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Abstract
Ischemic strokes have been implicated as a cause of death in Chagas disease patients.

Inflammation has been recognized as a key component in all ischemic processes, including

the intravascular events triggered by vessel interruption, brain damage and repair. In this

study, we evaluated the association between inflammatory markers and the death risk (DR)

and stroke risk (SR) of patients with different clinical forms of chronic Chagas disease. The

mRNA expression levels of cytokines, transcription factors expressed in the adaptive immune

response (Th1, Th2, Th9, Th17, Th22 and regulatory T cell), and iNOS were analyzed by real-

time PCR in peripheral blood mononuclear cells of chagasic patients who exhibited the inde-

terminate, cardiac, digestive and cardiodigestive clinical forms of the disease, and the levels of

these transcripts were correlated with the DR and SR. Cardiac patients exhibited lower mRNA

expression levels of GATA-3, FoxP3, AHR, IL-4, IL-9, IL-10 and IL-22 but exhibited higher

expression of IFN-γ and TNF-α compared with indeterminate patients. Digestive patients

showed similar levels of GATA-3, IL-4 and IL-10 than indeterminate patients. Cardiodigestive

patients exhibited higher levels of TNF-α compared with indeterminate and digestive patients.

Furthermore, we demonstrated that patients with high DR and SR exhibited lower GATA-3,

FoxP3, and IL-10 expression and higher IFN-γ, TNF-α and iNOSmRNA expression than

patients with low DR and SR. A negative correlation was observed between Foxp3 and IL-10

mRNA expression and the DR and SR. Moreover, TNF-α and iNOS expression was positively

correlated with DR and SR. Our data suggest that an inflammatory imbalance in chronic Cha-

gas disease patients is associated with a high DR and SR. This study provides a better under-

standing of the stroke pathobiology in the general population andmight aid the development of

therapeutic strategies for controlling the morbidity and mortality of Chagas disease.
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Author Summary

Chagas disease is caused by Trypanosoma cruzi (T. cruzi), affects 5.7 million people world-
wide and causes 12,000 deaths annually. In the chronic phase of Chagas disease the main
cause of death is due to heart failure (about 80%), but cerebral vascular accident or stroke
(about 10%) contributes to death mechanisms. Strokes are caused by the interruption of
the blood supply to the brain and can be ischemic or hemorrhagic. Stroke is the leading
cause of death among adults in Latin America and the second in the world. Infectious dis-
eases, such as Chagas disease, malaria, cysticercosis, tuberculosis, brucellosis and neurosy-
philis, can also contribute to the development of immunopathogenic mechanisms leading
to stroke and death. In this study, we evaluated the association between inflammatory
markers (cytokines, transcription factors of the adaptive immune response and iNOS) and
the death risk (DR) and stroke risk (SR) of patients with different clinical forms of chronic
Chagas disease. Our data suggest that an inflammatory imbalance in chronic Chagas dis-
ease patients is correlated with a high DR and SR. The exacerbated inflammatory mecha-
nism that leads to thrombus formation can lead to sudden death in patients with clinical
indeterminate form without prior other clinical symptoms. These inflammatory mecha-
nisms are also involved in atherosclerotic-related strokes. An improved understanding of
the immunological mechanisms involved in ischemic stroke formation in Chagas disease
patients may also contribute to the reduction of stroke-related mortality and morbidity in
the general population and may lead to the development of prophylactic or therapeutic
therapies.

Introduction
Chagas disease is caused by flagellate protozoa Trypanosoma cruzi (T. cruzi) and affects 5.7
million people worldwide. The disease causes morbidity in about 300,000 people disabling for
work or daily living activities and causes 12,500 deaths annually [1,2]. In the chronic phase of
Chagas disease, the most common cause of death is sudden cardiac death (55–65% of patients),
usually due to ventricular fibrillation, followed by congestive heart failure (25–30% of patients)
and pulmonary or cerebral ischemia (10–15% patients) [3]. Death from cardiac insufficiency
has been reported in individuals (functional class III and IV) with reduced left ventricular ejec-
tion fraction/LVEF (<35%) [4]. In patients with reduced or preserved systolic function, ische-
mic stroke has often been linked as a cause of death [5,6]. Postmortem analysis of Chagas
disease patients reveals brain lesions in up to 60% of cases due to ischemic stroke [7–10]. Sev-
eral methods to predict the death risk in patients with chronic Chagas disease have been
described based on clinical features [5,11,12]. Death and stroke are not necessarily related in
Chagas disease, cardiovascular diseases involving atherosclerosis and hypertension are major
causes of heart attacks and stroke in the population leading to sudden death [13,14]. However,
inflammation is one of the key drivers of atherosclerotic plaque development [13]. Other estab-
lished risk factors are high cholesterol, hypertension, diabetes, alcohol use, overweight, stress,
smoking, sedentary lifestyle [15].

