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a b s t r a c t

This paper describes a multi-objective power dispatching problem that uses Plug-in Electric Vehicle
(PEV) as storage units. We formulate the energy storage planning as a Mixed-Integer Linear Programming
(MILP) problem, respecting PEV requirements, minimizing three different objectives and analyzing three
different criteria. Two novel cost-to-variability indicators, based on Sharpe Ratio, are introduced for
analyzing the volatility of the energy storage schedules. By adding these additional criteria, energy
storage planning is optimized seeking to minimize the following: total Microgrid (MG) costs; PEVs
batteries usage; maximum peak load; difference between extreme scenarios and two Sharpe Ratio
indices. Different scenarios are considered, which are generated with the use of probabilistic forecasting,
since prediction involves inherent uncertainty. Energy storage planning scenarios are scheduled ac-
cording to information provided by lower and upper bounds extracted from probabilistic forecasts. A
MicroGrid (MG) scenario composed of two renewable energy resources, a wind energy turbine and
photovoltaic cells, a residential MG user and different PEVs is analyzed. Candidate non-dominated so-
lutions are searched from the pool of feasible solutions obtained during different Branch and Bound
optimizations. Pareto fronts are discussed and analyzed for different energy storage scenarios. Perhaps
the most important conclusion from this study is that schedules that minimize the total system cost may
increase maximum peak load and its volatility over different possible scenarios, therefore may be less
robust.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

The main goal of this paper is to address the power dispatching
problem regarding to the minimization of six different objective
functions: Microgrid (MG) total costs; usage of PEV batteries,
maximum grid peak load, volatility behavior in extreme scenarios
and two different criteria based on the Sharpe Ratio index. In order
to evaluate suitable schedules to be applied in extreme scenarios,
we make use of probabilistic forecasts to generate different sce-
narios. The multi-objective energy storage management problem
considers PEVs as main storage units, located at SmartParks. Power
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dispatching schedule is planned to meet PEVs operational re-
quirements, settled by its users, and trying to charge PEVs batteries
when energy price is cheaper.

Energy storage has been studied over the last decades and re-
mains a great challenge [1]. Especially in MG systems, its use has
important benefits. The use of storage allows both sides, demand
and production, to optimize the power exchanged with the main
grid, in compliance with the electricity market and forecasts.
Renewable energy generators associated with storage units are
considered as active distributed generators, one of the fundamental
elements of power management in MG systems. Current smart-
microgrid scenarios may include different renewable energy re-
sources and different storage units. In this regard, storage is able to
increase renewable energy self-consumption and independence
from the grid. A wide range of applications exist for Energy Storage
Systems (ESS). Tan, Li and Wang [2] refer the following: power
quality enhancement, microgrid isolated operation, active distri-
bution systems and PEVs' technologies. ESS ensembled with non-
dispatchable renewable energy generation units, such as wind and
solar energy, can be mold into dispatchable units. Their use may
improve dynamic stability, transient stability, voltage support and
frequency regulation [3]. Furthermore, they can also be used for
minimizing global cost and environment impact.

MG systems require smarter operations to well-coordinate
these new emerging decentralized power energy sources. Optimi-
zation methods justify the cost of investing in a MG system by
enabling economic and reliable utilization of resources [4]. Olivares
et al. [5] observed that the microgrid optimal energy management
problem falls, generally, into the category of mixed integer
nonlinear programming problems. Because, in general, objective
functions may include higher polynomial terms and operational
constraints. Levron, Guerrero & Beck [6] presented a methodology
for solving the optimal power flow in MG. The model solves small
systems containing up to two renewable generators and two stor-
age devices. The proposed approach grows in complexity expo-
nentially, since each storage device contributes extra dimensions to
the solution space. The mathematical formulation proposed by
Macedo, Franco, Rider & Romero [7] extended the approach of
Levron, Guerrero & Beck [6]. Their formulation uses a convex
equivalent model which obtains an approximate optimal solution
for the same microgrid system. Mariani, Sareni, Roboam & Turpin
[8] researched the power dispatching problem seeking to minimize
system global energy costs. A smart-microgrids DC system with
flywheel energy storage was analyzed. By considering forecasts for
a MG residence and solar PV production, an off-line power dis-
patching was performed in the search of storage planning sched-
ules. Mohammadi, Soleymani & Mozafari [9] considered
uncertainties over the forecasting of consumption and renewable
energy generation. A stochastic operation management of one day
ahead was performed using a Heuristic Algorithm. At the initial
state 2000 storage planning scenarios were generated, using a
Probability Distribution Function (PDF) to represent the uncer-
tainty of the forecasts. Those scenarios were generated and later
reduced to 20 and sorted in ascending order of probability of
occurrence. Recently, Kou, Gao& Guan [10] integrated a battery ESS
with a wind farm, using stochastic model predictive control
scheme. Based on the forecasted wind power distributions and
uncertainties, using a sparse warped Gaussian process, they sought
for optimal operation regarding wind power dispatchability. The
influence of wind power rapid ramp events was considered by
Wang, Yu & Yu [11], looking for an optimal dispatching strategy
against wind power rapid ramp events during peak load periods.
An energy storage system coupled with a PV plant was imple-
mented for correcting the prediction errors by Delfanti, Falabretti&
Merlo in Ref. [12]. They tried to fulfill the lack between the
injections of a PV power plant and the day-ahead market power
schedule, minimizing energy imbalances.

