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Abstract—Psychological stress elicits increases in sympa-
thetic activity accompanied by a marked cardiovascular re-
sponse. Revealing the relevant central mechanisms involved
in this phenomenon could contribute significantly to our un-
derstanding of the pathogenesis of stress-related cardiovas-
cular diseases, and the key to this understanding is the
identification of the nuclei, pathways and neurotransmitters
involved in the organization of the cardiovascular response
to stress. The present review will focus specifically on the
dorsomedial hypothalamus, a brain region now known to
play a primary role in the synaptic integration underlying the
cardiovascular response to emotional stress. © 2011 IBRO.
Published by Elsevier Ltd. All rights reserved.
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STRESS: IMPACT ON THE
CARDIOVASCULAR SYSTEM

Psychological stress elicits increases in sympathetic
activity that result in changes in the level of cardiac
function and vascular resistance with consequent redis-
tribution of blood flow. This physiological strategy en-
hanced the probability of survival for mammals faced
with a physical threat in nature. However, with one-half
of the world’s population living in the cities (Ginkel,
2008), the impact of psychosocial stress has undoubt-
edly been a challenge for the cardiovascular system and
body homeostasis. Indeed, psychological stress is con-
sidered a component of the so called cardiovascular risk
(Lloyd-Jones et al., 2009), and examples of such stres-
sors in modern society are numerous. Mittleman and
colleagues reported that the relative risk of acute myo-
cardial infarction in the 2 h after an episode of anger was
more than double compared with no anger (Mittleman et
al., 1995). The number of sudden deaths resulting from
cardiac causes sharply increased on the day of the
Northridge earthquake that struck the Los Angeles area
in 1994 (Leor et al., 1996). Signs of elevated sympa-
thetic activity are commonly observed in patients with
white coat hypertension (Smith et al., 2004), a phenom-
enon in which patients exhibit elevated blood pressure
(BP) that is likely a consequence of increased anxiety in
a clinical setting. These examples illustrate the potential
contribution of emotional stress in precipitating adverse
cardiovascular events.

According to the reactivity hypothesis, persistently ex-
aggerated psychological stress responses might be a
marker of individuals or subgroups with increased risk of
cardiovascular disease (Lovallo and Gerin, 2003). Al-
though the potential causes of the individual differences in
reactivity remain poorly understood, the possibility that
prolonged stress might cause perpetuated changes in crit-
ical groups of neurons in the CNS, resulting in sympathetic
overreactivity, overactivity or autonomic imbalance is plau-
sible. Thus, to understand how psychological stress af-
fects the cardiovascular system, it is necessary first to
identify the nuclei involved and the central pathways that
control the cardiac and vascular sympathetic outflows.
The present brief review summarizes our current under-
standing of a central circuit that integrates the cardio-
vascular response to acute stress. The focus is the
region of dorsomedial hypothalamus (DMH), which

plays a key role within this circuit.
ts reserved.
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DMH: ANATOMICAL ORGANIZATION

As functional studies involving the human hypothalamus
are rare, comparison of the structural organization of the
human hypothalamus with the hypothalamus of other spe-
cies could provide a meaningful reference for extrapolating
physiological findings obtained in studies involving hypo-
thalamus of experimental animals to humans. In this re-
gard, the human hypothalamus is now known to be signif-
icantly more homologous to the hypothalamus of the rat
than was previously thought, and this seems to be partic-
ularly true regarding the DMH (Koutcherov et al., 2003,
2004). In this review, we refer to DMH to indicate a region
of the hypothalamus that includes the dorsomedial hypo-
thalamic nucleus (DMN) but also adjoining areas, particu-
larly dorsal and posterior to the nucleus itself as well as
laterally including the medial part of the perifornical area. In
the rat, the DMH lies adjacent to the third ventricle, caudal
and ventral to the hypothalamic paraventricular nucleus
(PVN), dorsal to the ventromedial hypothalamic nucleus
(VMH) and ventral to the mamillothalamic tract. Laterally,
the DMH is bounded by the fornix and the lateral hypotha-
lamic area (Fig. 1). Its caudal border is far less distinct and

