1)∥

eE(α1)T (α2)
 ∥x(kT (α2))∥

+

eE(α1)(T (α2)−τ(α3))

 τ(α3)

0
eE(α1)sds


F(α1)


×

u ((k − 1)T (α2))


+

 T (α2)−τ(α3)

0
eE(α1)sds


F(α1)

 u(kT (α2))

. (47)

Finally, replacing (7) and (8) in (47), one has

sup
t∈[kT (α2), (k+1)T (α2)]

∥y(t)∥ ≤ ∥C(α)∥

Aℓ(α) + 1Aℓ(α)


×

x(kT (α2))

+

Bdℓ(α) + 1Bdℓ(α)

 u ((k − 1)T (α2))


+

Bℓ(α) + 1Bℓ(α)

 u(kT (α2))

. (48)

Knowing that the discrete-time system (6) is closed-loop stable,
i.e., x(kT (α2)), u


(k − 1)T (α2)


and u


kT (α2)


converge to zero as

k → ∞, then y(t) → 0 as t → ∞ and the asymptotic closed-
loop stability of the uncertain system (1) with the control law (35)
is assured.
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