Torreglosa et al. [13] analyzed a long-term energy dispatching,
based on a model predictive strategy using on state control.
Another long-term scheduling was evaluated by Tascikaraoglu et al.
[14], considering a hybrid system with RER and energy storage, in
the concept of virtual power plant. They analyzed the economic
operation of the system in order to enable it to participate in the
electricity market with high levels of reliable power production.
Trov~ao& Antunes [15] designed twometa-heuristic approaches for
multi-ESS management in electric vehicles (EV). It has been noticed
that hybridization of two or more energy storage elements into EV
has been improving both the vehicle driving range and the lifecycle
storage elements [16]. This kind of system allows batteries to
perform power-sharing decisions in real time [17]. However, the
latter did not consider the whole of RER along with the storage
planning and scheduling.

Some approaches in the literature incorporated the reduction of
Greenhouse gas (GHG) emissions as part of a Multi-Objective (MO)
Optimization Problem [18e20]. Other applications spotlighted on
finding the energy and power capacities of the storage system that
minimizes the operating costs of the MG, as can be verified in
Fossati, Galarza, Martín-Villate & Font�an [21].

In this paper, a new multi-objective power dispatching problem
is introduced, aiming to minimize global MG costs while mini-
mizing saving batteries wear and tear, maximum peak load, vola-
tility between extreme scenarios and schedule's total cost and
maximum peak load volatility. Understanding the contributions of
batteries as an objective function provides profits not only for the
PEVs owners, but, also takes into account environment issues.
Optimize its use not only reduces battery replacement costs for the
PEVs owners but also is beneficial for the environment, since they
are going to be usedwhen needed. The proposedmodel also tries to
obtain energy storage planning scenarios which minimize
maximum power flow between the smart-microgrid and the main
grid. The two latter objectives evaluate the schedule compared to
its extreme scenarios and also to awide range of possible scenarios.
This is done by measuring the current expected cost compared to
other possible costs using Sharpe Ratio [22]. Sharpe ratio is a useful
index tool for analysis, used by investors facing alternative choices
under uncertainties [23].

Different ESS have been adapted to be used over MG, some
examples are: Battery Energy Storage System [6], Compressed Air
Energy Storage systems [24], Flywheels [8], Thermal Energy Storage
[25], Pumped-storage hydroelectricity [26], Superconducting
Magnetic Energy Storage [27]. On the other hand, the use of energy
storage in connectionwith SmartParks is becoming crucial demand
as the number of PEVs, such as electric cars and plug-in hybrid, in
the market is increasing [28]. Smart Grid applications, being
developed, are still analyzing the benefits of this growth [29]. Po-
wer dispatching systems are incorporating vehicle-to-grid (V2G)
power transactions over their schedule. Bidirectional power flow
between PEVs and the grid will become essential [28,30]. As
emphasized by Romo & Micheloud [31], penetration of PEVs will
increase significantly in the next 20 years. As a conclusion, smart
parking lots with large fleets of electric cars can provide a flexible
storage reserve for a MG system, reducing energy production
needs.