Fig. 1. Upper panel: Gray shading indicates the dorsomedial hypotha
atlas of Paxinos and Watson, 1986). Bottom panel: Example of the ca
a site in the dorsomedial hypothalamic nucleus before (A) and after
medulla pressor region (Fontes et al., 2001). Phenylephrine was infus
arterial pressure close to the control level. Note that after bilateral in
nucleus still evokes a tachycardic response, whereas the renal sympa
DMN, dorsomedial hypothalamic nucleus; DMC, compact portion of
hypothalamic nucleus; PH, posterior hypothalamic area; VMH, ventro
hypothalamus; DA, dorsal hypothalamic area; ARC, arcuate hypothala

Circ Physiol. Am Physiol Soc, used with permission.
is loosely delimited with the posterior hypothalamic area.
The DMN itself is subdivided in two distinct portions, a
poorly defined diffuse portion and a cell dense compact
portion or zona compacta (Paxinos and Watson, 1986), the
latter being clearly delimited in the posterior part of the
DMH. Since this subcompartmental organization is homol-
ogous to that found in monkeys and humans (Koutcherov
et al., 2004), the DMH seems to be highly conserved
during the course of the mammalian evolution. This obser-
vation fuels speculation that the same may be true for its
functional role in the cardiovascular response to emotional
stress.

DMH: A KEY REGION IN THE CARDIOVASCULAR
RESPONSE TO STRESS

The DMH plays a key role in coordinating the neuroendo-
crine, autonomic and behavioral responses to emotional
stress (DiMicco et al., 2002). Similarly, the DMH has also
been implicated as a key component of the “panic circuit”.
Chronic disruption of GABAergic inhibition in the DMH
leads to panic-like responses in rats (Johnson and Shek-
har, 2006; Shekhar et al., 2006). In the pioneering exper-

referred in this review (3.1–3.4 mm posterior to Bregma according to
ular response evoked by microinjection of bicuculline methiodide into
eral microinjection of muscimol (1 nmol) into the rostral ventrolateral
uously after the bilateral injections of muscimol to maintain baseline
f the RVLM, bicuculline injection into the dorsomedial hypothalamic
d vasomotor responses are completely abolished. 3V, third ventricle;
dial hypothalamic nucleus; DMD, diffuse portion of the dorsomedial
ypothalamic nucleus; f, fornix; mt, mamillothalamic tract; LH, lateral

eus. Bottom panel taken from Fontes et al., 2001, Am J Physiol Heart
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iments demonstrating a crucial role of DMH neurons in the
cardiovascular response to acute stress, Lisa and col-
leagues (Lisa et al., 1989a) demonstrated that inhibition of
DMH neurons with the GABAA agonist, muscimol, failed to
influence baroreflex-induced tachycardia but abolished the
increases in heart rate (HR) normally seen in an air stress
paradigm (Lisa et al., 1989a). The site of action for mus-
cimol was demonstrated to be specifically the DMH and
not the paraventricular nucleus, another region potentially
involved in the physiological responses to stress (Stotz-
Potter et al., 1996b).

Conversely, DiMicco and colleagues demonstrated that
microinjection of bicuculline methiodide (BMI), a GABAA re-
ceptor antagonist, into the DMH of conscious rats evokes
marked increases in heart rate and pressor responses in
conscious rats in a pattern that mimics the cardiovascular
response to emotional stress (DiMicco et al., 2002). Thus,
DMH neurons are under powerful GABAergic inhibition.
Injections of BMI at doses ranging from 0.1 to 40 pmol that
targeted the region of DMH evoke dose-related increases
in mean arterial pressure (MAP), HR and renal sympa-
thetic nerve activity (Horiuchi et al., 2004b). Moreover,
injections of excitatory aminoacids (EEA) into the DMH
also produce increases in HR and blood pressure (Soltis
and DiMicco, 1991a, 1992; De Novellis et al., 1995). In
addition, blockade of EEA receptors in the DMH sup-
presses the cardiovascular response evoked by BMI injec-
tions into the same region (Soltis and DiMicco, 1991b).
These findings suggest that the response caused by block-
ade of GABAergic inhibition in the DMH of the rat is de-
pendent on activation of local EAA receptors.

