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The importance of load forecasting has been increasing lately and improving the use of energy resources
remains a great challenge. The amount of data collected from Microgrid (MG) systems is growing while
systems are becoming more sensitive, depending on small changes in the daily routine. The need for flex-
ible and adaptive models has been increased for dealing with these problems. In this paper, a novel
hybrid evolutionary fuzzy model with parameter optimization is proposed. Since finding optimal values
for the fuzzy rules and weights is a highly combinatorial task, the parameter optimization of the model is
tackled by a bio-inspired optimizer, so-called GES, which stems from a combination between two heuris-
tic approaches, namely the Evolution Strategies and the GRASP procedure. Real data from electric utilities
extracted from the literature are used to validate the proposed methodology. Computational results show
that the proposed framework is suitable for short-term forecasting over microgrids and large-grids, being
able to accurately predict data in short computational time. Compared to other hybrid model from the
literature, our hybrid metaheuristic model obtained better forecasts for load forecasting in a MG scenario,
reporting solutions with low variability of its forecasting errors.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Electric grids are evolving from a centralized single supply
model towards a decentralized bidirectional grid of suppliers and
consumers. In this new environment, so-called Smart Grid (SG),
the reality becomes a more dynamic scenario involving uncer-
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tainty in energy production, consumption and distribution. The
development of efficient algorithmic techniques that deal with
these scenarios is crucial for supporting this important economical
activity.

Rogers et al. [1] highlighted that the demand side, the con-
sumers, will have to adapt to the available resources, in contrast
to the current model in which the supply should always match
the demand. In most countries, the starting point in the migration
to this new business model and the implementation of the SG is
the installation of smart meters [2] and sensors in residences and
commercial buildings. The need for reducing environmental
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impacts, as emissions of greenhouse gases, lead to an increasing
use of renewable energy systems (primarily wind and photovoltaic
units) [3].

Considering measurement systems with high sampling rates
over years of data acquisition [4], one can expect a large amount
of detailed data. In case of electrical network metering, this data
can be converted into valuable and useful information, which is
crucial for the success of a wide range of SG applications. A task
that has been left to the researchers is the one related to the selec-
tion and analysis of parts of these datasets. From such data treat-
ment, those huge datasets become available in different ways in
order to allow researchers from distinct areas to develop smart
solutions for multifunctional and highly complex problems.

Lee and Tong [5] underscore the importance of energy con-
sumption forecasting in the context of economic development of
a country due to the large and rapid changes in the industry, which
have strongly affected energy consumption. Taylor and McSharry
[6] emphasized that electricity demand forecasting is of great
importance for the management of power systems. Nowadays, it
is a consensuses that electrical load forecasting assisted by Artifi-
cial Intelligence method plays a vital role for an effective success
of the SG [7].

The need for Short-Term Load Forecasting (STLF) for controlling
and scheduling of power systems is increasing, a task that is also
required by transmission companies when a self-dispatching mar-
ket is in operation. Commonly, in STLF studies one is interested in
predictions for the next 1-24 h ahead samples in basis of half-an
hour or one-hour [8]. Nowadays it is also possible to find research
reporting shorter time periods, such as Guangui et al. [9], who
studied wind power energy forecasting with 15 min of forecasting
horizon. Furthermore, real-time forecasts will not be useful only
for wind or solar forecasts, as it is already a need when considering
Microgrids control and efficient management [10].

In terms of STLF, MG should be taken into account, since they
are more difficult to be monitored and predicted than large power
grids due to their higher randomness and lower autocorrelation
factors [11]. MG had become a basic and fundamental infrastruc-
ture in the SG environment and have been receiving attention in
recent literature work. For instance, Zhi-Chao et al. [12] used a
backpropagation neural network to perform forecasts over a MG
environment, however, the accuracy of their results had been com-
promised due to large load variations in the small office building
that they had analyzed. A problem that generally does not happen
in Large-Grid and Medium-Grid environments, as can be verified in
Taylor and McSharry [6], where STLF was performed over a huge
European data set from 10 different countries. As emphasized by
Coelho et al. [13], forecasts and, in special, probabilistic forecasts
will assist decision making in MG, guiding and assisting suitable
and profitable energy storage. Forecasts of load and prices are also
being considered for auction-based market, where the length of a
market period has been modeled as an interval between 15 min
and one hour, which is included in the category of STLF [14].
Hernandez et al. [15] focus on Artificial Neural Networks (ANN)
approach for STLF in order to provide useful information for MG
intelligent elements, in case they can adapt their behavior depend-
ing on the future generation and consumption conditions.

Recent works have proposed artificial intelligence techniques
for dealing with load forecasting problems in applications where
traditional forecasting methods have many limitations to tackle
big data and higher load fluctuation [16], such as ANN [17], fuzzy
inference systems (FIS) [18,19] and Fuzzy Times Series (FTS)
[20,21], support vector machines (SVM) [22] and hybrid heuristic
models [23,24].

Most forecasting models require feature extraction techniques
in order to select good quality inputs [25]. Different works in the
literature had already tried feature extraction for improving fore-

casting performance, specially for ANN [26]. Enayatifar et al. [21]
obtained the Fuzzy Logical Relationships (FLRs) by analyzing the
Autocorrelation Function (ACF). Recently, Lahouar and Slama [27]
proposed the use of ACF to assist a mechanism for input selection
of a random forecasting model. However, feature extraction from
the time series is not the only viable solution to selecting possible
sets of model’s inputs, this problem has been also approached with
the use of bagging [28].

Driven by theoretical and real world applications, extracted
from the literature and envisioned by the authors of this work,
the purpose of our current paper is to use a class of bio-inspired
metaheuristics for calibrating the parameters of a model based
on if-then fuzzy rules. We incorporated the power of the evolution-
ary algorithms for optimizing the fuzzy rules and calibrating their
parameters, while Neighborhood Strucutures - NS are used for
searching for a prominent set of lags. The expert input selection
done by the NS, along with the evolution process, modify and
adjust the model inputs during the training phase. In this context,
Evolution Strategies — ES [29] stand out as a robust and flexible
framework, which has been effectively applied for solving many
combinatorial optimization problems [30,31], however, up to the
moment, with only sparse/none results reported over forecasting
problems. A hybrid heuristic algorithm based on Greedy Random-
ized Adaptive Search Procedures — GRASP [32] and ES is proposed.
The GRASP is used to generate the initial population of the ES pro-
cedure. Each solution, initialized as a different forecasting model, is
generated according to a randomized solution generator in connec-
tion with a feature extraction technique.