Most of the work in the literature deal with the concept of pa-
rameters uncertainties of ESS management. In Papadopoulos et al.
[32], results from a deterministic storage planning model showed
that voltage violations would be quite high without the consider-
ation of errors in the forecasts. From a probabilistic model with
uncertainties, it was concluded that the integration of micro-
generation in each MG household might reduce such violations.
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Previous works in ESS has focused on obtaining deterministic
storage scenarios. This task was mainly done by introduction of
uncertainty over forecasts and identifying the most likely scenarios
[25,8,9]. Here, uncertainties are considered through the use of
probabilistic forecasts, analyzing scenarios provided by their upper
and lower bounds.

Probabilistic forecasts of MG components have been researched
in the following areas: load [33], electricity prices [10,34], wind [35]
and photovoltaic power [36,37]. Forecasting is a stochastic prob-
lem, probabilistic forecasts are able to provide additional quanti-
tative information on the uncertainty associated with the MG
components. Compared to currently wide-used deterministic
forecasts, probabilistic forecasts are able to supplement point
forecasts with probability information about their likely errors.
Another advantage of using a probabilistic forecasting model is that
they are able to quantify non-Gaussian uncertainties in wind and
solar power forecasts. As analyzed by Zhang, Wang & Wang [35],
probabilistic forecasts are more appropriate inputs over decision-
making in uncertain environments. It is expected that the use of
probabilistic forecasts as inputs for energy storage management
and power dispatching systems will become more widespread. The
probabilistic forecasts provide reliable lower and upper bounds for
each predicted time step, their use analyzing schedule in extreme
scenarios is dealt with in this study.

In this work, a multi-objective ESS management problem with
probabilistic forecasts is developed. Energy storage is studied on a
smart-microgrid scenario composed of renewable energy genera-
tors, MG consumers and PEVs available at a SmartPark. The main
goal is to optimize the total MG costs while minimizing the use of
PEVs batteries, maximum peak load of the system and schedules'
behavior in different scenarios. Operational requirements of the
PEVs are considered: the specification of a desired percentage of
energy in the PEVs during the storage schedule; the maximum
Depth of Discharge (DoD) of batteries, in order to preserve the
useful life of PEVs batteries. A smart storage scheduling model
based on a mixed-integer mathematical formulation is designed.
Non-dominated solutions are obtained from feasible solutions
found over branches of the Branch and Bound (BB) optimization
tree.

The major contributions of the current work are:

� Consideration of PEVs located at SmartParks as storage unit and
respecting the operational constraints required by its users;
Fig. 1. Historical microgrid d
� To analyze the upper and lowers bounds provided by the
probabilistic forecasts in order to test best-case and worst-case
energy storage scenarios;

� A novel multi-objective power dispatching problem.

The remainder of this paper is organized as follows. Section 2
describes the microgrid scenario. Section 3 describes, in detail,
the proposed energy storage management framework. Section 4
presents the computational experiments, and, finally, Section 5
details our final conclusions and future work.

2. Microgrid scenario

In the microgrid considered in this study, all components are
connected through a DC bus without power flow constraints. The
scenario is composed of:

� Consumption: A building with a maximum contractual power
of 243 kW.

� Production:
1. Wind Power Turbine (WPT) with a total capacity of 160 kW;
2. Solar PV array with a total capacity of 80 kW.

� SmartPark storage unit:
e PEV car composed with a typical Lithium-ion battery 60 kW/

60 kWh storage.
e PEV car composed with three high speed flywheel 10 kW/

10 kWh storage.
e PEV car composed with a CAES 60 kW/60 kWh storage.

The problem of energy management described here consists in
planning, with a time step of 1 h, energy storage for each hour of a
desired planning horizon. Two different storage planning time
horizons are handled in this current work, 24 and 168 h ahead.

