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Exclusivity principle forbids sets of correlations larger than the quantum set
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We show that the exclusivity (E) principle singles out the set of quantum correlations associated with any
exclusivity graph assuming the set of quantum correlations for the complementary graph. Moreover, we prove
that, for self-complementary graphs, the E principle, by itself (i.e., without further assumptions), excludes any
set of correlations strictly larger than the quantum set. Finally, we prove that, for vertex-transitive graphs, the E
principle singles out the maximum value for the quantum correlations assuming only the quantum maximum for
the complementary graph. This opens the door for testing the impossibility of higher-than-quantum correlations
in experiments.
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Introduction. One of the most interesting scientific chal-
lenges in recent times is deriving quantum theory (QT) from
first principles. The starting point is assuming general proba-
bilistic theories allowing for correlations that are more general
than those that arise in QT, and the goal is to find principles
that pick out QT from this landscape of possible theories.

There are, at least, three different approaches to the
problem. One consists of reconstructing QT as a purely
operational probabilistic theory that follows from some sets
of axioms [1–5]. A second approach consists of identifying
principles that explain the set of quantum nonlocal correlations
[6–14]. The third approach consists of identifying princi-
ples that explain the set of quantum contextual correlations
[15–19] without restrictions imposed by a specific experimen-
tal scenario [20–23].

This third approach is based on two observations: The
first is that quantum contextual correlations, i.e., quantum
correlations for compatible (but not necessarily spacelike
compatible) measurements, provide a natural generalization
of quantum nonlocal correlations that leaves room for a
wider range of experimental scenarios, including systems
that cannot be separated into parts or represented as the
tensor product of smaller spaces [18,24–28] and for systems
prepared in arbitrary quantum states [19,25–27,29–32]. The
second observation comes from the graph approach to quantum
correlations introduced in Ref. [33]. To any experimental
scenario one can associate an exclusivity graph G in which
vertices represent all possible events in that experiment, i.e.,
all the propositions of the type “outcomes a, . . . ,c occur for
measurements x, . . . ,z” and edges link mutually exclusive
events. By exclusive we mean that they correspond to exclusive
outcomes of some common measurement. Then the set of
quantum correlations consists of all possible probability
distributions allowed by QT for the vertices of G. Some
important sets of probability distributions for the vertices
of G can be defined. The sets of probabilities that obey
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the hypothesis of noncontextuality of outcomes satisfy the
so-called noncontextuality (NC) inequalities. A NC inequality
is a bound on a combination of correlations between jointly
measurable observables satisfied by any noncontextual hidden
variables theory, in the same way as Bell inequalities are
bounds for nonlocal hidden variable theories. For a given
experimental scenario, NC inequalities take the form

Sw =
∑

i

wip(vi)
NCHV
� α(G,w), (1)

where wi � 0 are weights for each corresponding vertex,
G ⊂ G is the induced subgraph of all nonzero weight vertices
in Sw, and α (G,w) is the weighted version of the independence
number. To any Sw one can associate the weighted subgraph
(G,w), which is called the exclusivity graph of Sw. The central
observation [33] is that, in QT,

Sw

Q
� ϑ(G,w), (2)

where ϑ(G,w) is the weighted Lovász number of G [34,35].
On the other hand, for any given G there is always some

NC inequality experiment reaching ϑ (G) and spanning the
set of probabilities allowed by QT for the vertices of G

[33,36]. This set will be denoted Q (G). This shows that
ϑ (G) is a fundamental physical limit for correlations and
Q (G) a fundamental physical set that appears when we
remove any additional constraint imposed by a specific
experimental scenario. This suggests that an important
question for understanding quantum correlations is: Which
principle singles out this limit and this set?

The exclusivity principle (E) was proposed as a possible
answer [20]. It states that the sum of the probabilities of any
set of pairwise mutually exclusive events cannot be higher than
1. The E principle is implied by Specker’s observation that,
in classical physics and QT, any set of pairwise compatible
observables is jointly compatible [15,37] and was first applied
to general probabilistic theories by Wright [38]. In Ref. [33]
it was shown that, when we consider the experiment to
test Sw alone, then the maximum value of Sw allowed by
the E principle is given by the weighted version of the
fractional packing of G, α∗(G,w) [39]. The principle of local
orthogonality [14] may be seen as the E principle restricted to
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Bell scenarios. However, when this restriction is removed the
E principle shows itself more powerful, since while for a given
graph G, there is always a NC inequality for which QT reaches
ϑ (G) [33]; this is not true if “NC inequality” is replaced by
“Bell inequality” [21].

