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Abstract

We consider the Dirichlet problem with nonlocal coefficient given by −a(
∫
Ω |u|q dx)�pu = w(x)f (u) in a bounded, smooth

domain Ω ⊂ R
n (n � 2), where �p is the p-Laplacian, w is a weight function and the nonlinearity f (u) satisfies certain local

bounds. In contrast with the hypotheses usually made, no asymptotic behavior is assumed on f . We assume that the nonlocal
coefficient a(

∫
Ω |u|q dx) (q � 1) is defined by a continuous and nondecreasing function a : [0,∞) → [0,∞) satisfying a(t) > 0

for t > 0 and a(0) � 0. A positive solution is obtained by applying the Schauder Fixed Point Theorem. The case a(t) = tγ /q

(0 < γ < p − 1) will be considered as an example where asymptotic conditions on the nonlinearity provide the existence of
a sequence of positive solutions for the problem with arbitrarily large sup norm.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we consider the quasilinear elliptic problem with nonlocal coefficient given by⎧⎪⎨
⎪⎩

−a

( ∫
Ω

|u|q dx

)
�pu = w(x)f (u) in Ω,

u = 0 on ∂Ω,

(1)

where �pu = div(|∇u|p−2∇u) (p > 1) is the p-Laplacian, Ω ⊂ R
n (n > 1) is a bounded, smooth domain and both

the weight function w and the nonlinearity f are nonnegative and continuous.
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Fig. 1. The nonlinearity f passes through a “tunnel” Γ . The graph (a) displays the case p < 2, (b) the case p = 2 and (c) the case p > 2. Observe
that the parameters k1 < k2 depend on δ and M , respectively.

We assume that the nonlocal coefficient a(
∫
Ω

|u|q dx) (q � 1) is defined by a continuous and nondecreasing func-
tion a : [0,∞) → [0,∞) satisfying

a(t) > 0 for all t > 0 and a(0) � 0. (2)

This kind of problem is considered, e.g., in [1,5]. In the last paper, the function a is supposed, additionally, to be
strictly positive, that is, a(0) > 0. However, the arguments presented here allow us to treat also some instances where
a(0) = 0 as, for example, a(t) = tγ /q (0 < γ < p − 1). This kind of nonlocal coefficient will be presented at the end
of this paper as a prototype for producing examples not only of existence, but also of multiplicity of positive solutions
for the nonlocal problem (1).

We assume, besides, that the weight w :Ω → [0,∞) and the nonlinearity f : [0,∞) → R satisfy

(H1) Eventual zeroes of w are isolated: if w(x0) = 0, then there exists ε > 0 such that

0 < |x − x0| < ε ⇒ w(x) > 0. (3)

(H2) There exist positive constants δ < M such that{
0 � f (u) � k1(δ)M

p−1 for 0 � u � M,

k2(M)δp−1 � f (u) for δ � u � M,
(4)

where k1(δ) < k2(M) are positive parameters, which also depend on the region Ω and the weight w, that will
be defined later.

The last condition admits a geometric interpretation in terms of the graph of f in the u–v plane. It stays below of
the horizontal line v = k1(M) for u ∈ [0,M] and passes through a “tunnel” Γ defined by (see Fig. 1)

Γ = {
(u, v): δ � u � M, k2(M)δp−1 � v � k1(δ)M

p−1}. (5)

Our approach follows that introduced in [10,11] and further developed in [4] by using radial symmetrization tech-
niques. However, the exposition here is self-contained.

2. Preliminaries

In this section BR and Bα denote, respectively, balls centered at a fixed, but arbitrary point x0 ∈ Ω , whose radii are
such that Bα ⊂ BR ⊂ Ω . A suitable value of α will be defined later.

We intend to use the Schauder Fixed Point Theorem in the Banach space X = C(Ω) endowed with the sup norm.
For this we define the subset Y of X, which depends on the positive values δ < M and on the balls Bα ⊂ BR :

Y =
⎧⎨
⎩u ∈ X:

0 � u(x) � M, if x ∈ Ω,

δ � u(x) � M, if x ∈ Bα(x0) ⊂ Ω,

u(x) = 0, if x ∈ ∂Ω

⎫⎬
⎭ . (6)

It is clear that Y is a closed, convex and bounded subset of X. Moreover, if u ∈ Y , then

a

( ∫
|u|q dx

)
� a

( ∫
|u|q dx

)
� a

(|Bα|δq
)
> 0 (7)
Ω Bα



H. Bueno et al. / J. Math. Anal. Appl. 343 (2008) 151–158 153
and

a

( ∫
Ω

|u|q dx

)
� a

(
Mq |Ω|), (8)

where |Ω| = ∫
Ω

dx.
Now, we define the operator A :Y → X that associates to each u ∈ C(Ω) the unique weak solution v ∈ W 1

0 (Ω) ∩
C1,β(Ω) ⊂ X of the Dirichlet problem⎧⎨

⎩−�pv(x) = w(x)
f (u(x))

a(
∫
Ω

|u|q dx)
, x ∈ Ω,

v(x) = 0, x ∈ ∂Ω.