Although several studies have reported that disinhibi-
tion or excitation of DMH neurons can produce changes in
blood pressure or heart rate similar to the ones seen during
emotional stress, the precise location of these sites were
not well characterized. Nonetheless, Samuels and col-
leagues (2004) have shown that injections (2 pmol/5 nl) of
BMI into a specific area, dorsal to the DMN, called dorsal
hypothalamic area (DA, Fig. 1) evoke increases in HR that
are significantly greater than the increases observed after
injection into the DMN itself (Samuels et al., 2004). They
have also observed that the site of these injections corre-
sponded to the location of neurons which project directly to
the RP, which has been shown to be fundamental to the
tachycardia evoked during stress (Zaretsky et al., 2003b).
These data were later confirmed by Tanaka and McAllen
(2008), who demonstrated that injections of D,L-homocys-
teic acid (50 mM in 15 nl) in the DA and dorsal parts of the
DMN produced increases in heart rate, however, injections
in the ventral parts of the DMN did not change it (Tanaka
and McAllen, 2008). On the other hand, increases in blood
pressure could be achieved by activating different areas of
the DMH. Hence, even with high spatial resolution data, it
is still not possible to determine the exact sites responsible
for the changes in specific physiological variables evoked
by DMH (or DA) activation.

It could be speculated that during acute psychological
stress, the sensory input from the environment overcomes

or reduces the tonic inhibition of neurons in the DMH,
resulting in a characteristic cardiovascular response. Al-
though the DMH receives inputs from several forebrain
regions including amygdala (Soltis et al., 1998), that play
roles in the physiological responses to stress (Fig. 2), the
origin of the GABAergic input to neurons in the DMH
remains unknown. The medial preoptic area (mPOA) may
represent a significant source of inhibitory tone to key
neurons in the DMH (Hunt et al., 2010). Another possibility
is the medial prefrontal cortex (mPFC) which is a limbic
structure involved in the regulation of cognitive and emo-
tional information (Bush et al., 2000) and in the regulation
of stress-induced neural activity (Amat et al., 2005). The
DMH also receives projections from neurons in the mPFC,
specifically in the infralimbic division (Hurley et al., 1991;
Vertes, 2004). However, the only two functional studies
offering a clue about a possible mPFC-DMH inhibitory
projection contain divergent findings (McDougall et al.,
2004; Radley et al., 2009).

ROSTRAL VENTROLATERAL MEDULLA AND
THE VASOMOTOR COMPONENT OF THE

RESPONSE TO ACTIVATION OF THE DMH

In the past decade, much has been learned about the
descending pathways that mediate the sympathoexcitatory
response evoked from the DMH. Previous anatomic stud-
ies indicated that the DMH contains no or very few neurons
that project directly to the spinal cord (ter Horst and Luiten,
1986; Hosoya et al., 1987; Thompson et al., 1996). There-
fore, the descending sympathoexcitatory pathway from the
DMH should include one or more synaptic connections in
supraspinal regions, such as the rostral ventrolateral me-
dulla (Fontes et al., 2001), since this brainstem region
contains sympathetic premotor neurons involved in the
maintenance of vasomotor sympathetic activity and blood
pressure (Dampney et al., 2000). The pressor and sympa-
thoexcitatory responses, but not the tachycardic response
evoked by activation of neurons in the DMH with BMI were
greatly reduced after bilateral microinjection of muscimol
into the rostral ventrolateral medulla (Fig. 1B). Thus, as
shown in Fig. 2 (pathway 7), the vasomotor component of
the response evoked from DMH is dependent on neuronal
activity in the rostral ventrolateral medulla (RVLM) (Fontes
et al., 2001). Indeed, in response to activation of the DMH,
the firing rate of RVLM neurons could be increased by as
much as 400% (Horiuchi et al., 2004b).