The need to develop high accurate models for energy consump-
tion forecasting is imminent, starting from simple data mining and
noise suppression methods to more complete and efficient
machine learning algorithms. Grosman and Lewin [33] use an algo-
rithm based on the concept of Genetic Programming - GP [34] to
generate a prediction model for dynamic control with nonlinear
assumptions. Kashid and Maity [35] proposes a model based on
GP for summer monsoon rains forecasting across India territory.
Vladislavleva et al. [36] perform a forecasting model for predicting
power output of wind farms based on meteorological data, using a
hybrid method, integrating symbolic regression with GP. Recently,
Gelekli et al. [37] propose a hybrid model, combining ANN with
Gene Expression Programming (GEP) [38], to a manufacturing
metallurgy problem, involving the forecasting of sorption of an
azo-metal.

However, MG can reveal additional problems and requirements
for forecasting systems [11]: (1) compared to large power grid, the
load of micro-grid is more difficult to forecast given the smaller
capacity and higher randomness; (2) complex forecasting models
would increase the requirement and cost on computational
resources, leading to difficulty in application and promotion among
users; (3) the relationship between load characteristics and the cor-
responding forecasting accuracy lacks analysis and summary.

In addition, for ensuring forecasting accuracy of the proposed
framework in real time systems, the use of metaheuristics based
models offers flexibility for using the methodology on normal com-
puters or embedded terminal devices. In view of the short demand
of computational resources during the learning process, a real time
update strategy is proposed, which represents an important
advance for microgrid forecasts.

Dealing with load forecasting in different real databases,
involving short-term forecasts on large grids and MG poses a great
challenge. Thus, this paper tackles this issue by proposing a flexible
open-source framework. The major contributions of this current
work are:

e Propose a hybrid self-adaptive forecasting model with real-time
parameter optimization during the learning process.
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o Introduce a GRASP solution generator that selects inputs based
on values from feature extraction techniques.

e An expert mechanism for refining model’s inputs during the
supervised learning phase using neighborhood structures,
which can add, remove and adapt model’s input.

Minor contributions are related to:

o Consider the use of different exogenous variables as input of the
forecasting model, adapted or included during the evolutionary
process.

e Use of a bio-inspired optimizer based in the concepts of the ES.

o Apply the model over real load databases composed of different
typical MG consumers and large grids.

e Quick training strategy for forecasting in online MG scenarios.

e Use of a metaheuristic based framework suitable to be applied
for different forecasting horizons, generating h-steps-ahead
forecasting.

The remainder of this paper is organized as follows. Section 2
provides a generic description of the load forecasting problems.
Section 3 describes the proposed framework to tackle STLF.
Section 4 presents the computational experiments, and, finally,
Section 5 draws the final considerations and future work.

2. Load forecasting problems

The class of forecasting problems sought to be solved in this
paper may be formulated as follows:

e a set of time series TS = {y, z1,...,z. }, composed of e + 1 differ-
ent historical time series, including the variable of interest y
and, optional, exogenous variables z; Vi € [1,¢],

o The target time series y =y, ...,y, comprises a set of t observa-
tions; The optional set of e exogenous time series is represented
by 2 ={z},...2,...2,, },Vie [1,e]

The goal is to estimate the forecasts of a finite sequence
{Vt+1, -, Vesx}, with k indicating the number of steps to be pre-
dicted, namely forecasting horizon.

These steps ahead to be predicted are precisely following the
sample time t, that is, the forecast are the k steps ahead starting
from t + 1 to t + k. The vector of exogenous variables include infor-
mation prior to time t and might also include predicted future
points t + h. It is even possible to have k., > k.

Finally, each predictable point p, can be composed of combina-
tions of lags from the target time series y, and variables zi.

In this current study, we tackle load forecasting, which is a time
series. Forecasting models are required to estimate its future evo-
lution in terms of past samples and, eventually, being assisted by
the use of some exogenous variables that affect the future load
[27]. As an example of a time-series, Fig. 1 depicts an hourly load
historical data.

3. Methodology

In order to develop a flexible framework that could be applied
to the different types of datasets, a new adaptive model is designed
and described in this section. Section 3.1 presents the proposed
fuzzy model. Section 3.2 introduces how to represent the fuzzy
rules into matrices, examples are given in Section 3.1.2. Section 3.3
describes the procedure of solution evaluation. Lastly, Section 3.4
details the proposed algorithm for calibration of the fuzzy model
rules and weights.

3.1. Fuzzy model

Initial ideas regarding to this proposed fuzzy model can be
found in Coelho et al. [40,41]. This current work presents a more
complete and general mathematical formulation of it.

Each input of the model u;,i=1,...,r, with u;=y(t—x),
u; = z(t — x) or u; = z(t + x), represents a choice for the composi-
tion of lags that will be used to obtain the forecast, the backshift
operators. For simplicity of the didactic description of the model,
only lags from the target time series y will be stated in the math-
ematical description of the fuzzy model. Thus, the model will only
use lags provided by the historical time series y, being
u; =y(t — x) =y, = B*y(t), being B the lag operator or backshift
for lags x prior to time t.

For instance, two different lags can be selected as inputs,
u; = y(t —24) and u, = y(t — 1), for forecasting a specific horizon
from the previously described sequence p(t), with t—24 and
t — 1, respectively.

Based on these inputs of the model, or even combination of
them, the fuzzy rules are generated and described as follows:

{if u;>a; then f(t) = v;

if u;<b; then f(t) =w; 1)

fori=1,...,r. Each input u; is associated with up to 2 inequalities.
The rules are based on fuzzy inequality relations < and =, which are
described by fuzzy membership functions, and the parameters g;
and b;. The forecast value suggested by each rule is given by the
parameters »; and w;. The main idea behind this model is to divide,
in a fuzzy sense, each input into intervals. Whenever the input
value is within a given interval, then the consequent of the rule con-
tributes to the forecast value. New rules create new intervals and
consequently more complex relationships between the inputs and
the forecast output.