For example, the E principle, applied to the exclusivity
graph, singles out the maximum quantum value for some Bell
and NC inequalities [20]. When applied to the OR product of
two copies of the exclusivity graph (which may be seen as two
copies of the same experiment), the E principle singles out the
maximum quantum value for experiments whose exclusivity
graphs are vertex transitive and self complementary [20],
which include the simplest NC inequality violated by QT,
namely the Klyachko-Can-Binicioğlu-Shumovsky (KCBS)
inequality [18]. Moreover, either applied to two copies of
the exclusivity graph of the Clauser-Horne-Shimony-Holt
(CHSH) [40] Bell inequality [14] or of a simpler inequality
[20], the E principle excludes Popescu-Rohrlich nonlocal
boxes [6] and provides an upper bound to the maximum
violation of the CHSH inequality which is close to the
Tsirelson bound [41]. In addition, when applied to the OR
product of an infinite number of copies, there is strong evidence
that the E principle singles out the maximum quantum
violation of the NC inequalities whose exclusivity graph is the
complement of odd cycles on n � 7 vertices [22]. Indeed, it
might be also the case that, when applied to an infinite number
of copies, the E principle singles out the Tsirelson bound of
the CHSH inequality [14,20].

Another evidence of the strength of the E principle was
recently found by Yan [23]. By exploiting Lemma 1 in
Ref. [34], Yan has proven that, if all correlations predicted by
QT for an experiment with exclusivity graph G are reachable in
nature, then the E principle singles out the maximum value of
the correlations produced by an experiment whose exclusivity
graph is the complement of G, denoted as G.

In this Rapid Communication we shall prove three stronger
consequences of the E principle. They show that the E
principle goes beyond any other proposed principle towards
the objective of singling out quantum correlations.

We will consider a sum of probabilities of events {ei}, such
that each event ei occurs with probability Pi [i.e., all weights
are chosen to be 1 so hereafter we will write G instead of
(G,w) and S instead of Sw],

S =
∑

i

Pi . (3)

All these probabilities can be collected in a single vector P .
Result 1: Given the quantum set Q(G), the E principle

singles out the quantum set Q(G).
Proof: Let {ei} be a set of n events with exclusivity graph

G and {fi} be a set of n events with exclusivity graph G, such
that ei and fi are independent. Define the event gi which is
true if and only if both ei and fi are true, gi = (ei,fi). Note
that the exclusivity graph of the events {gi} is the complete
graph on n vertices because {gi} is a set of pairwise mutually
exclusive events.

Since ei and fi are independent, p(gi) = PiP̄i , where Pi =
p (ei) and P̄i = p (fi). Using the E principle we have∑

i

PiP̄i

E
� 1. (4)

Theorem 3.1 in Ref. [35] implies that

Q(G) = {P ∈ Rn; Pv � 0,ϑ(G,P ) � 1}, (5)

where

ϑ(G,P ) = max

{∑
i

PiP̄i ; P̄ ∈ Q(G)

}
. (6)

If the set of allowed distributions for G isQ(G), expression (4)
implies that the distributions in G allowed by the E principle
belong to Q(G). �

Physically, the proof above can be interpreted as follows:
Assuming that nature allows all quantum distributions for G,
the E principle singles out the quantum distributions for G.
Result 1 does not imply that the E principle, by itself, singles
out the quantum correlations for G, since we have assumed
QT for G. Nonetheless, it is remarkable that the E principle
connects the correlations of two, a priori, completely different
experiments on two completely different quantum systems.
For example, if G is the n-vertex cycle Cn with n odd, the
tests of the maximum quantum violation of the corresponding
NC inequalities require systems of dimension 3 [22,33,42,43].
However, the tests of the maximum quantum violation of the
NC inequalities with exclusivity graph Cn require systems of
dimension that grows with n [22]. Similarly, while two qubits
are enough for a test of the maximum quantum violation of the
CHSH inequality, the complementary test is a NC inequality
that requires a system of at least dimension 5 [44].

An important consequence of result 1 is that the larger the
quantum set of G, the smaller the quantum set for G, since
each probability allowed for G becomes a restriction on the
possible probabilities for G. Such duality gets stronger when
G is a self-complementary graph.

A graph G is self complementary when G and G are
isomorphic. When G is self complementary, the graph G may
be seen as another copy of the same experiment and, as a
corollary of result 1, we have the following result:

Result 2: If G is a self-complementary graph, the E
principle, by itself, excludes any set of probability distributions
strictly larger than the quantum set.

Proof: Let X be a set of distributions containing Q(G) and
let P ∈ X \ Q(G). By result 1, there is at least one P̄ ∈ Q(G)
such that ∑

i∈V (G)

PiP̄i > 1, (7)

which contradicts the E principle. Since G is self comple-
mentary, after a permutation on the entries given by the
isomorphism between G and G, P̄ becomes an element of
Q(G) and hence P and P̄ belong to X. Inequality (7) implies
that this set is not allowed by the E principle. �

The fact that the E principle is entirely sufficient for pinning
down the quantum correlations as the maximal set of correla-
tions for any self-complementary graph means that the E prin-
ciple is able to single out the quantum correlations for a large
number of nonequivalent NC inequalities, including the KCBS
one. In contrast, neither information causality, nor macro-
scopic locality, nor local orthogonality have been able to single
out the set of quantum correlations in any Bell inequality.