The effects of stroke depend on which part of the brain is injured and how severely it is
affected; a very severe stroke can cause sudden death. In strokes caused by arterial occlusion or
ischemic stroke, inflammation has been recognized as a key component of the pathophysiology
of the brain [16]. Recent studies have suggested that the immune response is involved in all
ischemic processes, including the intravascular events triggered by vessel interruption, brain
damage and repair [17,18]. A key mediator of endothelial dysfunction is the pro-inflammatory
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transcription factor NF-κB. This molecule is expressed in endothelial cells and leukocytes and
leads to the transcription of pro-inflammatory genes, such as cytokines, chemokines and leuko-
cyte adhesion molecules, including vascular cell adhesion molecule-1 (VCAM-1) and E-selec-
tin [19]. Acute immune activation after stroke is responsible for secondary brain injury [20].
After arterial occlusion, the production of reactive oxygen species (ROS) triggers the coagula-
tion cascade and leads to the activation of complement, platelets and endothelial cells [21].
Cerebral ischemia induces the expression of TNF-α, IL-1β, IL-6 and inducible nitric oxide
synthase (iNOS), which leads to the upregulation of endothelin receptors in the cerebral arter-
ies [22,23]. The immune response generated in this context, dominated by IFN-γ and TNF-α,
may facilitate vessel contraction and increase the vulnerability of the brain to cerebral ischemia
[24].

Infection by T. cruzi induces a strong inflammatory response dominated by the Th1 pattern,
with IFN-γ and TNF-α production and regulated by the IL-10 production [25]. The T. cruzi
antigens presented by dendritic cells (DC) initiate the programmed differentiation of naïve
CD4+ T cells into Th1 (T-Bet transcription factor; IFN-γ and TNF-α production), Th2
(GATA-3; IL-4, IL-5, IL-9, IL-10, IL-13), Th17 (RORγt and RORα; IL-17, IL-22, IL-23, IL-26,
TNF-α), regulatory T cells (Treg) (Foxp3; IL-10, TGF-β, IL-35), Th9 cells (PU.1; IL-9, IL-10,
IL-21) and Th22 cells (aryl hydrocarbon receptor/AHR; IL-22, TNF-α) [26–32]. These cyto-
kines and transcriptional factors are not exclusively expressed by the subsets of CD4+ T cells
(Th1, Th2, Th9, Th17, Th22, regulatory T cell). However, T-Bet, GATA3, PU.1, RORγt and
FoxP3 are indispensable for Th1, Th2 [33–35], Th9 [28,36], Th17 [26,37,38] and regulatory T
cell [39–42] profiles, respectively. There is no evidence of a signature marker for Th22 profile,
but several literature data have been shown that aryl hydrocarbon receptor (AHR) is critical for
Th22 cells [29,43,44]. The roles of Th9 and Th22 cells during Chagas disease remain unclear.
Moreover, the correlations among immunological mechanisms, stroke and death have not
been investigated in depth in chronic Chagas disease patients. Here, we demonstrated that
indeterminate patients exhibit increased expression of Th2-, Th9-, Th22- and Treg-related
cytokines and transcription factors and reduced expression of the inflammatory cytokines
IFN-γ and TNF-α. In addition, patients who exhibited a high long-term death and stroke risk
also exhibited increased iNOS mRNA expression, which is positively correlated with the risks
of death and stroke. Together, the data indicate that uncontrolled inflammation caused by T.
cruzi influences the mechanisms that lead to stroke and death during the chronic phase of Cha-
gas disease. This knowledge may contribute to the reduction of stroke risk and death during
the chronic phase of Chagas disease and may also benefit the general population.