Fig. 2 exemplifies the effects of the rules. The first one, Fig. 2a,
shows the effects of one rule for one input and Fig. 2b introduces
the notion of the fuzzy space when a new rule is added. These
examples consider the use of a backshift operator y, , = B*y(t),
for the input lag x prior to time t. Each fuzzy interval provides a dif-
ferent weight for forecasting a given point y,, given by the combi-
nations of the weights v;, v,, w; and ws.

The fuzzy set A; = {x, i1, > O|x € X} represents the set of values

that satisfy the inequality u;>a;. The membership degree to this set
is modeled by fuzzy membership functions, such as:

4500 T T T T

—&6— Monday
—#— Tuesday
—— Wednesday
4000 —— Thursday
—A— Friday
Saturday
—#— Sunday

3500 -

Eletric load (MW)

3000~

2500

2000 L L L L
0 5 10 15 20 25

Time of day

Fig. 1. Average intraday cycle for each day of the week from EirGrid [39] electricity
load dataset from 02/01/2012 to 10/08/2014.
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0, if u;<a—¢
IUAI,(U,‘;G,‘, €i) 1 +@, if a,—€ <u; <a; (2)
1, if u;>a;

with € = 0.

In a similar way, the fuzzy set B; = {x, fi5 > O|x € X} represents
the set of values that satisfy the inequality u;<b;. The membership
degree to this set is modeled by fuzzy membership functions, such
as:

1, if u; = b,‘
g, (13; by, €0) 1+828 i by <u <bi+6 (3)
0, if u;>b;+¢€

with ¢ > 0.

The weight of each rule in the final forecast value depends on
the membership degree of the input u; to the fuzzy set associated
with that rule. The overall output of the model proposed in this
paper is given by Eq. (4).

€)= ia, (i) i + fig (ur)wi (4)

where the parameters a;, b;, €; were omitted in the membership
functions just to simplify the notation. Additionally:

fia, (u;) = Hi )
o Z{:M‘Ai(ui) + U, ()

()

N N Hs, (u)
g, (i) = it g, (ui) + g, () B

ita;(u;) and g, (u;) represent the strength of the rules in the forecast.

Fig. 3 exemplifies the effects of two pairs of rules with linear or
sigmoid fuzzy rules. The same position depicted in Fig. 2 was kept
for this example. As can be noticed, when a non-linear membership
function was used the regression became smoother.

3.1.1. What's the rationale?

The correlation between past lags and current observations has
been studied for decades. Several models and analyses try to
extract characteristics from the old lags and correlate them in
order to achieve efficient forecasting models. For instance, the triv-
ial random-walk [42], proposed more than 100 years ago, tries to
face time series that show irregular growth by calculating the first
differences. Plotting efficient and well-designed ACF and Partial
Autocorrelation Function - PACF is still being researched, as can
be checked in Hyndman [43].

Fig. 4 shows a typical microgrid residence with maximum load
of 273 KW, composed by the historical load time series and
forecasts provided by an Autoregressive Integrated Moving
Average - ARIMA [44] and Random Walk forecasting models.

The relationship between the lags and the output can provide
useful information for designing the inputs that will be used by
the forecasting model. The ACF describes the tendency for observa-
tions made at adjacent time points to be related to one another.
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(b) Effects of adding a new rule

Fig. 2. Rules effects.
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However, these correlations cannot be easily interpreted and
adapted when time series with high fluctuations are dealt, such
as loads from MG [16], wind power generation [45], wind speed
[46], among others. For a better understanding of the ACF and
results discussed in this section, the autocorrelation functions of
four microgrids, described in Section 4.2, are summarized in Fig. 5.

3.1.2. Example

Suppose that after analyzing the most prominent inputs from
an ACF, from a given time series (load, temperature, wind speed,
etc.), the following inputs were selected to the model (the model
can have repeated inputs, it is not a problem).

Uy yt-1)
. | | ¥(t=5)
Us y(t —40)
Ug y(t-5)

Therefore, we have the following rules:

{if uy>a; then f(t) = v Ko
if u;<b; then f(t) = w,

{if u;>a, then f(t) = v, 8)
if u,<b, then f(t) =w,
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{if u3>as then f(t) = v3 ©)
if us<bs then f(t) = ws

{lf u4§a4 then f(t) = U4 (10)

if us<bs then f(t) =wy

The forecast value is determined by the following equation:

f(8) = fia, (u1) w1 + ftg, (u1)wr
+ fla, (U2) V2 + [, (U2) W,
+ fla (U3) V3 + fig, (U3)Ws3
+ fia, (Us) Vs + i, (Us) W4

(11)

Rule positions (a; and b;) and corresponding weights (z; and w;)
are calibrated during the optimization process. In this current
study, the weights and positions of the rules are calibrated accord-
ing to an evolutionary metaheuristic algorithm. Additionally, the
strategy is able to insert, remove and adapt rules during the train-
ing process, as will be detailed in Section 3.4.

As a didactic example, Fig. 6 depicts a defuzzification with 5 and
30 different pairs of fuzzy rules, using Heaviside step or sigmoid
functions. Rules and weights were generated in the same interval
[0, 1]. Sigmoid membership function was defined with € = 0.15.
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Fig. 5. Autocorrelation functions for microgrids A, B, C and D with 500 lags.
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e y(t), which returns the values from a historical load time series.

3.2. Solution representation of the fuzzy rules

e z(t), exogenous variables which provide values from a temper-

ature time series.

The following generic parameters describe the proposed model

into a single matrix:

and different lags:

e y(t—1) and y(t — 2) are the load consumption one and two
hours before the forecasting (hour is used didactically to repre-

sent a given discrete interval of data acquisition), respectively.
e z(t — 1) and z(t — 24) are the temperatures of the residence one

(12)

and 24 h before the desired forecasting.
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Table 1 illustrates a possible solution that uses four inputs over
its model. The first two columns are related to values of a didactic
load time series and the other two are inputs obtained from an

associated temperature time series. Thus, in order to estimate a
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given forecast at time t, the model receives historical data from
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The first and the last inputs were modeled as triangular fuzzy
rules, since both columns have € > 0.

Values used in this example stated by Table 1 were arbitrarily
chosen. Temperature values are used only didactically to empha-
size the flexibility of the model in handling inputs from different
time series. Brief results related to this mechanism are described
in Section 4.4.2.

