Existence and multiplicity of positive solutions for the p-Laplacian with nonlocal coefficient ${ }^{\text {NT}}$

H. Bueno ${ }^{\text {a, }, ~}$, G. Ercole ${ }^{\text {a }}$, W. Ferreira, A. Zumpano ${ }^{\text {a }}$
${ }^{a}$ Universidade Federal de Minas Gerais, Departamento de Matematica, Belo Horizonte, Minas Gerais, Brazil
Received 11 October 2006
Available online 4 January 2008
Submitted by R. Manásevich

Abstract

We consider the Dirichlet problem with nonlocal coefficient given by $-a\left(\int_{\Omega}|u|^{q} d x\right) \Delta_{p} u=\mathrm{w}(x) f(u)$ in a bounded, smooth domain $\Omega \subset \mathbb{R}^{n}(n \geqslant 2)$, where Δ_{p} is the p-Laplacian, w is a weight function and the nonlinearity $f(u)$ satisfies certain local bounds. In contrast with the hypotheses usually made, no asymptotic behavior is assumed on f. We assume that the nonlocal coefficient $a\left(\int_{\Omega}|u|^{q} d x\right)(q \geqslant 1)$ is defined by a continuous and nondecreasing function $a:[0, \infty) \rightarrow[0, \infty)$ satisfying $a(t)>0$ for $t>0$ and $a(0) \geqslant 0$. A positive solution is obtained by applying the Schauder Fixed Point Theorem. The case $a(t)=t \gamma / q$ $(0<\gamma<p-1)$ will be considered as an example where asymptotic conditions on the nonlinearity provide the existence of a sequence of positive solutions for the problem with arbitrarily large sup norm.

© 2008 Elsevier Inc. All rights reserved.
Keywords: p-Laplacian; Nonlocal coefficient; Existence and multiplicity of positive solutions

1. Introduction

In this paper we consider the quasilinear elliptic problem with nonlocal coefficient given by

$$
\begin{cases}-a\left(\int_{\Omega}|u|^{q} d x\right) \Delta_{p} u=\mathrm{w}(x) f(u) & \text { in } \Omega \tag{1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)(p>1)$ is the p-Laplacian, $\Omega \subset \mathbb{R}^{n}(n>1)$ is a bounded, smooth domain and both the weight function w and the nonlinearity f are nonnegative and continuous.

[^0]

Fig. 1. The nonlinearity f passes through a "tunnel" Γ. The graph (a) displays the case $p<2$, (b) the case $p=2$ and (c) the case $p>2$. Observe that the parameters $k_{1}<k_{2}$ depend on δ and M, respectively.

We assume that the nonlocal coefficient $a\left(\int_{\Omega}|u|^{q} d x\right)(q \geqslant 1)$ is defined by a continuous and nondecreasing function $a:[0, \infty) \rightarrow[0, \infty)$ satisfying

$$
\begin{equation*}
a(t)>0 \quad \text { for all } t>0 \quad \text { and } \quad a(0) \geqslant 0 . \tag{2}
\end{equation*}
$$

This kind of problem is considered, e.g., in [1,5]. In the last paper, the function a is supposed, additionally, to be strictly positive, that is, $a(0)>0$. However, the arguments presented here allow us to treat also some instances where $a(0)=0$ as, for example, $a(t)=t^{\gamma / q}(0<\gamma<p-1)$. This kind of nonlocal coefficient will be presented at the end of this paper as a prototype for producing examples not only of existence, but also of multiplicity of positive solutions for the nonlocal problem (1).

We assume, besides, that the weight $\mathrm{w}: \Omega \rightarrow[0, \infty)$ and the nonlinearity $f:[0, \infty) \rightarrow \mathbb{R}$ satisfy
(H1) Eventual zeroes of w are isolated: if $\mathrm{w}\left(x_{0}\right)=0$, then there exists $\epsilon>0$ such that

$$
\begin{equation*}
0<\left|x-x_{0}\right|<\epsilon \quad \Rightarrow \quad \mathrm{w}(x)>0 \tag{3}
\end{equation*}
$$

(H2) There exist positive constants $\delta<M$ such that

$$
\begin{cases}0 \leqslant f(u) \leqslant k_{1}(\delta) M^{p-1} & \text { for } 0 \leqslant u \leqslant M \tag{4}\\ k_{2}(M) \delta^{p-1} \leqslant f(u) & \text { for } \delta \leqslant u \leqslant M\end{cases}
$$

where $k_{1}(\delta)<k_{2}(M)$ are positive parameters, which also depend on the region Ω and the weight w , that will be defined later.