Methods

Study Population
A total of 65 chagasic patients from the rural zone of Rio Grande do Norte, Brazil were selected
using two different serological methods (Chagatest" recombinant ELISA and HAI, and indirect
immunofluorescence assay) between 2011 and 2013. The exclusion criteria included the follow-
ing: over 70 years of age, diabetes, sustained ventricular tachycardia or ventricular fibrillation,
an implanted cardiac pacemaker and non-chagasic cardiomyopathy. Individuals that tested
positive for Chagas disease by two serological tests with distinct testing methods underwent a
complete clinical evaluation, including electrocardiogram (ECG) mapping and chest X-ray,
contrasted X-rays of the esophagus and colon, 2D-echocardiogram (ECHO) and 24-h Holter
examination. They were classified according to the clinical form of the disease as: cardiac,
digestive or indeterminate as recommended by Brazilian Consensus on Chagas Disease [45].
Clinical evaluations were performed as described previously [46]. Following these
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examinations, the patients were classified as having the indeterminate (n = 18), cardiac
(n = 17), digestive (n = 15) or cardiodigestive (n = 15) clinical forms of the disease. Healthy,
uninfected individuals (n = 15) served as controls. Patient groups enrolled in this study did not
exhibit a large number of cardiovascular risk factors. Concerning this topic, variables such as
hypertension, obesity, dyslipidemia, sedentary behavior, and smoking were evaluated in study
population (Table 1). The risks for stroke and death are multifactorial and depend on these fac-
tors. Thus, what determines whether patients are at higher risk for death or stroke is not exclu-
sively an assignment of a particular cytokine, but refers to a set of factors. Multifactorial data
analysis was not used in this cross-sectional study as this statistical approach is intended to
modelling the massive amount of data collected from patients throughout longitudinal studies,
being the resulting model usually adjusted or updated for other individuals in a process of
external validation with new individuals to determine risk factors [47–49]. The present study is
not aimed to propose or implement a predictive model for death and stroke risk in Chagas dis-
ease patients, but highlights the possible correlation between inflammation and these clinical
manifestations.

Ethics Statement
Written informed consent for this study was obtained from all adult participants and was
approved by the Research Ethics Committee of the State University of Rio Grande do Norte
(UERN) under protocol number 027.2011 and the Certificate of National System of Ethics in

Table 1. Cardiovascular risk factors of chronic chagasic subjects from the Northeast of Brazil included in this investigation.

Clinical Form

Variable Indeterminaten = 18 Cardiac formn = 17 Digestiven = 15 Cardiodigestiven = 15

Hypertension 11% 18% 27% 47%

Two patients with stage-1
controlled hypertension both
using angiotensin-converting-

enzyme (ACE) inhibitor

Three controlled
hypertensive (Stage 1 and
Stage 2) patients, two using

beta-blocker (BB) and
angiotensin receptor blockers

(ARBs) in non-optimized
dose and one using ARBs.

Four hypertensive (Stage 1 and
Stage 2) patients, two being

controlled by changes in lifestyle,
and two with anti-hypertensive
medication: one using ACE
inhibitor combined with

hydrochlorothiazide (HCTZ), and
one using non-dihydropyridine

calcium-channel blocker.

Seven hypertensive (Stage 1 and
Stage 2) patients being controlled

by changes in lifestyle in
association with an anti-

hypertensive drug- ACE inhibitor,
ARB, BB—either alone or in

association with the loop diuretic
furosemide.

Other medications: eight
patients using drugs of
cardiovascular effects in

addition to anti-hypertensive
medication: acetyl salicylic
acid, anti-coagulants, BBs
(carvedilol and metoprolol

succinate); one using fibrate,
three using spironolactone,
and two using amiodarone

Other medications: five patients
using Acetyl salicylic acid,

anticoagulant drug, spironolactone,
and amiodarone

Obesity 22% 29% 0% 7%

Three patients with obesity
Grade 1 and one with Grade

2

Five patients with obesity
Grade 1

One patient with obesity Grade 1

Dyslipidemia 22% 35% 27% 27%

Two patients using statin One patient using statin Two patients using statin

Sedentary
behavior

22% 41% 33% 27%

Smoking 0% 0% 40% 20%

doi:10.1371/journal.pntd.0004669.t001
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Research (CAEE—SISNEP), protocol number 0021.0.428.000–11. All of the experiments
described here were performed according to the human experimental guidelines of the Brazil-
ian Ministry of Health and the Declaration of Helsinki.

Determination of Death Risk and Stroke Risk
The long-term risk of death over 10 years among patients with chronic Chagas disease is predicted
by the presence of the six following characteristics: New York Heart Association/NYHA class III
or IV (5 points), cardiomegaly on chest radiograph (5 points), abnormalities of the segmental or
global left ventricular echocardiogram (3 points), nonsustained ventricular tachycardia on Holter
monitoring (3 points), low-voltage QRS complex on the electrocardiogram (2 points) and male
sex (2 points). A risk score derived from the combination of points for each of these characteristics
was used to classify the patients as having a low (0–6 points), medium (7–11 points) or high (12–
20 points) death risk. The estimated long-termmortality over 10 years in the patients grouped in
the low, medium and high death risk groups is 10%, 44%, and 84%, respectively [5].