3.3. Objective function and solution evaluation

A solution s is evaluated by its ability of forecasting values of
the training set T, comparing its forecasts with the historical mea-
sured ones.

Most models are trained to minimize the Mean Squared Error
(MSE), since it is well-known that the mean of the forecast distri-
bution is obtained by minimizing the squared error loss function
SE(t + h),y(t +h)) = (F(t + h) —y(t + h))*, where y(t+h) is the
point forecast and y(t + h) is the current observation obtained in
the horizon h. However, other loss functions are also able to lead
to the forecast mean [47], this topic is still being investigated with
new diagrams and conditions [48,49].

Furthermore, the objective function can be any desired quality
indicator or even more than one, in case of multiobjective
approaches. Different metrics for defining the accuracy of forecast-
ing models have been discussed in the literature. In the 90’s,
Makridakis [50] proposed a discussion of theoretical and practical
application of some loss functions.

3.4. GES training algorithm

The proposed calibration algorithm, called GES, which tackle the
rules optimization, consists on the combination of the metaheuris-
tic procedures Greedy Randomized Adaptive Search Procedures —
GRASP [32] and Evolution Strategy — ES [29]. The pseudocode is
outlined in Algorithm 1.

Algorithm 1. GES

Input: Function f(.), greedy feature extraction limit o
Output: Population Pop

1 fori— 1to udo

2 s «— BMIR(a)

3 M — BuildStdVectors

4 ind —s+M

5 Pop; — ind

6 end

7 while stop criterion not satisfied do

8 fori— 1toido

9 Generate a random number x € [1, /]
10 ind — Pop,
11 ind «— UpdateParameters
12 ind «— ApplyMutation
13 ind «+— MutateAddRemoveLags
14 Pop?P"E _ ind
15 end
16 Pop = Selection (f, Pop, Pop/sPring
17 end
18 return Pop

From the MS procedure, the construction phase was used to gener-
ate initial forecasting models, as can be verified in the BMIR (Build
Model Inputs and Rules) procedure, detailed in Algorithm 2. The
initial population of the algorithm (lines 1 to 6 of Algorithm 1) con-

sists in generating p individuals. Each individual is generated
according to the BMIR procedure and is, usually, of a different fore-
casting model from each other.

Algorithm 2. BMIR

Input: historical data sets M, number of different
historical time series nTimeSeries
Input: greedy feature extraction limit o, maximum lag
maxLag, maximum initial number of rules maxNRules
Output: Initial solution s
for ts — 1 to nTimeSeries do
means, 0 «+mean value and standard deviation of the
time series M, respectively
RCL;s «—featureExtractionTechnique(os, maxLag, M, ts)
end
r — random number [1, maxNRules]
fori— 1tordo
select a random time series ts € nTimeSeries
select a random input lag € RCL;s
s; «— lag as the current input of its column i
si — [Ai, Vi, B, W}, Ej] with random values according to
a normal distribution N(mean, o¢s)
11 end
12 returns

N —

QOO U AW

—_

Variable o regulates the size of the RCL, name Restricted Candi-
date Lags, an abstraction of the Restricted List of Candidates in
GRASP. That is, input lags that have low correlation values, according
to the desired feature extraction technique, will not be considered to
be inserted in the model (line 3 of Algorithm 2). We denote variable
s with subscript ts to emphasize the possibility of limiting different
lags according to the historical time series that the rule will use. The
feature extraction technique receives the current greedy limit «, the
maximum oldest lag able to be used by the model maxLag and the
historical data. Section 4.3 discusses the influence of the greedy limit
using a didactic example with ACF. The historical time series data are
stored in the dataset M. The number of time series is given by the
variable nTimeSeries. Variable r indicates the number of rules (basi-
cally, 2 x r) that will be initialized in the model of solution s. From
lines 6 to 11 of Algorithm 2, each column of the initial solution s
receives a random input from the RCL. A trivial solution generator
would be a feature extraction technique that returns a vector with
all possible lags from 1 to maxLag, then, the model would receive a
random input lag for its rules. Position and weights of each fuzzy rule
are initialized in accordance with a normal distribution (line 10),
centered at mean,; with standard deviation o. A special case for
the weights v and w is that they are all initialized with mean; and
gy, i.e. ts = 1. It was defined like this because, as standard, the first
time series is the target that we need to forecast (in this current
study, load time series). The other ones are auxiliary time series, such
as temperatures, wind speed, presence of people at home, etc. Fol-
lowing this procedure, in average, all the solutions generated by this
procedure can forecast the mean values of the target load time series.

Line 4 of Algorithm 1 merges the solution s and the standard
deviations matrix M. The matrix M is generated in connection with
the size of the model of s (as stated by Eq. (13)).

04 oa; --- 0G
oy ovy - OV

M=|og|=|0by --- ob, (13)
ow ow; - OW;
O gE - 06
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withi=1,...,r.
From now on, the following nomenclature is used:

e ind’ is the solution s, the fuzzy model, codified in the indi-
vidual ind;

e ind" is the matrix with the standard deviation values, used
to guide evolution of the population through the
generations.

In line 11 of Algorithm 1 the mutation procedure is activated by
a random individual of the actual population. Eq. (14) describes

how the mutation is done. Each cell of the matrix ind" is updated
with a normal distribution, centered at zero with standard devia-
tion O-updamy

Mrow.col — Mrow.col + N(O O-update) (14)

The procedure ApplyMutation (line 12 of the Algorithm 1) is

illustrated in Eq. (15). Each rule, ind*, actually its position and
weights are updated according to a normal distribution centered
at zero and with standard deviation obtained from the respective

cell of the mutation matrix ind".

A+N
V+N

—~

0,M,,)
0,M,,)
B+ N(0,M,,) (15)
W + N(0,M,, )
E+N(0,M,,)

—~

ind =

= =

Line 13 of the Algorithm 1 has the ability of mutating the model
lag using the neighborhood structures described in Section 3.5.
Each of the three Neighborhood Structure — NS have probabilities
pMSt p™2 pNSs of being applied for mutating model’s inputs.

Finally, the selection procedure (line 16 of the Algorithm 1) can
be any desired selection strategy, as long as the strategy returns a
population with u individuals. The one used here is described as
competition (i + 4), following the same notation of Beyer and Sch-
wefel [29]. In this selection process there is competition between
parents and offspring. Thus, the u best individuals are selected
among parents and offspring.