Fig. 1a and b shows day and week month historical data of the
analyzed periods. WPT data were adapted from EirGrid [38], Solar
PV adapted from Hong, Wilson & Xie [33] and residential house
(adapted from Liu, Tang, Zhang & Liu [39]). As can be verified in
these figures, three different PEVs are showed. PEVs availability are
stated between each pair of red and blue points (maybe a last red
arrival point can be without pair, since vehicle will only departure
later than the last time stamp). When vehicle arrives there is a red
symbol marking its arrival state of charge (SOC). Analogously, in
each departure, the blue point marks the desired battery SOC.
ata with hour sampling.
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During the arrival until the last time stamp before departure, PEV is
available as an extra energy demand/source for theMG. Both words
(demand/source) are used here since each PEV may represent an
extra demand, taking into account that its owner might require
charging during its stay at the SmartPark, what would represent an
extra demand. On the other hand, if available to be used, as will be
shown along this paper, it can represent a very useful and beneficial
MG component.

The three PEVs depicted in Fig. 1a and b where generated ac-
cording to the procedure described in Algorithm 1.
In Line 2 of Algorithm 1, PEV receives a random status of arriving
or not. If it is arriving, a random initial SOC, from different ranges of
possible initial SOCs, is assigned in line 4. After defining the avail-
ability time at the SmartPark, line 5, the departure flag is set in line
8 and a randomdeparture SOC, higher than arrival, is defined in line
9. In this paper, each vehicle is considered to demand energy from
the grid and, thus, its departure SOC is always greater than its
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Fig. 2. Probabilistic price forecasts.
arrival SOC. A maximum allowed percentage of charging per in-
terval is set to be 35%. Thus, any huge charging, higher than 35%, is
expected by the PEV owner. Parameters are formally presented in
Section 3.2.

Typical microgrid prices, also obtained fromHong, Wilson& Xie
[33], are shown in Fig. 2. This figure shows the probabilistic forecast
of the prices. In this case, the medium quartile q50 is considered to
be the real measured price. For simplicity, this data is repeated to
the others days, when required by a longer energy storage
planning.
3. Methodology

This section describes the proposed framework developed and
used to solve the multi-objective energy storage planning problem.
First of all, Section 3.1 describes the model used to generate the
probabilistic forecast for the MG components. Section 3.2 presents
the mathematical formulation developed in this paper, as well as a
description of the three main objective functions to be minimized.
Section 3.3 introduces other criteria functions used to evaluate
energy storage schedule behavior in extreme and different sce-
narios. Section 3.4 introduces the proposed Branch and Bound pool
search algorithm.
3.1. Probabilistic forecasting problems

A set of Qmgc ¼ ½qmgc
1 ;…; qmgc

99 � probabilistic quartiles is consid-
ered for each microgrid component mgc (energy consumption,
wind and solar production, energy prices). Each quartile,
qmgc
i ¼ ½f1;…; ft ;…; fk�, is composed of a set of ft forecasts for the

desired time horizon. The lowest and upper quartile q0 and q100 are
not considered, since they are, technically, �∞ and ∞.

The hybrid fuzzy heuristic algorithm of Coelho et al. [40] is
adapted to perform the probabilistic forecast. Since the heuristic
model is based on a fuzzy model calibrated using a bio-inspired
metaheuristic algorithm, the proposal here is to change model
parameters in order to generate different forecast values. Parame-
ters changed herewere the number of individuals of the population
of Evolution Strategy [41] used to refine the fuzzy model which
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generates the forecasts. From the set of different forecast models,
they were sorted from the lowest and highest values and quartiles
were determined. If forecasts are far from the actual measured data,
they are slightly adjusted in order to provide a reasonable proba-
bilistic forecast scenario to be, didactically, used here.

Fig. 3a, b, 3c and 3d show the obtained probabilistic forecasts for
the historical data introduced in Section 2. As can be verified, lower
and upper quartiles (q1 and q99, respectively) were able to afford
acceptable limits for each MG component time series forecast
(consumption (Fig. 3a and b), solar (Fig. 3d), renewable energy
production, solar þ wind, (Fig. 3d) and prices (Fig. 2)). From in-
tervals the forecast time horizons 105 to 115 themodel did not have
a good performance in forecasting solar PV production, thus, a
small gap can be verified. Nevertheless, since the extreme scenario
analyses handled in this paper do not consider the relationship
between the currentmeasured values, the probabilistic forecast can
still be considered precise.
3.2. Multi-objective energy storage management problem