The stroke risk was based on the presence of systolic dysfunction (2 points) and left ventric-
ular apical aneurysm (1 point), primary alteration of ventricular repolarization on the electro-
cardiogram (1 point) and age greater than 48 years (1 point). The patients were grouped as
having a low (0–2 points), medium (3 points), or high (4–5 points) risk of stroke [50].

Cytokine and Transcription Factor Expression Levels as Determined by
Real-Time PCR
Cytokines (IL-4, IL-9, L-10, IL-17, IL-22, IFN-γ, TGF-β and TNF-α), transcription factors (PU.1,
GATA-3, RORγt, AHR, T-Bet, FoxP3) and iNOS mRNA expression levels were determined by
real-time PCR (qPCR) of peripheral blood mononuclear cells (PBMCs) isolated from Chagas dis-
ease patients. Samples from uninfected healthy individuals were used as controls. Total RNA
from the PBMCs was isolated using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and the SV
Total RNA Isolation System (Promega, Madison, WI, USA), and cDNAwas synthesized using
the ImProm-II Reverse Transcriptase System (Promega). The qPCR was performed using SYBR
Green (Invitrogen), and the standard PCR conditions were as follows: 50°C (2 min) and 95°C (10
min) followed by 40 cycles of 94°C (30 s), variable annealing primer temperature (Table 2) (30 s),
and 72°C (1 min). The expression mRNA levels of the target genes were determined using the
mean Ct values from triplicate measurements to calculate the relative expression levels of the tar-
get genes in the chagasic patients compared to those in the healthy subjects and were normalized
to the housekeeping gene β-actin using the 2–ΔΔCt formula.

Statistical Analysis
Data are reported as the mean ± standard deviation (SD). Comparisons of mRNA expression
levels between groups were performed using the Kruskal-Wallis test. In all cases, differences
were considered significant when p< 0.05. Spearman’s test was used to determine correlations
among the mRNA expression levels of cytokines, transcription factors, iNOS, death risk score
and stroke risk score. Our analyses were performed using the PRISM 5.0 (GraphPad, San
Diego, CA, USA) statistical program.

Results
Initially, we classified the 65 patients according to the clinical form of Chagas disease. The
indeterminate, cardiac, digestive and cardiodigestive clinical forms were observed in 27.7%
(18/65), 26.1% (17/65), 23.1% (15/65), 23.1% (15/65) of patients, respectively (Table 3).
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Table 2. The sequences of the primers were designed based on nucleotide sequences in the GenBank Database and were used as follows.

Target Sense and Antisense sequences Primer annealing temperature

β-actin TGACTCAGGATTTAAAAACTGGAA 56.5°C

GCCACATTGTGAACTTTGGG

GATA-3 GTCCCTTTCGACTTGCATTT 56.9°C

TATCCATCGCGTTTAGGCTTC

T-Bet AATGCCGAGATTACTCAGCTG 56.9°C

AAAGTTCTCCCGGAATCCTT

ROR-γt TGACCAGATTGTGCTTCTCAAA 58.2°C

TCCTAACCAGCACCACTTCCAT

PU.1 AGAAGAAGATCCGCCTGTACCA 60.0°C

GTGCTTGGACGAGAACTGGAA

AHR CAGCGTCAGTTACCTGAGAGCCAAG 65.1°C

CGCAAACAAAGCCAACTGAGGTGGAAG

Foxp3 AGGAAAGGAGGATGGACGAA 57.8°C

AGGCAAGACAGTGGAAACCT

IL-4 AACAGCCTCACAGAGCAGAAGAC 61.0°C

GTGTTCTTGGAGGCAGCAAAG

IL-9 CTTCTGGCCATGGTCCTTAC 59.8°C

CATGGTCTGGTGCAGTTGTC

IL-10 AGATCTCCGAGATGCCTTCA 58.8°C

ATTCTTCACCTGCTCCACGG

IL-17 CAATGACCTGGAAATACCAA 54.9°C

TGAAGGCATGTGAAATCGAGA

IL-22 TTCCAGCAGCCCTATATCACC 60.9°C

GCTCACTCATACTGACTCCGTG

IFN-γ ATGCAGAGCCAAATTGTCTCC 59.0°C

AGGCAGGACAACCATTACTGG

TGF-β ATTGAGGGCTTTCGCCTTAG 58.9°C

TGTGTTATCCCTGCTGTCACAG

TNF-α TTCTGGCTCAAAAAGAGAATTG 55.8°C

TGGTGGTCTTGTTGCTTAAAG

iNOS GTTCTCAAGGCACAGGTCTC 59.1°C

GCAGGTCACTTATGTCACTTATC

doi:10.1371/journal.pntd.0004669.t002

Table 3. Clinical data of chronic chagasic subjects from the Northeast of Brazil included in this investigation.