3.5. Expert model input adjustment using neighborhood structures

Three different NS were designed in order to adapt model’s
input during the training phase. A brief view of the movements
is described below:

Change lag - NS (s): This move increases or decreases in one
unit the lag of column x [x € [1,1]] of solution s.

Remove rule - NS™(s): This move deletes one column from
solution s (if the solution has, at least, r > 1).

Add rule - NS*(s): This move consists in adding a new rule
with lag € [1, maxLag] for the solution s, with the same proce-
dure described for Algorithm 2.

The whole of designing expert input selection mechanisms has
been envisioned by different researches, a considerable part of
them generates specific subsets of features to be evaluated. Several
approaches, such as those based on ANN [27], usually, define pairs
composed of inputs and outputs, Ty g = (Xbrgining> Yiraining)» DEING
Viraining the historical measured values from the time series and
X! 4ining @ N-dimensional vector of exogenous variables for the "
time instance of a given time series.

The features sets are analyzed according to different feature
selection methods [51], based on traditional statistical methods
or artificial intelligence and machine learning strategies. Using pre-
pocessing analysis, a specific set of inputs is chosen and, then,
machine learning algorithms, based on different learning para-
digms, are applied over the datasets. However, are these features
sets optimal for those models? Some works in the literature have
been claiming a strategy that finds the “best” set of inputs, but, it
sounds to be a further discussion to achieve an optimal set of lags
for a given forecasting model.

On the other hand, our proposal handles with time series as a
sequence instead of defining sets of pairs of exogenous variables
and desired outputs. Thus, the inputs required by a given solution
s are only accessed when this solution is being evaluated regarding
its performance in the training set. This strategy provides the tool
of real-time inputs searching. The expert input selection strategy
proposed in this paper allows the model to be updated in any stage
of the learning process, that is done using a metaheuristic
procedure.

4. Computational experiments

This section is divided into five subsections. Section 4.1 presents
the computational resources, some considerations about the code
and model parameters. Section 4.2 introduces the real datasets
used in this paper. Section 4.3 presents the results related to model
inputs selection. Section 4.4 presents some results compared with
the literature. Finally, Section 4.5 presents results of our hybrid
fuzzy model, applied in real-time MG load forecasting scenario,
compared with well-known forecasting models.

4.1. Basic configurations

The GES calibration algorithm was implemented in C++ with
assistance from OptFrame (Available at http://sourceforge.net/pro-
jects/optframe/) [52]. In general, frameworks are based on the
researchers experience with the implementation of multiple meth-
ods for different problems. This optimization framework has been
successfully applied in guiding the implementation of neighbor-
hood structures (see [53]). Souza et al. [54,55] employed OptFrame
to solve an open-pit-mining problem and a large-scale multi-trip
vehicle routing problem. It is important to point out that all code
used in this research is, from this moment, available as an example
on OptFrame core, as an open-source tool under GNU LGPL 3.0.

The tests were carried out on a OPTIPLEX 9010 Intel Core i7-
3770, 3.40 x 8 GHZ with 32 GB of RAM, with operating system
Ubuntu 12.04.3 precise, and compiled by g++ 4.6.3, using the
Eclipse Kepler Release.

According to empirical calibration and parameters suggested by
the literature [29,41], the size of the population, i, and number of
offspring, /, generated in each generation were fixed: u = 10 and
) =60, respectively. Initial values for the standard deviation
matrix M were chosen at random from [1, 10] and G pgqe. Was fixed
to be 1. The fine tuning of these values is not presented here since
the main focus of the batches of experiments is to discuss the load
forecasting regarding to different set of inputs. The objective func-
tion (Section 3.3) to be minimized during the fuzzy rules calibra-
tion process was chosen to be the Mean Absolute Percentage
Error - MAPE quality indicator [50].

4.2. Datasets

Large grids datasets were obtained by extracting parts of the
dataset from Taylor and McSharry [6]. Microgrids datasets were
kindly provided by Liu et al. [11]. Another real MG residence
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dataset composed with load and temperature time series (mea-
sured in Fahrenheit) was obtained from the Global Energy Fore-
casting Competition 2014 - GEFCOM2014 [56].

Taylor and McSharry [6] dataset consists in intraday electricity
demand measurements, from 10 European countries for the
30 week period from Sunday, 3 April 2005 to Saturday, 29 October
2005. It is made up with hour (5040 samples), and half-hour
(10,080 samples) load demand acquisitions.

Liu et al. [11] dataset is composed of four different microgrid
users data (composed of users from small residential areas, com-
mercial buildings or factories). Instances A and B are the load of
residential areas, C and D are the load of commercial buildings.
The load time series from these four MG were divided into two dif-
ferent sets:

o 2 of the data (1368 samples) is used for training the model;

o 1 of the data (672 samples) is used as blind validation, in a way
to evaluate the performance of the model after the GES rules
calibration.

Several characteristic indices are extracted separately from the
history time series of loads from these different databases, in the
same way as Liu et al. [11].

Average values of the load for each day are calculated and com-
pared to the maximum load of that day (R measure). Large grids
presented higher values, since the average is closer to the peak val-
ues. Following the same reasoning, the minimum daily load rate
(Rmin) is lower for the microgrids historical load data. The European
load consumption presented similar behaviors for the analyzed
characteristics. As can be seen in the last four lines of the Table,
daily load variation over the temperature time series of the MG
residence is similar to the load grid variation over large grids. On
the other hand, difference between two adjacent days is much
higher than in large grids and fluctuates as in MG systems.

4.3. Expert input selection

As an example, we present a solution generator based on the
ACF as a feature extraction technique for assisting the choice of
the model inputs. Other feature extraction techniques [57] could
be adapted to our greedy randomized solution generation BMIR.

The goal is to compare the models generated using inputs with
high ACF value and the ones generated at random (when o = —1).
Model’s input should respect the maximum lag maxLag. This first
experiment intends to present the influence of ACF values for
building an initial fuzzy model. Fig. 7 indicates the MAPE errors
of the best solution generated in “NSOLS” initializations.

These experiments provide an initial insight about how building
several initial solutions could enhance the chance of obtaining bet-
ter initial models, in terms of model’s performance measured by a
MAPE indicator. This ability is reality in our approach due to the
use of the GRASP procedure as the initial step of our training
algorithm.