The last condition admits a geometric interpretation in terms of the graph of f in the $u-v$ plane. It stays below of the horizontal line $v=k_{1}(M)$ for $u \in[0, M]$ and passes through a "tunnel" Γ defined by (see Fig. 1)

$$
\begin{equation*}
\Gamma=\left\{(u, v): \delta \leqslant u \leqslant M, k_{2}(M) \delta^{p-1} \leqslant v \leqslant k_{1}(\delta) M^{p-1}\right\} . \tag{5}
\end{equation*}
$$

Our approach follows that introduced in [10,11] and further developed in [4] by using radial symmetrization techniques. However, the exposition here is self-contained.

2. Preliminaries

In this section B_{R} and B_{α} denote, respectively, balls centered at a fixed, but arbitrary point $x_{0} \in \Omega$, whose radii are such that $B_{\alpha} \subset B_{R} \subset \Omega$. A suitable value of α will be defined later.

We intend to use the Schauder Fixed Point Theorem in the Banach space $X=C(\bar{\Omega})$ endowed with the sup norm. For this we define the subset Y of X, which depends on the positive values $\delta<M$ and on the balls $B_{\alpha} \subset B_{R}$:

$$
Y=\left\{\begin{array}{ll}
0 \leqslant u(x) \leqslant M, & \text { if } x \in \bar{\Omega}, \tag{6}\\
u \in X: & \delta \leqslant u(x) \leqslant M, \\
u(x)=0, & \text { if } x \in B_{\alpha}\left(x_{0}\right) \subset \bar{\Omega},
\end{array}\right\}
$$

It is clear that Y is a closed, convex and bounded subset of X. Moreover, if $u \in Y$, then

$$
\begin{equation*}
a\left(\int_{\Omega}|u|^{q} d x\right) \geqslant a\left(\int_{B_{\alpha}}|u|^{q} d x\right) \geqslant a\left(\left|B_{\alpha}\right| \delta^{q}\right)>0 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
a\left(\int_{\Omega}|u|^{q} d x\right) \leqslant a\left(M^{q}|\Omega|\right) \tag{8}
\end{equation*}
$$

where $|\Omega|=\int_{\Omega} d x$.
Now, we define the operator $A: Y \rightarrow X$ that associates to each $u \in C(\bar{\Omega})$ the unique weak solution $v \in W_{0}^{1}(\bar{\Omega}) \cap$ $C^{1, \beta}(\bar{\Omega}) \subset X$ of the Dirichlet problem

$$
\begin{cases}-\Delta_{p} v(x)=\mathrm{w}(x) \frac{f(u(x))}{a\left(\int_{\Omega}|u|^{q} d x\right)}, & x \in \Omega, \\ v(x)=0, & x \in \partial \Omega .\end{cases}
$$

We claim that the operator $A: X \rightarrow X$ is well defined, continuous and compact. In fact, it is well known that, to each $h \in L^{\infty}$, there exists a unique weak solution $v \in W_{0}^{1}(\bar{\Omega}) \cap C^{1, \beta}(\bar{\Omega})$ of the Dirichlet problem $-\Delta_{p} v=h$ in Ω, for some $0<\beta<1$ (see [8], [13, Lemma 2] and [14] for interior estimates, and [12] for boundary estimates). As a consequence of the estimates of Lieberman and Tolksdorf [12,14], combined with the L^{∞}-estimates of Anane [2], we also have that $\left(-\Delta_{p}\right)^{-1}$ is continuous and compact on X. (This schematic proof presented here is proposed in [3].)

Coupling our claim with the properties of Y, specially (7), guarantees that A is a continuous and compact operator from Y to X.