RAPHE PALLIDUS AND THE CARDIAC
COMPONENT OF THE RESPONSE TO

ACTIVATION OF THE DMH

The findings discussed above suggested that the pathway
mediating the cardiac stimulation evoked by activation of
the DMH was independent of the RVLM (Fontes et al.,
2001). A search for the synaptic relay mediating the in-
crease in heart rate caused by activation of DMH led to the
raphe pallidus (RPa) as a potential candidate. Neurons in
the RPa send direct projections to the upper thoracic in-

termediolateral cell column at those levels containing car-
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Fig. 2. Schematic diagram based on functional and anatomic studies showing descending pathways involved in the organization of the cardiovascular
response to emotional stress at different levels of the neuraxis. The DMH is showed as a key integrative region in this response (Lumb, 1990;
Thompson and Swanson, 1998; DiMicco et al., 2002), which also involves higher and lower brain regions (Kober et al., 2008; Cechetto and
Shoemaker, 2009). From the DMH, descending pathways are represented bilaterally to better illustrate our recent functional findings and hypothesis
(see text for details). 1—Amygdala/DMH (Nalivaiko and Blessing, 2001; Quirk and Gehlert, 2003; Quirk et al., 2003); 2—Insular cortex/DMH (Cechetto
and Chen, 1990; Oppenheimer and Cechetto, 1990; Yasui et al., 1991; Butcher and Cechetto, 1998); 3—Medial prefrontal cortex/DMH (Vertes, 2004,
006; Hoover and Vertes, 2007); 4—Medial preoptic area/DMH (Okamura et al., 1990; Zaretskaia et al., 2003; Yoshida et al., 2009; Hunt et al., 2010);

5 and 6—Periaqueductal gray/DMH and vice-versa (da Silva et al., 2003, 2006; de Menezes et al., 2006, 2008, 2009; Horiuchi et al., 2009; Villela et
l., 2009); 7—DMH/rostral ventrolateral medulla (Fontes et al., 2001; Cao et al., 2004); 8—Periaqueductal gray/rostral ventrolateral medulla (Hudson
nd Lumb, 1996; Farkas et al., 1998); 9—DMH/raphe pallidus (Hosoya et al., 1987; Nalivaiko and Blessing, 2001; Zaretsky et al., 2003b; Horiuchi et

al., 2004b; Samuels et al., 2004); 10—Rostral ventrolateral medulla and raphe pallidus/spinal cord/target organs (Loewy, 1981; Taylor and Weaver,
1992; Jansen et al., 1995; McAllen et al., 1995; Campos and McAllen, 1999; Morrison et al., 1999; Huang et al., 2002; Blessing, 2003; Cao and
Morrison, 2003; Dampney et al., 2003; Zaretsky et al., 2003a,b; Horiuchi et al., 2004a,b; Nalivaiko et al., 2005). Dashed lines represent unknown
and/or indirect projections. Thick line from DMH to RP, and from RP to target organs illustrates a hypothetical descending pathway illustrating the

asymmetric functional responses evoked from DMH (see text for details).
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diac sympathetic preganglionic neurons (Amendt et al.,
1979; Loewy, 1981; Ter Horst et al., 1996). As demon-
strated by Samuels and colleagues (2002), the tachy-
cardia evoked by activation of neurons in the DMH with
BMI was markedly suppressed after inhibition of neu-
rons in the RPa with muscimol (Fig. 3A). Subsequent
experiments in conscious rats demonstrated that inhibi-
tion of the RPa virtually abolished the tachycardia
evoked by acute stress (Fig. 3B) but failed to influence
the tachycardia produced by baroreceptor unloading
(Zaretsky et al., 2003b). Further support for the involve-
ment of neurons in the RPa in the tachycardia evoked by
stress comes from experiments showing that direct in-
jection of BMI into RPa neurons evokes tachycardia of
similar magnitude as that evoked by activation of neu-