Model inputs are obtained from a given limit o which only con-
sider lags with correlation higher than it, as introduced in Sec-
tion 3.4. It should be noticed that we adapt the procedure for
reducing the maximum lag until it reaches the input with maxi-
mum lag value. For instance, if the given MG had the maximum
ACF value equal to 0.8, the results obtained with o = 1 would be
the same of those with o = 0.8. However, as can be checked in
ACF plots depicted in Fig. 5, the maximum ACF values of each
MG have slightly different peak values.

A second batch of experiment sought to analyze the behavior of
different ACF limits o guiding the first initial population of the
whole procedure. Additionally, we wanted to check if the expert
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Fig. 7. Two-way interaction plot of greedy ACF limit o and number of generated
solutions.

self-adaptive input selection, using the NS described in Section 3.5,
might be able to mutate model’s lag, add and remove rules (as
pointed in line 13 of Algorithm 1), during the training phase. The
batch of experiment was composed of 4000 executions with
learning time equal to two minutes. All the normality,
independence and variance assumptions were verified and
accomplished. The design of experiment was an effect model with
different o = [-1,-0.3,-0.1,0.3,0.5,0.8, 1], maximum number of
rules maxNRules = [10,100,500,1000], applied for learning the
next step ahead of four different MG load time series (A, B, C, D).
An Analysis of variance (ANOVA) test [58] was used for analyzing
the differences between group means. The maximum lag (maxLag)
was set to be 672. On the other hand, since the oldest lag used in
the model of Liu et al. [11] was set to be 170 (set of
inputs:  (z(t —1),z(t — 2),z(t — 22),z(t — 23),z(t — 24),z(t — 166),
z(t —167),z(t — 168),z(t — 169) and z(t — 170))), this same value
will be fixed in the benchmark results of Section 4.4.

Fig. 8 depicts an interaction plot considering different o limits
and the use of the expert input selection mechanism. Dashed lines
show the variances of the model with and without the expert input
selection. Best obtained models are depicted with points in shape
of triangles. It can be noticed that when the model’s input was only
determined by the BMIR, it improved the results when « values
were around 0.3, indicating that the model responded well for
using input lag with low autocorrelation values. On the other hand,
when the expert inputs adjustment was being used during the evo-
lutionary process, the use of inputs with ACF values improved the
training performance. The expert input selection strategy reduced
the average MAPE errors from 13.9% to 12% for a two minutes
training. By analyzing the dashed line it can be seen that the vari-
ance of the model was also dramatically reduced by activating the
self-adaptive mechanism.

It was felt that the model might be able to reduce the training
MAPE even when fed by inputs with low ACF value, if it has enough
time for adjusting its parameters. Thus, in Fig. 9 we present the
effects of the training time, TIMEES (seconds), using the proposed
self-adaptive inputs selection strategy. Obtained results indicate
the ability of the model in adjusting its input lag during long-
runs training phases, an useful feature for long-term forecasting.

Regarding the number of the rules, the model performed better
forecasts when initialized with a maximum number of rules equal
to maxNRules = 100 or maxNRules = 500, as can be verified in
Fig. 10. Thus, following some advices from the literature, we will
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The benchmark results are divided into three parts: Section 4.4.1
presents the benchmark over the MG datasets; Section 4.4.2 shows
the performance of the model in a case of study involving the use
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Fig. 10. Effects of the initial number of rules and model’s performance.



578 V.N. Coelho et al./Applied Energy 169 (2016) 567-584

load time series and temperature measurements; Section 4.4.3
indicates the results over the large grids.

4.4.1. Results over the MG datasets

The hybrid heuristic fuzzy model is compared with the EMD-
EKF-KELM of Liu et al. [11]. Their model combines Empirical Mode
Decomposition - EMD, Extended Kalman Filter - EKF, Extreme
Learning Machine with Kernel - KELM and Particle Swarm
Optimization - PSO. The forecasting horizon is one step ahead,
k = 1. MAPE and Root-Mean-Square Error - RMSE errors are pre-
sented for each week of the validation set. A batch of 30 executions
was done. Tables 2 and 3 summarize the results of the new self-
adaptive hybrid fuzzy model proposed in this paper compared to
the EMD-EKF-KELM. The values in bold indicate the best values
which are better than the best values of the EMD-EKF-KELM hybrid
model, average values are not compared since they only reported
the best achieved forecasts.

As can be verified in Tables 2 and 3, the hybrid fuzzy model was
able to obtain good mean results for both MAPE and RMSE quality
indicators. Among the batch of 30 executions, at least one of the
obtained model had better MAPE than the literature. For the RMSE,
in four cases it was not able to achieve the best values reported by
the literature.

Apart from the first week of the microgrid C, all other best
results presented MAPE error lower than 10.25%. As described in

Liu et al. [11], it is known that when the MAPE is more than 10%,
the operation cost of microgrids would increase sharply. If the
obtained results were applied in real online situations, the archived
forecasting errors would not lead to the sharp increase of operation
cost, indicating that implementing the presented method over
microgrid systems could bring benefits. Furthermore, the model
was able to obtain good results with low variability, being the high
standard deviation equal to 2.92%.

Another advantage of our approach is that it was competitive
using one single set of parameters during the whole learning pro-
cess. Liu et al. [11] divided the learning process in 48 groups of
optimal parameters in workdays and holidays, obtained with an
off-line parameter optimization using a PSO based algorithm. Here,
we could do the same and trained 48 different models for each of
their groups. For simplicity, and as a way of showing our model’s
flexibility, we use only one single model with a single set of param-
eters for each MG load time series.

Fig. 11 shows the forecast of the our best execution for the first
week of the testing set. Forecasting errors are depicted in black
dashed lines in the bottom of the figure, representing the absolute
error between each prediction and the real value from the histori-
cal time series.