Clinical involvement Indeterminate Cardiac Digestive Cardiodigestive

Female Sex–no. (%) 8 (44.5) 6 (35.3) 10 (66.7) 5 (33.3)

Male Sex–no. (%) 10 (55.5) 11 (64.7) 5 (33.3) 10 (66.7)

Total–no. (%) 18 (27.7) 17 (26.1) 15 (23.1) 15 (23.1)

Age–years 41.4 ± 10.7 49.7 ± 11.8 57.6 ± 8.9 65.0 ± 10.6

Megacolon–no. (%) - - 9 (60.0) 8 (53.3)

Megaesophagus–no. (%) - - 3 (20.0) 3 (20.0)

Megaesophagus and Megacolon–no. (%) - - 3 (20.0) 4 (26.7)

Left ventricular ejection fraction ±standard deviation 64.6 ± 3.42 55.8± 14.96 65.0 ± 6.48 56.2±13.84

Cardiothoracic index± standard deviation 0.43 ± 0.05 0.48± 0.05 0.42± 0.03 0.50± 0.05

doi:10.1371/journal.pntd.0004669.t003
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Subsequently, the mRNA expression levels of transcription factors and cytokines mainly
expressed in Th1 (T-Bet/IFN-γ and TNF-α), Th2 (GATA-3/IL-4), Th9 (PU.1/IL-9), Th17
(RORγt/IL-17), Th22 (AHR/IL-22) and Treg (Foxp3/IL-10 and TGF-β) were determined in
PBMCs by qPCR. Indeterminate patients exhibited higher levels of GATA-3, Foxp3, AHR, IL-
4, IL-9, IL-10, and IL-22 mRNA expression than did cardiac patients. However, cardiac
patients exhibited higher levels of IFN-γ and TNF-αmRNA compared with indeterminate
patients (Fig 1A and 1B).

Patients with chronic chagasic cardiomyopathy (cardiac and cardiodigestive clinical forms)
were grouped according to their long-term risk of death over 10 years and were classified as
having a low (10/32–31.25%), medium (12/32–37.50%), or high (10/32–31.25%) death risk.
The degree of death risk was compared with the production of cytokines and transcription fac-
tors. Patients with low death risk exhibited higher expression of FoxP3, GATA-3 and IL-10
than did those with a high death risk (Fig 2A and 2B). Subsequently, patients who exhibited
the indeterminate, cardiac, digestive and cardiodigestive clinical forms of Chagas disease were
grouped as having a low (40/65–61.54%), medium (18/65–27.69%) or high (7/65–10.77%)
stroke risk. The expression levels of cytokines and transcription factors were compared among
the patients from different groups. We observed that low stroke risk patients exhibited higher
GATA-3, Foxp3, PU.1, AHR, IL-9, IL-10 and IL-22 expression levels than did patients with
high stroke risk (Fig 3A and 3B). However, IFN-γ and TNF-αmRNA expression was increased
in patients with high stroke risk compared with those with low risk (Fig 3B).

In an attempt to elucidate the inflammatory mechanism involved in stroke generation, we
quantified the mRNA expression of iNOS. Nitric oxide may be involved in the inhibition of
endothelial nitric oxide synthase (eNOS), resulting in the vasoconstriction of cerebral arteries.
Patients who exhibited different clinical forms of Chagas disease exhibited similar iNOS
mRNA levels (Fig 4A). However, those who exhibited high long-term death risk over 10 years
and high stroke risk had higher iNOS mRNA expression than those patients with a low or
medium risk of death and stroke (Fig 4B and 4C).

Subsequently, we analyzed the correlation between the mRNA expression of Foxp3, IL-10,
TNF-α and iNOS with the death and stroke risks. A negative correlation was observed between
Foxp3 and death risk (r = -0.4983; p = 0.0051) (Fig 5A) and stroke risk (r = -0.5359;
p< 0.0001) (Fig 5B). Moreover, a negative correlation between IL-10 mRNA expression and
death risk (r = -0.6299; p = 0.003) was also observed (Fig 5C). No significant correlation
between IL-10 mRNA expression and the stroke risk was observed (r = -0.1401; p = 0.3422)
(Fig 5D). A positive correlation was observed between the TNF-αmRNA expression and death
risk (r = 0.5381; p = 0.0018) (Fig 5E) and stroke risk (r = 0.5087; p< 0.0001) (Fig 5F); and a
positive correlation was also observed between iNOS mRNA expression and death risk
(r = 0.4850; p = 0.0049) (Fig 5G) and stroke risk (r = 0.5748; p< 0.0001) (Fig 5H).