Fig. 3. Raphe neurons are a crucial relay in the pathway respons
microinjection of the GABAA receptor agonist muscimol, reduces th

icroinjection of the GABAA receptor antagonist bicuculline). Left: Ex
data depicting the changes in HR and BP induced by disinhibition of
Inhibition of raphe neurons, by microinjection of muscimol, reduces
performed a t�0 min (arrows), and rats were subjected to air-jet stress
lines (top) indicate significant differences from corresponding values a
BMI, bicuculline methiodide; DMH, dorsomedial hypothalamus; Mus, m
et al., J Physiol 538:941-946, 2002 (Panel A) and Zaretsky et al., J P
rons in the DMH (Samuels et al., 2002; Cao and Morri-
son, 2003). Interestingly, inhibition of the RPa in con-
scious rats has no effect on baseline HR (Zaretsky et al.,
2003b), but blockade of GABAA receptors in the RPa
produces sustained increases in cardiac sympathetic
activity and in HR even after complete suppression of
activity in sympathoexcitatory neurons in the RVLM with
muscimol (Cao and Morrison, 2003). Therefore, the car-
diac sympathoexcitation and tachycardia evoked by ac-
tivation of neurons in the RPa can occur independently
of excitation of sympathetic premotor neurons in the
RVLM that normally provide the excitatory drive to sup-
port basal cardiac sympathetic activity and HR. As pro-
posed by Cao and Morrison (2003), dorsomedial hypo-
thalamic neurons apparently act to reduce or overcome
the tonic inhibition of these RPa neurons, which in turn

tress-induced tachycardia. (A) Inhibition of raphe neurons, through
se in HR, but not in BP, evoked by disinhibition of the DMH (by
an original tracing from a representative experiment. Right: Grouped
after microinjection of muscimol or saline into the RP. * P�0.05. (B)
ase in HR, but not in BP, evoked by air-jet stress. Injections were

ress trial between t��5 min and t��15 min (shaded bars). Horizontal
ent with saline: dashes, 80 pmol; dots, 20 pmol; continuous,10 pmol.
RP, raphe pallidus. Data presented at this figure taken from Samuels
6:243-250, 2003 (Panel B).
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preganglionic neurons to augment cardiac sympathetic
activity and HR (Fig. 2, pathway 9).

PERIAQUEDUCTAL GRAY: A SOURCE OF
EXCITATORY INPUT TO NEURONS

IN THE DMH?

Ultimately, a model that relies on the regulation of neuronal
activity through disinhibition must include a mechanism
responsible for excitation of the neuronal population being
studied (Morrison, 2004). As is seen after acute stress or
disinhibition of neurons in the DMH with BMI, a tachycardic
response can also be induced by stimulating neurons in
the DMH with agonists of EAA receptors (Soltis and
DiMicco, 1991a, 1992; Tanaka and McAllen, 2008). The
first structure evaluated as a source of excitatory input to
DMH neurons was the amygdala, a structure well-known to
be involved in stress and anxiety (LeDoux, 2007). Chem-
ical stimulation of the amygdala results in cardiovascular
changes that are abolished after blockade of glutamatergic
receptors in the DMH (Soltis et al., 1998). However, recent
attempts to reveal the descending cardiovascular connec-
tions from DMH led us also to consider the periaqueductal
gray region (PAG) (da Silva et al., 2003, 2006) (Fig. 2
pathway 6).

Our findings that increases in HR and MAP seen in air
jet stress were reduced by microinjection of muscimol into
the lateral/dorsolateral region of PAG (l/dlPAG) (de Me-
nezes et al., 2008), in the same manner that the inhibition
of DMH neurons alters the cardiovascular response to air
jet stress (Stotz-Potter et al., 1996b), suggested that neu-
rons in the l/dlPAG constitute downstream effectors for
cardiovascular changes evoked from the DMH. Surpris-
ingly, however, we also observed that microinjection of
muscimol into the l/dlPAG reduced the increases in plasma
adrenocorticotropic hormone (ACTH) evoked by air jet
stress. Increases in plasma ACTH seen in this paradigm
represent activation of the hypothalamic-pituitary-adrenal
axis, a hallmark of the response to stress, and have been
proposed to be mediated in large part through a direct
projection from neurons in the DMH to the hypothalamic
paraventricular nucleus [PVN; for review, see (DiMicco et
al., 2002)]. On the other hand, neurons in the l/dlPAG do
not project to the PVN (Cameron et al., 1995).