A MILP model was developed in the interest of optimizing an
global criterion based on the linear combination of three different
objectives in energy storage planning. The following parameters
were considered for the model:
I: Set of discrete intervals from 1 to furthest desired storage time
horizon k;
qdi : demand of all customers together at the interval i2I;
qrGi : indicates the energy production of all renewable energy
resources at the interval i2I;
qselli : energy selling price at the interval i2I;
qbuyi : energy buying price at the interval i2I;
PEV: set of plug-in electric vehicles;
pevSOCmin

v : indicates the minimum DoD of the vehicle v;
pevPower

v : indicates PEV battery maximum capacity;
pevavi: indicates if the vehicle v is available at the SmartPark at
the interval i2I;
pevarrvi : indicates if the vehicle v is arriving at the SmartPark at
the interval i2I;
pevSOCarr

vi : indicates the battery percentage of the vehicle v at its
arrival at the interval i2I, obviously, if pevarrvi ¼ 1, otherwise it
does not need to be attended;
pevdep

vi : indicates if the vehicle v is departing from the SmartPark
at the interval i2I;
pevSOCdep

vi : indicates the battery percentage demanded by the
vehicle v at its departure at the interval i2I, if pevdep

vi ¼ 1,
otherwise it does not need to be attended;
C: set of different battery cycles;
pevdRatevc : battery discharging rate of the plug-in vehicle v with
power cycle c.
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pevdPricevc : price for discharging the battery of the plug-in vehicle
v with rate pevdRatevc ;
pevcRatevc : indicates the charge rate of the vehicle v;
pevcPricevc : price for charging the battery of the plug-in vehicle v
with rate of charge cycle pevcRatevc .

The following decision variables were defined:

eselli : variable with real values indicating the amount of energy
being sold at the interval i2I;
ebuyi : variable with real values indicating the amount of energy
being bought at the interval i2I;
esellActivei : binary variable which indicates if any energy being
sold at the interval i2I;
ebuyActivei : binary variable which indicates if any energy being
bought at the interval i2I;
ybRvi : variablewith real values indicating the rate of battery of the
vehicle v at the interval i2I;
ycvci : binary variable which indicates if the vehicle v is charging
with power cycle c at the interval i2I;
ydvci : binary variable which indicates if the vehicle v is dis-
charging with power cycle c at the interval i2I;
tCD: real variable indicating the total charging and discharging
expenses;
fobjTotalCost: real variable indicating objective function that mea-
sures the MG total costs;
fobjBatteriesUse: real variable indicating objective function that
measures batteries use;
fobjMaxPeakLoad: real variable indicating objective function that
measures maximum peak load during the whole set of interval
i2I.

The mathematical model proposed in this paper can be seen
from Eqs. (1)e(17). The global objective function to be minimized
(Eq. (1)) is composed of the linear combination of three different
objective functions, described in Eqs. (2)e(4). Total MG cost (Eq.
(2)) is measured by the total amount of energy that is being bought
or sold at each interval i2I plus the cost associated with each
vehicle charge or discharge, these two latter are paid to the PEVs
owners (its calculus is described in Eq. (8)). Batteries use (Eq. (3)) is
figured by the sum of charges and discharges scheduled to perform
during the whole energy storage planning. Eq. (4) attributes the
maximum peak load of the MG system to the value of the third
objective function.

Eqs. (5)e(7) force the system to only buy or sell energy at each
interval. Eq. (9) forces the PEVs to only charge or discharge while
Eqs. (10) and (11) make them charge or discharge only when PEVs
are available at the SmartPark. Battery SOC limits,
pevSOCmin

v � ybRvi � 100, are defined in Eqs. (12) and (13). Eq. (14)
ensures that PEVs' batteries will attend a minimum SOC wished
at its departure. PEV's battery rate is updated according to Eqs. (15)
and (16). Eq. (15) attends the special case of the first interval while
Eq. (16) takes the rate of the last battery, if the vehicle is not
arriving, and add or subtract energy from charges or discharges.
Finally, in Eq. (17), the amount of energy that is being sold or
P
v2PEV

P
c2C

��
ydvcipev

dRate
vc � ycvcipev

cRate
vc

�
pevPower

v

�
þ qrGi � qdi �

X
v2PEV

�
y

¼ eselli � ebuyi ci2I
bought, at each interval i2I, is determined.