To apply Schauder's Fixed Point Theorem we need to show that $A(Y) \subset Y$. In order to do that, we state some simple results.

We start by introducing a simple version of a useful comparison principle. General versions are established in [6, 7,9,13].

Lemma 1. For $i \in\{1,2\}$, let $h_{i} \in C(\Omega)$ and $u_{i} \in C^{1, \alpha}(\bar{\Omega})$ be the weak solution of the problem $-\Delta_{p} u_{i}=h_{i}$ in Ω. If $h_{1} \leqslant h_{2}$ in Ω and $u_{1} \leqslant u_{2}$ in $\partial \Omega$, then $u_{1} \leqslant u_{2}$ in Ω.

The second result concerns the solution of the radial Dirichlet problem

$$
\begin{cases}\Delta_{p} u=h\left(\left|x-x_{0}\right|\right) & \text { in } B_{R}, \tag{9}\\ u=0 & \text { on } \partial B_{R} .\end{cases}
$$

Lemma 2. Suppose that $h \in C\left(\overline{B_{R}}\right)$. Then, the (unique) solution of (9) is

$$
u(x)=\int_{\left|x-x_{0}\right|}^{R}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{n-1} h(s) d s\right)^{\frac{1}{p-1}} d \theta, \quad\left|x-x_{0}\right| \leqslant R
$$

Moreover, u belongs to $C^{2}\left(B_{R}\right)$, if $1<p \leqslant 2$, and, if $p>2$, u belongs to $C^{1, \beta}\left(B_{R}\right)$, where $\beta=1 /(p-1)$.
Proof. It is straightforward to verify that the solution of (9) is the function stated. Regularity is trivial for $r=|x|>0$, and for $r=0$ we have

$$
u^{\prime}(0)=\lim _{r \rightarrow 0^{+}} \frac{u(r)-u(0)}{r}=-\lim _{r \rightarrow 0^{+}} \frac{1}{r} \int_{0}^{r}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{n-1} h(s) d s\right)^{\frac{1}{p-1}} d \theta=0
$$

and

$$
\lim _{r \rightarrow 0^{+}} \frac{u^{\prime}(r)}{r^{\beta}}=-\lim _{r \rightarrow 0^{+}} \frac{1}{r^{\beta}}\left(\int_{0}^{r}\left(\frac{s}{r}\right)^{n-1} h(s) d s\right)^{\frac{1}{p-1}}=-\left(\frac{h(0)}{n} \lim _{r \rightarrow 0^{+}} r^{1-\beta(p-1)}\right)^{\frac{1}{p-1}}
$$

for any $\beta>0$.

Therefore,

$$
\lim _{r \rightarrow 0^{+}} \frac{u^{\prime}(r)}{r^{\beta}}= \begin{cases}0 & \text { if } 1<p<2 \text { and } \beta=1 \\ -\frac{h(0)}{n} & \text { if } p=2 \text { and } \beta=1 \\ -\left(\frac{h(0)}{n}\right)^{\frac{1}{p-1}} & \text { if } p>2 \text { and } \beta=\frac{1}{p-1}\end{cases}
$$

Lemma 1 implies the uniqueness of u.
We are now in a position to define the parameters $k_{1}(\delta)$ and $k_{2}(M)$. For this, let $\phi \in C^{1, \beta}(\bar{\Omega})$ be the solution of

$$
\begin{cases}-\Delta_{p} \phi=\mathrm{w} & \text { in } \Omega, \tag{10}\\ \phi=0 & \text { on } \partial \Omega .\end{cases}
$$

Lemma 1 implies that $\phi \geqslant 0$ in Ω. However, taking into account the properties of w, we also have that $\|\phi\|_{\infty}>0$. Thus, we can define the positive parameter (that also depends on α)

$$
\begin{equation*}
k_{1}(\delta):=a\left(\left|B_{\alpha}\right| \delta^{q}\right)\|\phi\|_{\infty}^{1-p} \tag{11}
\end{equation*}
$$

that appears in hypothesis (4). The value of α will be fixed later in (13), but we would like to emphasize that this value, as well as $\|\phi\|_{\infty}$, depends only on the region Ω and on the weight w.