We claim that the operator A : X → X is well defined, continuous and compact. In fact, it is well known that, to
each h ∈ L∞, there exists a unique weak solution v ∈ W 1

0 (Ω) ∩ C1,β(Ω) of the Dirichlet problem −�pv = h in Ω ,
for some 0 < β < 1 (see [8], [13, Lemma 2] and [14] for interior estimates, and [12] for boundary estimates). As a
consequence of the estimates of Lieberman and Tolksdorf [12,14], combined with the L∞-estimates of Anane [2], we
also have that (−�p)−1 is continuous and compact on X. (This schematic proof presented here is proposed in [3].)

Coupling our claim with the properties of Y , specially (7), guarantees that A is a continuous and compact operator
from Y to X.

To apply Schauder’s Fixed Point Theorem we need to show that A(Y) ⊂ Y . In order to do that, we state some
simple results.

We start by introducing a simple version of a useful comparison principle. General versions are established in [6,
7,9,13].

Lemma 1. For i ∈ {1,2}, let hi ∈ C(Ω) and ui ∈ C1,α(Ω) be the weak solution of the problem −�pui = hi in Ω .
If h1 � h2 in Ω and u1 � u2 in ∂Ω , then u1 � u2 in Ω .

The second result concerns the solution of the radial Dirichlet problem{
�pu = h

(|x − x0|
)

in BR,

u = 0 on ∂BR.
(9)

Lemma 2. Suppose that h ∈ C(BR). Then, the (unique) solution of (9) is

u(x) =
R∫

|x−x0|

( θ∫
0

(
s

θ

)n−1

h(s) ds

) 1
p−1

dθ, |x − x0| � R.

Moreover, u belongs to C2(BR), if 1 < p � 2, and, if p > 2, u belongs to C1,β(BR), where β = 1/(p − 1).

Proof. It is straightforward to verify that the solution of (9) is the function stated. Regularity is trivial for r = |x| > 0,
and for r = 0 we have

u′(0) = lim
r→0+

u(r) − u(0)

r
= − lim

r→0+
1

r

r∫
0

( θ∫
0

(
s

θ

)n−1

h(s) ds

) 1
p−1

dθ = 0

and

lim
r→0+

u′(r)
rβ

= − lim
r→0+

1

rβ

( r∫
0

(
s

r

)n−1

h(s) ds

) 1
p−1

= −
(

h(0)

n
lim

r→0+ r1−β(p−1)

) 1
p−1

,

for any β > 0.
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Therefore,

lim
r→0+

u′(r)
rβ

=

⎧⎪⎨
⎪⎩

0 if 1 < p < 2 and β = 1,

−h(0)
n

if p = 2 and β = 1,

−(
h(0)
n

) 1
p−1 if p > 2 and β = 1

p−1 .

Lemma 1 implies the uniqueness of u. �
We are now in a position to define the parameters k1(δ) and k2(M). For this, let φ ∈ C1,β(Ω) be the solution of{−�pφ = w in Ω,

φ = 0 on ∂Ω.
(10)

Lemma 1 implies that φ � 0 in Ω . However, taking into account the properties of w, we also have that ‖φ‖∞ > 0.
Thus, we can define the positive parameter (that also depends on α)

k1(δ) := a
(|Bα|δq

)‖φ‖1−p∞ (11)

that appears in hypothesis (4). The value of α will be fixed later in (13), but we would like to emphasize that this
value, as well as ‖φ‖∞, depends only on the region Ω and on the weight w.

Let Φ be the function defined by

Φ :=
(

k1(δ)

a(|Bα|δq)

) 1
p−1

Mφ.

We observe that 0 � Φ(x) � M for all x ∈ Ω , Φ ≡ 0 on ∂Ω and

−�pΦ(x) = k1(δ)M
p−1

a(|Bα|δq)
w(x), for all x ∈ Ω.

Moreover, it follows from (4) and (7) that, for any u ∈ Y ,

−�p(Au) = w(x)
f (u)

a(
∫
Ω

|u|q dx)
� w(x)

k1(δ)M
p−1

a(|Bα|δq)
= −�pΦ, for all x ∈ Ω,

(Au)(x) = 0 = Φ(x), for all x ∈ ∂Ω.

Hence, Lemma 1 yields

0 � Au � Φ � M for all u ∈ Y. (12)

To define the parameter k2(M), we consider the radial symmetrization ω ∈ C[0,R] of the weight function w:

ω(s) =
{

min|y−x0|=s w(y), if 0 < s � R,

w(x0), if s = 0.