minimize l1fobjTotalCost þ l2fobjBatteriesUse þ l3fobjMaxPeakLoad (1)
S. T.:

fobjTotalCost ¼
X
i2I

�
ebuyi qbuyi � eselli qselli

�
þ tCD (2)

fobjBatteriesUse ¼
X
i2I

X
v2PEV

X
c2C

�
ydvcipev

dRate
vc þ ycvcipev

cRate
vc

�
(3)

fobjMaxPeakLoad � ebuy þ esell ci2I (4)

esellActivei *M � esell ci2I (5)

ebuyActivei *M � ebuy ci2I (6)

esellActive þ ebuyActive � 1 ci2I (7)

tCD ¼
X
i2I

X
v2PEV

X
c2C

��
ydvcipev

dPrice
vc þ ycvcipev

cPrice
vc

�
pevPower

v

�

(8)

X
c2C

�
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�
� 1 cv2PEV ; i2I (9)

X
c2C
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c2C
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vi pevdep
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Table 1
MG scenarios based on probabilistic quartiles.

Current MG energy scenario

Scenario Consumption Production Price

Worst case q99 q1 q99
Best case q1 q99 q1
Neutral q50 q50 q50
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3.3. Extreme energy storage scenarios

The energy storage schedule obtained by solving the mathe-
matical model described in Section 3.2 is further evaluated
regarding to six criteria. The first three criteria are the three ob-
jectives used in the optimization problem, while three additional
criteria are introduced in this section.

The fourth criterion, so-called fobjExtremeScenario, evaluates the
schedule compared to the opposite case of it. In other words, a
comparison of the total cost of the worst and the best case is made
and the discrepancy is returned. It seeks to find solutions which are
flexible to be applied even in extreme scenarios, that is, this crite-
rion measures the robustness of the schedule. Thus, batteries
charge and discharge schedule are kept and analyzed through the
most different expected scenario.

Table 1 indicates some possible MG scenarios based on energy
consumption, renewable energy production and main grid energy
price. As can be seen, the worst possible case, regarding to the total
cost paid by the MG user, is the one when the consumption is the
maximum possible (q99) with the highest expected prices (q99) and
almost no renewable energy generation (q1).

Section 4 explores the results when a energy storage schedule is
performed considering the worst case scenario and the best case
scenario happens and vice versa.

The fifth and sixth criteria, namely fobjSharpeRatioTotalCost,
fobjSharpeRatioMaxLoad, evaluate the schedules over a wide range of
possible scenarios and use the Sharpe Ratio to verify the total
cost and maximum load volatility. Eqs. (18) and (19) measure
Sharpe Ratio, known in the literature as reward-to-variability
index, but, here, adapted and used as a cost-to-variability
indicator.

The schedule with the high expected cost and maximum peak
loads is considered to be a constant risk-free return throughout
the analyzed period. The optimum value for objective function
f �objBatteriesUse provides this information, since it represents the
solutionwhere energy storage is performed only seeking to attend
PEVs' constraints and save batteries use. This solution indicates an
energy storage planning where all extra needed energy is
bought from the main grid and the PEVs charge is scheduled to be
done when the energy price is cheaper. In view that energy
price can not guaranteed to be the cheapest, a small variability is
also considered over f �objBatteriesUse. Thus, an adapted Sharpe Ratio
[42] is designed, where the term Vf �objBatteriesUse

indicates volatility
over the energy price (measured from probabilistic forecast vari-
ations from the time series depicted in Fig. 2). Finally, volatility
V(fobjTotalCost(s)) and V(fobjMaxPeakLoad(s)) are obtained from the
standard deviation of objective functions fobjTotalCost(s) and fobj-
MaxPeakLoad(s), respectively, over a set of random scenarios. Random
scenarios are generated from the combination of different
quartiles of energy consumption, renewable energy production
and energy prices. The behavior of the PEVs' scheduled charges
and discharges of solution s are analyzed for each of those
scenarios.

fSRTotalCostðsÞ ¼
f �objBatteriesUse � fobjTotalCostðsÞ
V
�
fobjTotalCostðsÞ

�
� Vf �objBatteriesUse

(18)

fSRMaxPeakLoadðsÞ ¼
f �objBatteriesUse � fobjMaxPeakLoadðsÞ
V
�
fobjMaxPeakLoadðsÞ