Let Φ be the function defined by

$$
\Phi:=\left(\frac{k_{1}(\delta)}{a\left(\left|B_{\alpha}\right| \delta^{q}\right)}\right)^{\frac{1}{p-1}} M \phi
$$

We observe that $0 \leqslant \Phi(x) \leqslant M$ for all $x \in \Omega, \Phi \equiv 0$ on $\partial \Omega$ and

$$
-\Delta_{p} \Phi(x)=\frac{k_{1}(\delta) M^{p-1}}{a\left(\left|B_{\alpha}\right| \delta^{q}\right)} \mathrm{w}(x), \quad \text { for all } x \in \Omega
$$

Moreover, it follows from (4) and (7) that, for any $u \in Y$,

$$
\begin{aligned}
& -\Delta_{p}(A u)=\mathrm{w}(x) \frac{f(u)}{a\left(\int_{\Omega}|u|^{q} d x\right)} \leqslant \mathrm{w}(x) \frac{k_{1}(\delta) M^{p-1}}{a\left(\left|B_{\alpha}\right| \delta^{q}\right)}=-\Delta_{p} \Phi, \quad \text { for all } x \in \Omega, \\
& (A u)(x)=0=\Phi(x), \quad \text { for all } x \in \partial \Omega .
\end{aligned}
$$

Hence, Lemma 1 yields

$$
\begin{equation*}
0 \leqslant A u \leqslant \Phi \leqslant M \quad \text { for all } u \in Y . \tag{12}
\end{equation*}
$$

To define the parameter $k_{2}(M)$, we consider the radial symmetrization $\omega \in C[0, R]$ of the weight function w :

$$
\omega(s)= \begin{cases}\min _{\left|y-x_{0}\right|=s} \mathrm{w}(y), & \text { if } 0<s \leqslant R, \\ \mathrm{w}\left(x_{0}\right), & \text { if } s=0 .\end{cases}
$$

We define $\alpha \in(0, R)$ by

$$
\begin{equation*}
\int_{\alpha}^{R}\left(\int_{0}^{\alpha}\left(\frac{s}{\theta}\right)^{n-1} \omega(s) d s\right)^{\frac{1}{p-1}} d \theta=\max _{0 \leqslant r \leqslant R} \int_{r}^{R}\left(\int_{0}^{r}\left(\frac{s}{\theta}\right)^{n-1} \omega(s) d s\right)^{\frac{1}{p-1}} d \theta \tag{13}
\end{equation*}
$$

The right-hand side of the equality is nonnegative and vanishes at $r=0$ and $r=R$. Since $\omega(s)>0$ for all $s \in(0, \epsilon)$ and some $\epsilon>0$ sufficiently small (because the zeroes of w are isolated), this function attains a maximum value at the point that defines α. This value depends only on the region Ω and on the weight w , as claimed before.

Finally, we put

$$
\begin{equation*}
k_{2}(M):=a\left(|\Omega| M^{q}\right)\left[\int_{\alpha}^{R}\left(\int_{0}^{\alpha}\left(\frac{s}{\theta}\right)^{n-1} \omega(s) d s\right)^{\frac{1}{p-1}} d \theta\right]^{1-p} \tag{14}
\end{equation*}
$$

We observe that

$$
\begin{equation*}
\int_{\alpha}^{R}\left(\int_{0}^{\alpha}\left(\frac{s}{\theta}\right)^{n-1} \frac{\omega(s) k_{2}(M)}{a\left(|\Omega| M^{q}\right)} d s\right)^{\frac{1}{p-1}} d \theta=1 \tag{15}
\end{equation*}
$$

and that

$$
\begin{equation*}
\frac{k_{1}(\delta)}{k_{2}(M)}=c^{p-1} \frac{a\left(\left|B_{\alpha}\right| \delta^{q}\right)}{a\left(|\Omega| M^{q}\right)} \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
c:=\frac{\int_{\alpha}^{R}\left(\int_{0}^{\alpha}\left(\frac{s}{\theta}\right)^{n-1} \omega(s) d s\right)^{\frac{1}{p-1}} d \theta}{\|\phi\|_{\infty}} . \tag{17}
\end{equation*}
$$