Discussion
To gain a better understanding of the stroke pathobiology in Chagas disease patients, we inves-
tigated the correlation of immune mediators with the death and stroke risks in indeterminate,
cardiac, digestive and cardiodigestive patients.

We first analyzed the mRNA expression of cytokines (IL-4, IL-9, L-10, IL-17, IL-22, IFN-γ,
TNF-α, TGF-β) and transcription factors (PU.1, GATA-3, RORγt, AHR, T-Bet, FoxP3) in
PBMCs obtained from Chagas disease patients who exhibited the indeterminate, cardiac, cardi-
odigestive and digestive clinical forms of the disease. Cardiac patients exhibited higher mRNA
expression of IFN-γ, TNF-α and lower mRNA expression of IL-10, Foxp3, AHR, and GATA-3
than those with the indeterminate clinical form of Chagas disease. The immunological
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imbalance in cardiac patients includes reduced IL-10 production and increases of TNF-α and
IFN-γ production [27,51–53]. Resistance to T. cruzi infection is largely dependent on the pro-
duction of nitric oxide and its derived nitrogen and oxygen free radicals. The pro-inflammatory

Fig 1. Indeterminate patients exhibited higher GATA-3, Foxp3, AHR, IL-4, IL-9, IL-10, and IL-22mRNA expression than did cardiac patients. The
mRNA expression levels of transcription factors (A) and cytokines (B) were determined by real-time PCR in peripheral blood mononuclear cells of patients
with the indeterminate (n = 18), cardiac (n = 17), digestive (n = 15) and cardiodigestive (n = 15) clinical forms of Chagas disease. The expression levels were
normalized to the expression level of β-actin. The results are expressed as the means ± standard errors. *P < 0.05.

doi:10.1371/journal.pntd.0004669.g001
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cytokines IL-12, IFN-γ and TNF-α (Th1 response-related) activate macrophages to promote
parasite killing through the production of trypanocidal radicals [54,55]. In addition, these cyto-
kines also act as a positive feedback for Th1 differentiation. Th1 cells orchestrate an

Fig 2. TNF-α, IL-10, T-Bet and FoxP3 expression levels in patients with chronic chagasic cardiomyopathy are correlated with death risk. The mRNA
expression levels of transcription factors (A) and cytokines (B) were determined by real-time PCR in peripheral blood mononuclear cells of patients with the
cardiac (n = 17) and cardiodigestive (n = 15) clinical forms of Chagas disease that were classified into high (n = 10), medium (n = 12), and low (n = 10) death
risk groups. The expression levels were normalized to the expression level of β-actin. The results are expressed as the means ± standard errors. *P < 0.05.

doi:10.1371/journal.pntd.0004669.g002
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exaggerated CD8+ T cell response, causing tissue damage and fibrosis [25]. The regulation of T.
cruzi-induced inflammation occurs primarily through the Th2 and Treg-related cytokines IL-
4, IL-10, and TGF-β [27,31,56]. The regulation of inflammation was observed in indeterminate

Fig 3. Patients who exhibited low stroke risk also exhibited high GATA-3, Foxp3, PU.1, AHR, IL-9, IL-22 and IL-10 expression. The mRNA expression
levels of transcription factors (A) and cytokines (B) were determined by real-time PCR in peripheral blood mononuclear cells of chagasic patients with low
(n = 40), medium (n = 18) and high (n = 7) risks of stroke. The expression levels were normalized to the expression level of β-actin. The results are expressed
as the means ± standard errors. *P < 0.05.

doi:10.1371/journal.pntd.0004669.g003
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Fig 4. Patients who exhibited high death and stroke risks exhibited high iNOS expression. The mRNA
expression levels of iNOS were determined by real-time PCR of peripheral blood mononuclear cells of
chagasic patients with the indeterminate (n = 18), cardiac (n = 17), digestive (n = 15) and cardiodigestive
(n = 15) forms of disease (A). Patients were classified as having a high (n = 10), medium (n = 12), or low
(n = 10) death risk (B) and were also grouped as having a low (n = 40), medium (n = 18) or high (n = 7) stroke
risk (C). The expression of iNOS was normalized to the expression level of β-actin. The results are expressed
as the means ± standard errors. *P < 0.05.