�
� Vf �objBatteriesUse

(19)

3.4. Branch and Bound pool search algorithm

In order to obtain non-dominated solutions from the proposed
MILP model, the use of solutions accessed in the BB [43] tree is
considered. During the BB optimization over branches of its tree,
different feasible solutions achieved during the searching proce-
dure are saved in a pool of solutions. All these obtained solutions
are considered to be inserted in the Pareto Front. In order to obtain
solutions that optimize each objective function and the decision
criteria (fobjTotalCost, fobjBatteriesUse, fobjMaxPeakLoad, fobjExtremeScenar-

io,fobjSharpeRatioTotalCost and fobjSharpeRatioMaxLoad), different MILP
problems are generated by the linear combination of the weights
l1, l2 and l3. Notice that since the problem is convex, any Pareto-
optimal solution regarding the objectives fobjTotalCost, fobjBatteriesUse,
fobjMaxPeakLoad can be achieved by a specific combination of
weights.

Algorithm 2 presents the procedure used to perform the linear
combination and add solutions to the Pareto Front.
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Fig. 4. Batteries rate of charge, discharge and prices.
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Parameter nIntervals guides the precision of the linear combi-
nation between the weights l1, l2 and l3 and the number of solu-
tions generated. A set of possible values for these weights, namely
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Fig. 6. Grid rate for deterministic power dispatching.
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Line 3 of Algorithm 2 generates the math model described in
Section 3.2 with weights l1, l2 and l3 for the objectives objTotalCost,
objBatteriesUse, objMaxPeakLoad, respectively. The generated
model is solved through a BB procedure (Line 4) and return ob-
tained feasible solutions and its evaluations (regarding to the first
three objective functions). Each solution from the pool is now
evaluated according to the additional three criteria described in
Section 3.3. Finally, the procedure addSolution (described in Algo-
rithm 3), extracted from Lust & Tehrem [44], is called in Line 7. This
latter mechanism tries to add each obtained solution s2poolSol in
the set of non-dominated solutions Xe.
1 Available at http://sourceforge.net/projects/optframe/.
4. Computational experiments

This section is divided into three subsections. Section 4.1 pre-
sents the computational resources and some considerations about
the model parameters. Section 4.2 describes the behavior of the
first three objective function (criteria) over deterministic energy
storage management using real measured historical data. Finally,
Section 4.3 presents results of the proposed model regarding the
whole set of criteria, in which the results are analyzed using Ag-
gregation Trees (AT) [45].

4.1. Software and hardware configurations

The BB pool search algorithm was implemented in Cþþ in the
framework OptFrame 2.01 [46e48] running with CPLEX 12.5.1.

The tests were carried out on a DELL Inspiron Intel Core i7-
3537U, 2.00 � 4 GHZ with 8 GB of RAM, with operating system
Ubuntu 12.04.3 precise, and compiled by gþþ 4.6.3, using the
Eclipse Kepler Release.
4.2. Energy storage management over deterministic scenarios

This first batch of experiments seeks to analyze the behavior of
the proposed model over the deterministic scenario presented in
Section 2. Two different storage planning time horizons were

http://sourceforge.net/projects/optframe/
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evaluated, k ¼ 24 and k ¼ 168. Main grid prices of the first scenario
were taken from the 11th quartile of the probabilistic forecast re-
ported in Fig. 2. The expected buying prices for the forecast horizon
of k ¼ 168 were taken from the medium quartile, q50, and repeated
for each day. Selling prices were set to be 70% of the buying price for
the first energy storage planning and 30% for the long-term. The
number of discrete intervals nIntervals, which regulates the
possible values for the objective functions weights (Section 3.4),
was set to be 20 and 10, respectively for k ¼ 24 and k ¼ 168. Thus,
9260 and 1330MILPmodels were solved (excluding the case where
l1,l2,l3 are equal to 0), respecting a maximum optimization time
limit of 60 s. For instance, the following set of possible values for the
linear weightening were considered for the one-week ahead stor-
age planning: Lk¼168 ¼ [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]. As
may be noticed, the number of possible values can be increased in
large scale and real case applications by increasing the value of
nIntervals.