We define α ∈ (0,R) by

R∫
α

( α∫
0

(
s

θ

)n−1

ω(s) ds

) 1
p−1

dθ = max
0�r�R

R∫
r

( r∫
0

(
s

θ

)n−1

ω(s) ds

) 1
p−1

dθ. (13)

The right-hand side of the equality is nonnegative and vanishes at r = 0 and r = R. Since ω(s) > 0 for all s ∈ (0, ε)

and some ε > 0 sufficiently small (because the zeroes of w are isolated), this function attains a maximum value at the
point that defines α. This value depends only on the region Ω and on the weight w, as claimed before.

Finally, we put

k2(M) := a
(|Ω|Mq

)[ R∫ ( α∫ (
s

θ

)n−1

ω(s) ds

) 1
p−1

dθ

]1−p

. (14)
α 0
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We observe that
R∫

α

( α∫
0

(
s

θ

)n−1
ω(s)k2(M)

a(|Ω|Mq)
ds

) 1
p−1

dθ = 1 (15)

and that

k1(δ)

k2(M)
= cp−1 a(|Bα|δq)

a(|Ω|Mq)
, (16)

where

c :=
∫ R

α

( ∫ α

0 ( s
θ
)n−1ω(s) ds

) 1
p−1 dθ

‖φ‖∞
. (17)

We will now prove that

k1(δ) < k2(M).

For this, we show that a(|Bα|δq) � a(|Ω|Mq) and that c < 1.
The first inequality is an immediate consequence of the monotonicity of a, since δ < M and Bα ⊂ Ω imply that

|Bα|δq = δq

∫
Bα

dx < Mq

∫
Ω

dx = Mq |Ω|.

To verify that c < 1, let φR be defined by

φR(x) :=
R∫

|x−x0|

( θ∫
0

(
s

θ

)n−1

ω(s) ds

) 1
p−1

dθ.

We have that

−�pφR = ω
(|x − x0|

)
� w(x) = −�pφ, for all x ∈ BR,

φR(x) = 0 � φ(x), for all x ∈ ∂BR.

Hence, Lemma 1 yields φR � φ in BR and

‖φ‖∞ � ‖φR‖∞ =
R∫

0

( θ∫
0

(
s

θ

)n−1

ω(s) ds

) 1
p−1

dθ >

R∫
α

( α∫
0

(
s

θ

)n−1

ω(s) ds

) 1
p−1

dθ.

3. The theorem

In this section we prove the main result of this paper:

Theorem 3. Suppose that f satisfies (4) for k1(δ) and k2(M) defined by (11) and (14), respectively. Then, the
operator A has a fixed point u ∈ C1,β(Ω), which is a solution of (1) satisfying

δ � ‖u‖∞ � M.

Proof. It suffices to show that the set Y defined by (6) is invariant under the operator A, since the result follows then
from Schauder’s Fixed Point Theorem.

Let u ∈ Y and v = Au ∈ C1,β(Ω). Since v = 0 on ∂Ω , the inequality (12) guarantees that we only have to show
that v � δ in Bα . For this, as in [4], we define the auxiliary continuous function

h(r) =
{

min|y−x0|�r f (u(y)), if 0 < r � R,
f (v(x0)), if r = 0.
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It is a consequence of the inequality (7) that h is well defined and that h(|x − x0|) � f (u(x)) for all x ∈ BR .
Furthermore, for each s ∈ (0, α), there exists some ys ∈ Bs ⊂ Bα such that

h(s) = f
(
u(ys)

)
.

Therefore, (4) and (7) imply that

h(s) � k2(M)δp−1, for all s ∈ (0, α). (18)

Now, Lemma 2 guarantees that the nonnegative function defined by

z(x) :=
R∫

|x−x0|

( θ∫
0

(
s

θ

)n−1
ω(s)h(s)

a(Mq |Ω|) ds

) 1
p−1

dθ, for |x − x0| � R,

satisfies

−�pz = ω(|x − x0|)h(|x − x0|)
a(Mq |Ω|) , for x ∈ BR,

z(x) = 0, for x ∈ ∂BR. (19)