Finally, Fig. 12a and b depicts forecasts for one day and one
week ahead. Fig. 12a indicates the forecasts for one day, over the
first week of the validation set while Fig. 12b presents the forecasts

Table 2
Hybrid fuzzy model x EMD-EKF-KELM - MAPE (%).
Microgrid 1st week 2nd week 3rd week 4th week
Best results of Liu et al. [11]
A 8.363 9.003 10.376 7.866
B 10.672 8.369 8.010 7.201
C 13.522 13.788 9.917 7.836
D 6.630 6.888 5.531 6.224

Proposed hybrid load forecasting model - HFM
Average values + standard deviations

A 9.033 +£0.232 8.395+0.133 10.2244+0.199 8.320+0.416
B 9.145 +0.404 9.794 + 0.852 7.285+0.188 7.625 +0.263
C 14211 +£2.923 9.536 + 1.024 9.298 +£1.291 7.689 +0.765
D 5.697 +0.169 5.999 +0.123 6.117 £0.197 7.455 +£0.173
Best forecasts
A 8.303 7.726 9.555 7.495
B 8.054 8.231 6.555 6.840
C 11.448 8.090 7.661 6.374
D 5.039 5.469 5.341 6.508
Table 3
Hybrid fuzzy model x EMD-EKF-KELM - RMSE (MW).
Microgrid 1st week 2nd week 3rd week 4th week
Best results of Liu et al. [11]
A 16.081 15.164 18.759 18.335
B 37.659 24.937 23.066 21.079
C 177.674 132.779 122.219 90.831
D 107.715 97.320 81.147 101.686
HFM
Average values + standard deviations
A 16.236 +0.452 14.058 +0.274 20.299 £+ 0.659 17.844 +£1.034
B 28.192 £5.122 29.958 +6.565 20.939 + 1.989 23.145 £ 2.690
C 157.624 + 100.669 95.777 +23.830 123.005 + 185.266 88.481 +38.705
D 88.081 +31.545 91.982 £ 23.939 110.707 + 46.645 124.826 + 69.844
Best forecasts
A 15.204 13.162 18.932 16.456
B 24411 25.954 19.059 20.548
C 144.491 88.355 104.616 76.621
D 77.955 82.738 95.751 107.210
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Fig. 11. Forecasting results of D in 1st week.

for the whole first week ahead (k = 168). Even for one week ahead,
the model was able to predict different slopes and load fluctuations
over the analyzed MG.

4.4.2. MG forecasting with temperature measurements

A MG load historical data along with three different historical
temperature time series, located in the surroundings of the MG,
is considered in this section. As mentioned before, this historical
dataset was obtained from the GEFCOM2014. The goal of this batch
of experiment is to analyze fuzzy model’s performance towards the
inclusion of new information from temperature time series. Fig. 13
exhibits the load autocorrelation function for this MG, with maxi-
mum load of 325 KW, together with the autocorrelation for one of
the temperature time series.

A batch of 30 executions with each of the four different combi-
nation of exogenous variables as input of the model was
performed.

e Four different time series as input of the model:
1. only load historical data;
2. load data + one temperature time series;
3. load data + two temperature time series;
4. load data + three temperature time series.

The effect of the new temperature time series as input of the
model can be seen in Fig. 14a and b. Labels “1.Temp”, “2.Temp”
and “3.Temp” refer to the use of the different historical tempera-
ture time series. As can be verified, the proposed fuzzy model is
able to handle with new information and can take profit of it in
terms of optimizing model’s precision and performance. Average

MAPE and RMSE decrease from 14.02% and 23.24% to 11.55% and

19.78%, respectively, when the three temperature time series were
considered as model’s input.

Other time series could be included here and improvements
could be expected, Tascikaraoglu and Sanandaji [59] recently
detected an interesting trend between the data from a target house
and the data from its surrounding houses. Following the same rea-
soning of the experiment conducted in this section, new load time
series from the surrounding MG could be included to be handled
and enhance model’s forecasting performance.

Since the model is mainly based on metaheuristic it can be
improved in order to use exogenous variables from different time
series in some specific applications. The flexibility of the model
and the use of NS makes the model suitable for real world applica-
tions, since new structures can be design in order to change and
adapt specific parts of the current model.

4.4.3. Results over the large grid datasets

Using the same set of parameters used for the MG, the model
was applied to forecast load from large grids. For the European
dataset of Taylor and McSharry [6], the first 20 weeks of each series
were used to train the algorithm, the remaining ten weeks to eval-
uate post-sample accuracy of 1-24 h ahead forecast.

A batch of 30 executions was done for each historical time ser-
ies, average MAPE values are shown in Table 4. ELDpoyry, ELD being
the European Load Dataset, indicates the average MAPE for all the
hourly historical time series (Italy, Norway, Spain and Sweden).
ELDpamouny indicates the average MAPE for all the half-hourly his-
torical time series (Belgium, Finland, France, GB, Ireland and
Portugal). All standard deviations were lower than 1.0% of MAPE.

The results presented in Table 4 indicates that the model was
also able to obtain average MAPE errors from 3.52% to 1.22% over
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Fig. 12. Forecasting results for the 1st week of MG D.

the large-grid datasets. Compared to analyses made by Taylor and
McSharry [6], the model also showed to be competitive.

4.5. Real-time online forecasting

In some applications, off-line learning is performed and, period-
ically, re-trained if it is detected that the model is increasing its
errors. This strategy was explored and detailed in the work of Liu
et al. [11], updating their model if the MAPE increased more than
a desired limit.

Since our proposal was able to obtain competitive results with
two minutes training using low computational resources, we will

check the performance of the proposed model considering a real-
time training strategy. This strategy is useful to overcome brutal
changes in MG loads [27].

Furthermore, in future microgrids scenarios, the owner of the
microgrid would take profit of the accuracy of the forecasting,
since an efficient power dispatch will require precise schedules
[60]. It is expected that it will be a reality not only for microgrid
renewable energy generation, but also for MG users, which will
do the best to train their models as the new data is available.