doi:10.1371/journal.pntd.0004669.g004
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Fig 5. High TNF-α, iNOS and low Foxp3 expression are correlated with the risks of death and stroke. The mRNA expression levels of Foxp3 (A and
B), IL-10 (C and D), TNF-α (E and F) and iNOS (G and H) were determined by real-time PCR of peripheral blood mononuclear cells from chagasic patients

Inflammation Enhances the Risks of Stroke and Death

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004669 April 26, 2016 12 / 18



patients, who exhibited high GATA-3 and IL-10 mRNA expression. Biopsies obtained from
heart tissue of patients with chronic chagasic cardiomyopathy have showed markedly up regu-
lation of IFN-γ and T-Bet mRNA expression, and lower increases of GATA-3, FoxP3 and
CTLA-4 than healthy subjects. Moreover, expression of Th1-related genes such as T-Bet and
IFN-γ was correlated with ventricular dilation as well [57]. We also described Th9- and
Th22-related mediators and their correlation with clinical forms of Chagas disease. Cardiac
patients exhibited lower levels of IL-9, IL-22 and AHR mRNA expression when compared with
indeterminate patients. IL-9 also can promote the development of Th17 cells and was reported
to be produced by these cells [58]. We have previously demonstrated that indeterminate chaga-
sic patients exhibit increased IL-17 production that can be correlated to the control of cardiac
dysfunction [27]. The asymptomatic patients infected with Leishmania donovani another try-
panosomatid parasite the etiological agent of Kala Azar (KA) produce enhanced amounts of
IL-17 maybe contributing to host survival and control of parasite growth [59].

Thus, IL-9 and IL-22 may be involved in regulating the Th1 response and inflammatory
cytokine expression in patients with the indeterminate form of the disease, and these cytokines
may help prevent the development of chronic chagasic cardiomyopathy.

Subsequently, cardiac patients were categorized in low, medium and high death risk groups
[5]. Here, patients with low death risk exhibited increased expression of FoxP3, GATA-3 and
IL-10 compared with high death risk patients. Cardiac damage during T. cruzi infection is due
to parasite multiplication and the immune response, both of which destroy cardiac muscle and
the autonomous nervous system, causing electrocardiographic changes, cardiomegaly and
death [6,60,61]. Patients with indeterminate Chagas disease produce higher levels of IL-10; IL-
10 controls the inflammatory immune response generated by the parasitic infection and pre-
vents damage to the myocardium [27]. During the chronic phase of Chagas disease patient
mortality is mostly associated with cardiac involvement [3]. Chagasic cardiopathy starts with
destruction of myocardial fibers by progressive inflammation with subsequent replacement by
fibrotic tissue, an inflammatory and fibrogenic process that ends up in pathologic ventricular
remodeling due to a gradual loss of the contractile elements. During remodeling ventricular
dysfunction is initially compensatory but the dynamics of the inflammatory process leads to
increased cardiac dilatation which evolves to a non-compensatory dilatation, with progressive
loss of ventricular ejection capacity. Complex ventricular arrhythmias and failure of mitral-
and tricuspid valves further contribute to the worsening of the cardiopathy and might be an
additional risk factor within the pleiad of mortality-related mechanisms [61,62]. The fibrosing
and progressive chronic myocarditis is also the key substrate for impairment of the conduction
system in Chagas disease [62]. Macrophages, T lymphocytes (CD4+ and CD8+), cytokines and
autoantibodies associated with the presence of the parasite and/or their antigens participate in
myocardial lesion formation [27,46,63–65]. Inflammatory cytokines (TNFα and IFNγ) have
been found in myocardial biopsies of chagasic patients [51] in association with parasitism and
inflammation, a suggestive evidence for their possible relationship with neuronal depopulation
[66]. Direct ganglionar parasitism is found associated with periganglionitis, and nervous fiber-
and Schwann cell degenerative lesions. Direct parasitism is observed, as well as nervous fiber-
and degenerative lesions [67]. Deposition of autoantibodies in structures of the neurotransmit-
ter receptors (β-adrenergic receptors, muscarinic receptors) might cause desensitization result-
ing in progressive denervation, an event that may also be implicated in the occurrence of
ventricular arrhythmias [66]. Antibodies from patients with chronic Chagas disease displaying

classified as having a high (n = 10), medium (n = 12), or low (n = 10) death risk. The patients were also grouped as having a low (n = 40), medium (n = 18) or
high (n = 7) stroke risk. Expression levels were normalized to the expression level of β-actin. The results are expressed as the means ± standard errors.