We also have that z � v in BR. In fact, this follows from Lemma 1, since

−�pz = ωh

a(Mq |Ω|) � wf (u)

a(
∫
Ω

|u|q dx)
= −�pv in BR

and z = 0 � v on ∂Ω .
Because z � v in BR , we complete the proof by verifying that δ � z in Bα ⊂ BR . But this is a consequence of the

definition of z and k2(M) and of the inequality (18) since, if x ∈ Bα , we have that

z(x) �
R∫

α

( θ∫
0

(
s

θ

)n−1
ω(s)h(s)

a(Mq |Ω|) ds

) 1
p−1

dθ

�
R∫

α

( α∫
0

(
s

θ

)n−1
ω(s)h(s)

a(Mq |Ω|) ds

) 1
p−1

dθ

�
R∫

α

( α∫
0

(
s

θ

)n−1
ω(s)k2(M)δp−1

a(Mq |Ω|) ds

) 1
p−1

dθ = δ,

the last equality being a consequence of (15). �
4. An example

In this section we present an explicit application of Theorem 3, by considering the nonlocal problem{−‖u‖γ
q �pu = w(x)uβ in Ω,

u = 0 on ∂Ω,
(20)

where ‖u‖q denotes the Lq -norm in Ω . Here we have a(t) = tγ /q and f (u) = uβ . We claim that a necessary and
sufficient condition for the application of Theorem 3 is

0 < β + γ < p − 1. (21)

Since the nonlinearity uβ is increasing, in order to verify (4) it is sufficient to solve the system (in the unknowns δ

and M){
k1(δ)M

p−1 = Mβ,
p−1 β
k2(M)δ = δ .
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Taking into account the definitions of k1(δ), k2(M) and the equality (16), we can write this system as{
|Bα| γ

q δγ ‖φ‖1−p∞ Mp−1 = Mβ,

|Ω| γ
q Mγ

(
c‖φ‖∞

)1−p
δp−1 = δβ.

Dividing the first equation by the second, we find(
δ

M

)p−1−γ−β

= C(w,Ω),

where

C(w,Ω) :=
( |Bα|

|Ω|
) γ

q

cp−1 < 1.

Therefore, since δ < M , condition (21) is necessary and sufficient to obtain

δ = θM

and

M = (‖φ‖p−1∞ |Bα|− γ
q θ−γ

) 1
p−1−β+γ = (|Ω|− γ

q
(
c‖φ‖∞

)p−1
θ1−p+β

) 1
p−1−β+γ ,

where

θ := C(w,Ω)
1

p−1−β−γ .

Therefore, it results from Theorem 3 the existence of at least one solution u of (20), with

δ � ‖u‖∞ � M.

5. Multiplicity of solutions

It is clear that

k2(M)δp−1 � k1(δ)M
p−1 for 0 < δ < M, (22)

is a necessary and sufficient condition for the existence of a “tunnel.” We remark that, in the case of the equality
k2(M) = k1(δ), the “tunnel” is degenerated, in the sense that it is a segment of the line. In this case, a nonlinearity f

passes through it if, and only if, f is constant between δ and M .
As a consequence of (16), condition (22) is equivalent to

cp−1 a(|Bα|δq)

a(|Ω|Mq)
�

(
δ

M

)p−1

for 0 < δ < M, (23)

where c < 1 is defined by (17). Therefore, it is evident that the existence of a “tunnel” is connected with properties of
the nonlocal coefficient a(t).

On the other hand, if a ≡ 1, the choice of 0 < δ < M such that

0 <
δ

M
� cp−1 < 1

always produces a “tunnel.” By choosing sequences (δj ) and (Mj ) satisfying

δj < Mj < δj+1 < Mj+1 and
δj

Mj

< Np−1

we obtain a sequence of “tunnels” Γj such that Γj ∩ Γi = ∅ if j �= i. It is then easy to produce examples of nonlinear-
ities f (u) for which problem (1) has a sequence (uj ) of (distinct) solutions satisfying

δj � ‖uj‖∞ � Mj < δj+1 � ‖uj+1‖∞ � Mj+1, (24)

thus implying that ‖uj‖∞ → ∞.
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For instance, such a nonlinearity can be chosen to be continuous, increasing and satisfying{
f (δj ) = k2(Mj )δ

p−1
j ,

f (Mj ) = k1(δj )M
p−1.

(25)

Since the graph of this function passes through all tunnels Γj we find, according to Theorem 3, a sequence (uj ) of
positive solutions satisfying (24).

Let us now consider again the case a(t) = tγ /q . Following the same reasoning just presented, denote μ =
δ/M ∈ (0,1). Then, condition (23) can be written as

μp−1 � cp−1
( |Bα|

|Ω|
) γ

q

μγ .

Thus, if 0 < γ < p − 1 and

μp−1−γ � K∗ := cp−1
( |Bα|

|Ω|
) γ

q ∈ (0,1),

then there exists a sequence of disjunct tunnels Γj formed by sequences {δj } and {Mj } satisfying

δj < Mj < δj+1 < Mj+1 and
δj

Mj

< K∗.

As in the case a ≡ 1, these sequences can be used to produce a nonlinearity f (u) such that the nonlocal problem

−‖u‖γ
q �pu = w(x)f (u) in Ω,

u = 0 on ∂Ω,

has a sequence (uj ) of solutions satisfying (24). For this, it is enough to take a continuous and increasing function f (u)

satisfying (25).
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