The concept of Number of Training Rounds (NTR), Eq. (16), gen-
erates an important traded-off for forecasting models. NTR defines
the number of samples used during the training phase related to a
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Fig. 13. Autocorrelation function for load and temperature of a small MG residence.
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Fig. 14. Additional exogenous variables as input of the fuzzy model.
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Table 4
MAPE for the LG historical load time series.
Large power grid MAPE (%)
ELDjoury 3.523 +0.972
ELDaimourty 2.983 +0.621

given forecasting horizon k. In the last experiments we used the
NTR available from the literature, without checking if the use of
less data during the training phase could improve the model’s

performance. It is an important aspect for understanding the
behavior of the model with the size of the training set in a specific
training time. The NTR is most frequently associated with the test-
ing set error because it is known that the error of the training set
increases when the problem starts to learn big data problems.
The Bias and Variance dilemma reinforces that increasing the
training set size might provide more variability for the model for
predicting information not seen before. On the other hand, the
higher the NTR value is, the model requires more computational
time to learn the historical load data.
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Since MG requires quick response from the autonomous fore-
casting agent [61], we run our experiment with ten seconds train-
ing for different sizes of the training set. Fig. 15 shows an
interactive plot of the NTR for the first week of the testing set of
MG-A (red) and MG-C (blue). The points in shapes of triangles
and crosses indicate respectively the minimum and maximum
MAPE obtained in a batch of 10 executions. There are two types
of lines representing each testing set, the dashed line indicates
the standard deviation while the thicker line shows the average
MAPE.

Finally, we compare our results with the methods ARFIMA [44],
AUTO.ARIMA [44], Exponential Smoothing State Space model (ETS)
[62], Naive Random Walk and trivial MEANF (historical mean of
the training set). The AUTO.ARIMA uses a variation of the
Hyndman and Khandakar [44] algorithm which combines unit root
tests, minimization of the AICc and MLE to obtain an ARIMA model.
For the automatic ARFIMA, auto-arima combined with a
Fractionally-Differenced ARIMA, we consider the parameters cali-
brated through Haslett-Raftery, so-called ARFIMA-LS, and full
MLE, denominated ARFIMA-MLE.

Table 5 indicates average MAPE for some well-known forecast-
ing models and the proposed hybrid load forecasting model, abbre-
viated as HFM.

As can be verified in Table 5, the proposed HFM model was
competitive with the automatic ARFIMA-LS, ARFIMA-MLE, AUTO.
ARIMA, ETS and, as expected, trivial models naive RW and MEANF,
reporting lower average MAPEs.

Since this model is mainly based on a metaheuristic calibration
algorithm, it can be useful in real world applications that requires
quick training, like the two minutes training performed in this last
experiment. Furthermore, an intrinsic relationship with expected
improvements on the metaheuristics quality will also enhance
the performance of our training strategy.

NTR = (16)

=3
+
AN
4 Iy 25
VAN AN T
2‘4 1{%8 3é6 67‘2
Table 5
MG results with real-time online forecasting.
Microgrid k=1 k=24 k=168 k=672
672 336 168 24

First week of the testing set of MG-A
ETS 9.926 9.705 9.701 9.792
AUTO.ARIMA 10.030 9.982 9.606 10.344
ARFIMA-LS 9.890 9.774 9.768 10.064
ARFIMA-MLE 9.862 9.775 9.822 10.145
RW 9.680 9.680 9.680 9.680
MEANF 22.614 18.597 18.646 18.574
HFM 7.996 7.933 8.456 11.588
First week of the testing set of MG-C
ETS 13.796 14.032 13.948 15.012
AUTO.ARIMA 14.063 13.465 15.547 15.936
ARFIMA-LS 14.047 14.037 14.829 15.819
ARFIMA-MLE 13.873 14.287 14.861 15913
RW 13.804 13.804 13.804 13.804
MEANF 34.589 34.844 37.361 32.920
HFM 7.334 7.029 7.131 8.903

5. Conclusions and extensions
5.1. Summary and final considerations

In this paper, a class of forecasting problem with realistic
assumptions in Smart Grid scenarios was discussed. Despite its
practical relevance, these variants of forecasting had received little
attention of hybrid models based on metaheuristic. Because of its
difficulty and large number of different forecasting scenarios in a
future Smart Grid (SG) environment, a new flexible framework
for forecasting was proposed.

This new approach consisted on a novel self-adaptive fuzzy
model bio-inspired by Evolution Strategies to calibrate its parame-
ters and model’s input. A smart solution generated based on the



V.N. Coelho et al./Applied Energy 169 (2016) 567-584 583

constructive heuristic GRASP based on feature extraction tech-
niques. The calibration process, done by the GES algorithm was
able to go through a large search space of solutions with several
different fuzzy rules and weights. The expert input selection and
adaptation using NS allows more compact forecasting model, smal-
ler training sets and easier training. Consequently, our new pro-
posed model represents a step forward in determining a general
procedure for input variable selection.

Real databases provided by Liu et al. [11], the Global Energy
Forecasting Competition 2014 - GEFCOM2014 [56] and Taylor
and McSharry [6] were used in order to verify the efficiency of
the proposed model. It showed to be able to find good quality fore-
casting models for microgrids and large-grids.

The methodology was able to obtain better results than the
hybrid model of Liu et al. [11]. Particularly in view of the method’s
flexibility, as it is mainly based on metaheuristics, it can be used in
various everyday situations with minor adjustments.

A real-time microgrid forecasting scenario was also described
and the model was compared with well-known forecasting models
from the literature, presenting competitive results and lower MAPE
for the analyzed historical MG time series.

5.2. Extensions

As future extensions for this work, the HFM could be adapted to
tackle forecasting over different SG components, such as wind [63],
solar [64] forecasting, smart park storage forecasting [65], among
others.

Due to the nature of the model, mainly based on if-then fuzzy
rules, it is expected that it can be embedded in real world systems
without a huge need of complex computational resources for per-
forming the forecasting calculus.

The idea of handling with uncertainties when optimizing MG
operation [66] motivates the possibility of analyzing the robust-
ness of the proposed model in handling with variations over the
model’s input. A given solution could be evaluated several times
regarding the same historical time series with slight variations
over its values. As recently done by Coelho et al. [13], a Sharpe
Ratio index [67] could be designed for analyzing the performance
of the proposed model when subjected to these uncertainties.

Valencia et al. [68] emphasized the ability of interval fuzzy
models in providing a range rather than a trajectory. Thus, future
works could also focus on checking if the same behavior can be
obtained from our current proposed model.

Finally, a parallel version of GES would be very useful to
improve the performance of the model in problems with a huge
amount of data. This approach would take advantage of multi-
core and GPU technology that is already present in current
machines and with easy abstraction for heuristic algorithms.

Entire code used in this research is, from this moment, available
as example on the OptFrame website. Thus, it is expected that
future researchers continue contributing to enhancing the pro-
posed model, increasing its efficiency and improving the tools
and ideas presented in this paper.
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