doi:10.1371/journal.pntd.0004669.g005
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complex arrhythmias decrease the heart rate and cause atrioventricular block in isolated rabbit
hearts [68,69], indicating that the immune response is an important pathophysiological factor
in the development of complex arrhythmias and cardiac death in Chagas disease [70]. Despite
limitations, experimental and clinical studies strongly support the notion that functional and
structural microvascular abnormalities occur in Chagas cardiomyopathy, possibly as a conse-
quence of the underlying inflammatory process [62]. Actually, as argued by Kania and co-
workers [71] recent findings suggest that heart-infiltrating monocyte-like cells indeed contain
a pool of progenitors, which represent the cellular source both for accumulation of differenti-
ated monocytes during the acute inflammatory phase and for transforming growth factor-β-
mediated myocardial fibrosis during the later chronic stages of disease. Obviously, a delicate
balance of proinflammatory and profibrotic cytokines dictates the fate of bone marrow-derived
heart-infiltrating progenitors and directly influences the morphologic phenotype of the
affected heart. Given the magnitude of the question of sudden death in chronic Chagas disease
patients and high cost of medical treatment, identifying the patient at risk and outlining the
process that initiated or facilitated these arrhythmias is a high priority issue in such a way that
those patients might be more effectively treated.

Infectious and parasitic diseases contribute to stroke risk [72]. It has been previously shown
that chagasic patients have an increased risk of stroke, independent of cardiac function (LVEF)
[5,73]. In this study, we demonstrated that patients with low stroke risk have increased mRNA
expression of GATA-3, Foxp3, PU.1, AHR, IL-9, IL-22 and IL-10. These mediators can regulate
the inflammatory response (TNF-α and IFN-γ) associated with the mechanism of thrombus
formation. Also, we observed that high stroke risk patients exhibited high mRNA expression of
IFN-γ. Patients with Chagas disease produce inflammatory mediators that increase the chance
of thromboembolic phenomena [74]. The cytokine IFN-γ induces TNF-α production and
causes increased expression of ICAM-I (intracellular adhesion molecule-I) and VCAM-I
(intravascular adhesion molecule-I), both of which are involved in the cell adhesion process
and surface formation of thrombi [20,75]. TNF-α also modulates endothelial cell coagulant
properties, markedly increasing tissue factor-like procoagulant activity in cultured human
endothelial cells [76]; TNF-α also stimulates increased cellular surface adhesivity in polymor-
phonuclear leukocytes, monocytes, lymphocytes and leukocyte cell lines [77,78]. The classic
elements of the thrombus formation, such as endothelial damage, decreased blood flow and
imbalance between coagulation factors, are increased in patients with Chagas disease. These
elements are altered primarily by the inflammatory response generated against the parasite
[61,74].

The inflammatory response to the parasite could affect the vasodilatation of the cerebral
arteries, thus contributing to stroke formation. Nitric oxide produced by eNOS activates gua-
nylate cyclase in vascular smooth muscle cells by increasing cGMP levels causing vasodilatation
[79]. After T. cruzi infection there is macrophage activation with iNOS production and these
cells invade endothelium and migrate to tissues. High nitric oxide production in the vascular
endothelium of chagasic patients due to high iNOS activation could lead to eNOS inhibition,
vasoconstriction and cerebral microvascular spasms, causing ischemic stroke [80]. In this
study, patients who exhibited high long-term death risk over 10 years and patients with a high
stroke risk exhibited higher iNOS mRNA expression than those patients with low risk of stroke
and death. Moreover, a positive correlation was observed between iNOS expression and death
and stroke risk. The nitric oxide produced by iNOS inhibits eNOS [80].

Our findings suggest that chagasic patients with high stroke and death risks exhibit reduced
expression of cytokines related to Th2, Th9, Th22 and Treg profiles. The decreased production
of these cytokines may be correlated to increased vascular inflammatory processes that subse-
quently lead to thrombi and atherosclerosis formation. Patients with high risks of stroke and
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death exhibited high iNOS mRNA expression, indicating that the patients likely had increased
nitric oxide production in the vascular endothelium. The high levels of nitric oxide likely could
led to eNOS inhibition and vasoconstriction, thus contributing to the stroke pathophysiology.
Moreover, key cytokines of the Th2, Th9, Th22 and Treg profiles are correlated with the inde-
terminate clinical form of Chagas disease. The present study unveiled the existence of an
immunopathological outcome underlying chagasic patients condition that involves an imbal-
anced expression of IL-10, FoxP3 and iNOS, which increases the risk of stroke or death. An
improved understanding of the immunological mechanisms involved in ischemic strokes in
Chagas disease patients may also contribute to the reduction of stroke-related mortality and
morbidity in the general population and may lead to the development of prophylactic or thera-
peutic therapies.
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