This hypothesis that the PAG is a source of excitatory
input to neurons in the DMH during stress was validated by
demonstrating that the increases in HR, BP and core body
temperature produced by microinjection of the excitatory
amino acid (NMDA) into l/dlPAG in conscious rats were
markedly attenuated either by neuronal inhibition (micro-
injection of muscimol) or by blockade of glutamate trans-
mission (microinjection of NBQX�Ap5) within the DMH,
but not within the PVN (de Menezes et al., 2009). Likewise,
microinjection of muscimol into the DMH of anaesthetized
rats reduced the increases in BP as well as the increases
in phrenic and renal sympathetic nerve activity produced
by the activation of the dlPAG (Horiuchi et al., 2009).

Taken together, these data demonstrated that the

physiological responses produced by activation of the l/dl-
PAG depend on neuronal activity in the DMH. Thus, the
l/dlPAG may represent one of several regions that provide
glutamatergic excitation to neurons in the DMH (Fig. 2,
pathway 5) whose activation is ultimately responsible for
physiological changes seen in experimental stress. Previ-
ous data from anatomical studies are consistent with this
notion. For instance, it is known that neurons in the l/dlPAG
send axonal projections to neurons located in the region of
the DMH (Shaikh et al., 1987; Cameron et al., 1995; Siegel
et al., 1997). Also, chemical or electrical stimulation of the
l/dlPAG increases the expression of c-fos, a marker for
neuronal activation (Dragunow and Faull, 1989), in the
DMH, where the terminals of projections from the l/dlPAG
can also be found (de Oliveira et al., 2000; Borelli et al.,
2006). It important to observe that, in the study of de
Oliveira, the increase in c-fos expression was restricted to
the dorsomedial nucleus and occurred mainly on the side
ipsilateral to the stimulation site in the dlPAG. This fact
suggests that the increase in c-fos expression within the
DMH was due to the specific activation of the neurons in
the PAG and not to the generalized behavioral arousal that
was also produced. Thus, during stress, afferents from
neurons in the l/dlPAG, perhaps along with those from
other regions, might act to excite neurons in the DMH. On
the other hand, the tonic inhibitory drive that is present
under resting conditions might at the same time be with-
drawn, thus changing the balance between GABAergic
and glutamatergic transmission that occurs in the DMH
[see (DiMicco et al., 2002)]. These shifts would then lead to
activation of (1) CRH-containing neurons in the PVN to
stimulate the secretion of ACTH, and (2) autonomic cen-
ters in the brainstem to increase HR, MAP, temperature
and respiratory rate. It is important to consider that the
projections through which the l/dlPAG influences the DMH
do not necessarily have to be direct. For example, the
dlPAG has major projections to the cuneiform nucleus and
to the superior lateral parabrachial nucleus in the pons
(Lisa et al., 1989b; Carrive, 1993; Krout et al., 1998), and
these in turn have projections to the hypothalamus, includ-
ing the DMH (Bester et al., 1997; Lam et al., 1997).

The results of the studies showing that the physiolog-
ical changes produced by the activation of the l/dlPAG
neurons depend on neuronal activity in the DMH (de Me-
nezes et al., 2009; Horiuchi et al., 2009), combined with
data from the earlier studies showing that the changes
evoked by disinhibition of the DMH are, also, dependent on
the activation of l/dlPAG neurons (da Silva et al., 2003,
2006; de Menezes et al., 2006), requires alternative expla-
nations to the hypothesis presented above. In this regard,
de Menezes and colleagues (2009) proposed two distinct
hypotheses that are consistent with the data concerning
the relationship between the DMH and the l/dlPAG. One
possibility is that these regions are reciprocally connected
to form a functional network involved in the stress re-
sponse. In this case, the stimulation of either region would
facilitate the activation of the neurons in the other region.
Another possibility is that this critical facilitation from neu-
rons in the DMH and in the PAG converges on common

medullary targets related to the physiological responses
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evoked from either region. Once again, loss of either
source of background facilitation may effectively weaken
responses evoked from the other.