Batteries characteristics are shown in Fig. 4. Flywheel and CAES
batteries were set to be able to discharge deeper than the Lithium-
ion, 2% and 40% of maximum DoD, respectively. Possible rates of
charge and discharge were generated according to 11 possibilities.

Fig. 5 presents the obtained set of non-dominated solution for
the first forecast time horizon, composed of 205 solutions.

The expected grid rate for the best solution of each objective
function can be seen in Fig. 6a and b. As can be verified, the opti-
mization of each objective function resulted in different power
dispatching strategies. The best total cost the one-day ahead
schedule was $ 112.92, with a total percentage of batteries use of
418% and maximum load of 67 kW. By saving batteries use, a so-
lution with a slightly greater maximum peak load of 72 kW was
obtained with a total cost of $ 152.61. The schedule which mini-
mizes the maximum peak load schedule was able to minimize it in
up to 31 kW, expecting a total cost of $ 189,13 and a total amount of
batteries use equal to 1022%. An analogous behavior was reported
for the one week ahead storage planning.

4.3. Energy storage management using probabilistic forecasts

In this second batch of experiments, two different scenarios,
extracted from Table 1, were considered. The first one involves
power dispatching based on the worst case scenario and on eval-
uating objective function fobjExtremeScenario regarding to the best case.
The second scenario was designed to optimize energy storage
considering the best case scenario while its performance over the
worst case scenario was also evaluated by fobjExtremeScenario. Sharpe
ratio criteria (fobjSharpeRatioTotalCost(s) and fobjSharpeRatioMaxLoad(s)) were
evaluated for 20 different random scenarios.

Fig. 7a, b, 8a, 8b, 9a and 9b present the obtained set of non-
dominated solutions, composed of more than 4000 solutions,
represented by AT, polar and parallel coordinates Graphs as visu-
alization tools for problems with many objectives (criteria).

As can be verified in the branches of the AT, considering the
worst case scenario, criteria 3 and 6 and criteria 4 and 5 present low
conflict, because these criteria were aggregated first in the AT. This
result makes sense, it shows that minimizing the max peak load
also tend to minimize the variability of the peak load. Moreover, in
theworst case scenario the robustness of the total cost as measured
by the criterion 4 is in harmony with the volatility measured by
criterion 5. On the other hand, objectives fobjTotalCost (1) and fobjBat-
teriesUse(s) (2) present the highest conflict, clearly capturing the
trade-off existing in this power dispatch problem. For the best case
scenario, criteria 1 and 2 still present the largest conflict since their
groups are aggregated last in the AT. The relation of conflict and
harmony between the other criteria can be similarly derived from
the tree.
Since fobjSharpeRatioMaxLoad(s) and fobjMaxPeakLoad(s) are more har-
monic criteria, it can also be concluded that PEVs batteries can be
used for decreasing maximum peak load and its volatility over
different possible scenarios. The use of PEVs batteries is also
beneficial for reducing the difference between the expected total
cost of the power dispatching and the one that might happen in
extreme scenarios.
5. Conclusions and extensions

5.1. Summary and final considerations

In this paper, a novel multi-objective energy storage power
dispatching was analyzed and discussed. Optimization of different
MG characteristics was proposed, such as: MG total costs, use of
PEVs batteries, maximum MG system peak load, behavior in
extreme and sets of different scenarios. Probabilistic forecasts were
used in order to evaluate energy storage schedule in extreme
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scenarios and for optimizing schedules volatility. The well-known
economic indicator Sharpe Ratio was applied for evaluating a
new cost-to-variability index.

It was verified a reasonable potential of improving the use of
self-generation energy use and reducing systems peak load by
using ESS based on PEVs located at SmartParks. Trade-offs between
the use of PEVs batteries, which are an important environment
issue, were discussed. Their use were mostly contrasted with the
reduction of MG maximum peak load and its use was able also to
minimize expected volatility on the power flow. It is expected that



Fig. 9. Parallel coordinate plot.
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the proposed model could be applied not only by MG users but also
as a decision-making tool in order to assist smart-microgrid
management.

5.2. Extensions

As future work the proposed model should be applied in other
MG scenarios, including other renewable energy resources and
larger scenarios. Uncertainties over PEVs availability could also be
considered. The development of a metaheuristic based algorithm
might provide an interest and flexible tool that can be applied over
real large cases.
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