The exclusivity graphs of many interesting inequalities
including CHSH [40], KCBS [18], the n-cycle inequalities
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[22,33,42,43], and the antihole inequalities [22] are vertex
transitive. A graph is vertex transitive if for any pair u,v ∈
V (G) there is φ ∈ Aut(G) such that v = φ(u), where Aut(G)
is the group of automorphisms of G [i.e., the permutations ψ

of the set of vertices such that u,v ∈ V (G) are adjacent if and
only if ψ(u),ψ(v) are adjacent].

Result 3: If G is a vertex-transitive graph on n vertices,
given the quantum maximum for G, the E principle singles
out the quantum maximum for G.

Proof: The proof comes in three steps. First we prove that if
G is a vertex-transitive graph, then the quantum maximum for
S = ∑

i Pi is attained at the constant distribution Pi = pmax.
Let P = (p(e1),p(e2), . . . ,p(en)) be a distribution reaching

the maximum. Given an automorphism of G, φ ∈ Aut(G),
consider the distribution Pφ defined as pφ(ei) = p(φ(ei)).
This is also a valid quantum distribution, also reaching the
maximum for S. Define the distribution

Q = 1

A

∑
φ∈Aut(G)

Pφ, (8)

where A = #Aut(G). Since G is vertex transitive, given any
two vertices of G, ei , and ej , there is an automorphism ψ such
that ψ(ei) = ej . Then,

q(ej ) = q(ψ(ei)) = 1

A

∑
φ∈Aut(G)

pφ(ψ(ei))

= 1

A

∑
φ∈Aut(G)

p(φ ◦ ψ(ei)) = 1

A

∑
φ′∈Aut(G)

pφ′(ei)

= q(ei). (9)

The second step is to show that if G is a vertex-transitive
graph on n vertices, then the E principle implies that the
quantum maxima for S(G) and for S(G) obey

MQ(G) MQ(G)
E
� n. (10)

This can be done using the above property for both G and G. It
implies npmax = MQ(G) and np̄max = MQ(G). Inequality (4)
for these extremal distributions reads

npmax p̄max

E
� 1, (11)

which leads to inequality (10).
The missing step is to also prove that MQ(G)MQ(G)� n.

This comes from the graph approach, which identifies the
quantum maximum of S with the Lovász number of the
corresponding exclusivity graph:

ϑ(G) = MQ (G) , (12a)

ϑ(G) = MQ(G), (12b)

and since for vertex-transitive graphs ϑ(G) ϑ(G) � n (Lemma
23 in Ref. [45]), the result follows. �

Result 3 opens the door to experimentally discard higher-
than-quantum correlations. Specifically, inequality (10) im-
plies that we can test that the maximum value of correlations
with exclusivity graph G cannot go beyond its quantum
maximum without violating the E principle, by performing an
independent experiment testing correlations with exclusivity
graph G and experimentally reaching its quantum maximum
[44]. A violation of the quantum bound for G in any
laboratory would imply the impossibility of reaching the
quantum maximum for G in any other laboratory. In a
yet imprecise formulation, the quantum maximum for S

appears as a compromise among all laboratories, since a
small gain for one noncontextuality test would imply a debt
for all complementary experiments, even the ones yet to be
performed.

Conclusions. Here we have presented three results. First, we
have shown that the E principle singles out the set of quantum
correlations associated with any exclusivity graph assuming
the set of quantum correlations for the complementary graph.
This result goes beyond the one presented by Yan in Ref. [23],
since using the same assumptions we have shown that the E
principle singles out the entire set of quantum correlations and
not just its maximum.

Second, we have shown that the power of the E principle for
singling out quantum correlations goes beyond the power of
any previously proposed principle. While previous principles
cannot rule out the existence of sets of correlations strictly
larger than the quantum one for any single experiment [6–14],
we have shown that, for self-complementary graphs, the E
principle, by itself, excludes any set of correlations strictly
larger than the quantum set.

Finally, we have shown that the E principle allows for ex-
perimental tests discarding higher-than-quantum correlations
for those correlations represented by vertex-transitive graphs.
Interestingly, the CHSH Bell inequality is one of these cases.

All these results still do not prove that the E principle
is the principle for quantum correlations. However, what is
clear at this point is that the E principle has a surprising and
unprecedent power for explaining many puzzling predictions
of quantum theory.

Note added: Recently, we have learned that A. B. Sainz
et al. have also found result 1 [46].
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