NUCLEUS TRACTUS SOLITARIUS: STRESS,
DMH AND BAROREFLEX MODULATION

Acute psychological stress and stimulation of the DMH can
both generate physiological and behavioral responses, as
described above, with the main cardiovascular effect being
increases in HR and BP (Stotz-Potter et al., 1996a,b;
Fontes et al., 2001; DiMicco et al., 2002; da Silva et al.,
2003; de Menezes et al., 2006). In addition to these
changes, it is known that both stress and stimulation of the
DMH can modulate the baroreceptor reflex (Kunos and
Varga, 1995; Hatton et al., 1997; Schadt and Hasser,
1998; Sevoz-Couche et al., 2003; McDowall et al., 2006).

his modulation during the defense reaction is necessary
o ensure that the changes in HR and BP can occur simul-
aneously, without compromise of either response (i.e.
ncreases in HR or BP). Studies in conscious animals
ndicate that during stress the increases in HR and BP are
ccompanied by resetting of the baroreceptor reflex (Hat-
on et al., 1997; Schadt and Hasser, 1998). In these stud-
es, the reflex control of HR was reset to higher levels of
rterial pressure without any changes in the gain. In addi-
ion, recent evidence by Kanbar and colleagues (2007)
emonstrated that the baroreflex control of sympathetic
ctivity is reset and sensitized during emotional stress
Kanbar et al., 2007).

The exact nature of DMH influence in the baroreceptor
eflex remains to be determined. An early report by Kunos
nd Varga showed that ipsilateral intra-nucleus tractus
olitarius (NTS) injection of BMI or 2-OH-saclofen (GABAB

antagonist), attenuated the tachycardia elicited by BMI
injection into the DMH. The tachycardia was also inhibited
by intra-NTS administration of EEA receptor channel
blockers. Authors concluded that the descending input
from the DMH to the NTS releases GABA via glutamate
acting on ionotropic glutamate receptors located on
GABAergic interneurons (Kunos and Varga, 1995). This
mechanism would inhibit baroreflex bradycardia during ac-
tivation of DMH. Similarly, a study by Sevoz-Couche and
colleagues (2003) demonstrated that electrical stimulation
of the DMH in anaesthetized rats also inhibits baroreflex
bradycardia. However, a recent report by McDowal and
colleagues showed that chemical disinhibition of DMH
neurons resets the baroreflex to higher levels of arterial
pressure, in the same way stress does (Hatton et al., 1997;
Schadt and Hasser, 2001; Kanbar et al., 2007), with the
baroreflex remaining effective and without losing sensitivity
(McDowall et al., 2006).

BRAIN FUNCTIONAL ASYMMETRY AND DMH

Left-right differences in the functional properties of bilateral
nervous system regions are known as lateralization of
function. This phenomenon has been observed at different
levels of the neuraxis (Toga and Thompson, 2003;

Stephan et al., 2007), including the hypothalamus from
several species (Harris et al., 1996). Studies revealed that,
under some conditions, stress may generate lateralized
and imbalanced autonomic outflow (Critchley, 2005). This
asymmetric autonomic activity may cause cardiac arrhyth-
mias, (Lane et al., 1992a,b). Wittling et al. found a functional
division between the cerebral hemispheres with the left dom-
inant in generating parasympathetic activity to the heart while
the right plays a greater role in generating the sympathetic
activity to the myocardium (Wittling et al., 1998a,b). If this
division is physiological, it may provide a substrate for
described cardiac arrhythmias. Pathways from the DMH
are predominantly lateralized such that most neurons on
one side do not project contralaterally, but rather they are
organized as ipsilateral “mirrors” (ter Horst and Luiten,
1986; Thompson et al., 1996). Additionally, anatomic pro-
jections from other nuclei involved in autonomic control to
sympathetic preganglionic neurons in the intermediolateral
column are also lateralized (Amendt et al., 1979; Blessing
et al., 1981; Zagon and Smith, 1993).

In the hypothalamus, the hypothesis of functional
asymmetry was first reported based upon the observation
that electrical stimulation of the right hypothalamus evokes
greater tachycardia than that evoked by identical stimula-
tion of the left (Fang and Wang, 1962). Recently, we
demonstrated that unilateral disinhibition of neurons in the

Fig. 4. Maximal changes in cardiovascular parameters from baseline
evoked by unilateral microinjection of BMI into right (white bars) and
left DMH (black bars) on two experimental protocols. Sequence for
injections into unilateral (R or L) DMH followed two different orderli-
ness: Protocol 1—First microinjection was done into L-DMH and the
second was into R-DMH; Protocol 2—Sequence for injections was
reverse of that used in protocol 1, for example, first into R-DMH and
second into L-DMH. (A) Heart rate (HR) and (B) renal sympathetic
nerve activity (RSNA) sampled from left renal nerve. * P�0.05—
protocol 1 (L vs. R); # P�0.05—protocol 2 (R vs. L). (A) shows
asymmetry with clear predominance of R-DMH in provoking greater
positive chronotropy. (B) shows lateralization in the pathways from
unilateral DMH which controls ipsilateral RSNA. Data taken from

Xavier et al., Neuroscience 164:1360-1368, 2009.
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DMH with BMI evokes Fos expression in different nuclei,
including the DMH itself, the midline rostral RP, and the
lateral septal nucleus, the parvocellular and magnocellular
subdivisions of the PVN, the NTS, and the ventrolateral
medulla. In the latter bilateral regions, labeling was in-
creased on both sides but was markedly greater ipsilateral
to the site of DMH stimulation (Zaretskaia et al., 2008). In
determining if cardiac sympathoexcitation evoked by acti-
vation of neurons on one side of the DMH is transmitted
preferentially through ipsilateral relays, we found that dis-
inhibition of the right DMH evokes a greater tachycardia
than that evoked from the left DMH (Xavier et al., 2009)
(Fig. 4). Additionally, disinhibition of the right DMH evokes
substantially larger changes in cardiac contractility com-
pared to those evoked from left DMH. This effect is inde-
pendent of the simultaneous changes in heart rate and
afterload and so might be interpreted as a direct positive
inotropic effect. Interestingly, in the same study we de-
tected a greater number of ectopic beats during the 10 min
following injections of BMI into the right DMH (Xavier et al.,
2010). This finding prompted us to speculate that recruiting
the right DMH during stress exposure might improve the
range of cardiac responses and increase the risk of ar-
rhythmic episodes.

The possibility that descending input to the DMH from
brain structures, such as the insular cortex, may be asym-
metric should also be considered (see Fig. 2). First, there
is anatomical and functional evidence for connections be-
tween the insular cortex and the hypothalamus (Cechetto
and Chen, 1990). Second, neural activity in the insular
cortex may have an arrythmogenic role according to past
findings. In rats, the cardiac effects of stimulation of the
insular cortex mimic the repolarization and structural
changes that occur with catecholamine-induced cardiomy-
opathy seen under certain clinical circumstances, including
death following extreme and prolonged stress, and these
effects are likely associated with sympathetic neural acti-
vation of the ventricular myocardium (Oppenheimer,
2007). Similarly, in humans, insular damage may produce
effects on cardiac repolarization (Sander and Klingelhofer,
1994). Third, there is evidence suggesting lateralization
and specialization of cardioregulatory function within the
insular cortex. The right insular cortex has been primarily
implicated with modulation of cardiac sympathetic nerve
activity and the left with effects primarily on cardiac vagal
activity. Interestingly, patients with stroke lateralized to the
left insular cortex reportedly exhibit impaired sympathova-
gal balance, with one third of the stroke patients develop-
ing sinus tachycardia even in the absence of significant
coronary disease (Oppenheimer, 2007). Whether or not
insular cortical imbalance might result in consequent
asymmetric activity of DMH neurons for triggering adverse
cardiac outcomes remains to be determined.

CONCLUSION AND PERSPECTIVES

In conclusion, although many of the details regarding the
role of the dorsomedial hypothalamus in the cardiovascu-

lar response to emotional stress remain to be determined,
considerable progress has been made in the past few
years in determining the central pathways involved. Un-
doubtedly, a critical step is to further investigate the impli-
cations of the lateralization observed in the descending
pathways from the DMH. The role of the DMH in adverse
cardiac events observed after cortical stimulation or dam-
age deserves extensive investigation. Elucidating the func-
tional organization of this network could provide a frame-
work for understanding how, in some conditions, stress
results in autonomic imbalance resulting in cardiovascular
risk.
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