We will now prove that

$$
k_{1}(\delta)<k_{2}(M)
$$

For this, we show that $a\left(\left|B_{\alpha}\right| \delta^{q}\right) \leqslant a\left(|\Omega| M^{q}\right)$ and that $c<1$.
The first inequality is an immediate consequence of the monotonicity of a, since $\delta<M$ and $B_{\alpha} \subset \Omega$ imply that

$$
\left|B_{\alpha}\right| \delta^{q}=\delta^{q} \int_{B_{\alpha}} d x<M^{q} \int_{\Omega} d x=M^{q}|\Omega| .
$$

To verify that $c<1$, let ϕ_{R} be defined by

$$
\phi_{R}(x):=\int_{\left|x-x_{0}\right|}^{R}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{n-1} \omega(s) d s\right)^{\frac{1}{p-1}} d \theta
$$

We have that

$$
\begin{aligned}
& -\Delta_{p} \phi_{R}=\omega\left(\left|x-x_{0}\right|\right) \leqslant \mathrm{w}(x)=-\Delta_{p} \phi, \quad \text { for all } x \in B_{R}, \\
& \phi_{R}(x)=0 \leqslant \phi(x), \quad \text { for all } x \in \partial B_{R} .
\end{aligned}
$$

Hence, Lemma 1 yields $\phi_{R} \leqslant \phi$ in B_{R} and

$$
\|\phi\|_{\infty} \geqslant\left\|\phi_{R}\right\|_{\infty}=\int_{0}^{R}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{n-1} \omega(s) d s\right)^{\frac{1}{p-1}} d \theta>\int_{\alpha}^{R}\left(\int_{0}^{\alpha}\left(\frac{s}{\theta}\right)^{n-1} \omega(s) d s\right)^{\frac{1}{p-1}} d \theta
$$

3. The theorem

In this section we prove the main result of this paper:
Theorem 3. Suppose that f satisfies (4) for $k_{1}(\delta)$ and $k_{2}(M)$ defined by (11) and (14), respectively. Then, the operator A has a fixed point $u \in C^{1, \beta}(\bar{\Omega})$, which is a solution of (1) satisfying

$$
\delta \leqslant\|u\|_{\infty} \leqslant M .
$$

Proof. It suffices to show that the set Y defined by (6) is invariant under the operator A, since the result follows then from Schauder's Fixed Point Theorem.

Let $u \in Y$ and $v=A u \in C^{1, \beta}(\bar{\Omega})$. Since $v=0$ on $\partial \Omega$, the inequality (12) guarantees that we only have to show that $v \geqslant \delta$ in B_{α}. For this, as in [4], we define the auxiliary continuous function

$$
h(r)= \begin{cases}\min _{\left|y-x_{0}\right| \leqslant r} f(u(y)), & \text { if } 0<r \leqslant R, \\ f\left(v\left(x_{0}\right)\right), & \text { if } r=0 .\end{cases}
$$

It is a consequence of the inequality (7) that h is well defined and that $h\left(\left|x-x_{0}\right|\right) \leqslant f(u(x))$ for all $x \in B_{R}$. Furthermore, for each $s \in(0, \alpha)$, there exists some $y_{s} \in B_{s} \subset B_{\alpha}$ such that

$$
h(s)=f\left(u\left(y_{s}\right)\right) .
$$

Therefore, (4) and (7) imply that

$$
\begin{equation*}
h(s) \geqslant k_{2}(M) \delta^{p-1}, \quad \text { for all } s \in(0, \alpha) \tag{18}
\end{equation*}
$$

Now, Lemma 2 guarantees that the nonnegative function defined by

$$
z(x):=\int_{\left|x-x_{0}\right|}^{R}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{n-1} \frac{\omega(s) h(s)}{a\left(M^{q}|\Omega|\right)} d s\right)^{\frac{1}{p-1}} d \theta, \quad \text { for }\left|x-x_{0}\right| \leqslant R,
$$

satisfies

$$
\begin{align*}
& -\Delta_{p} z=\frac{\omega\left(\left|x-x_{0}\right|\right) h\left(\left|x-x_{0}\right|\right)}{a\left(M^{q}|\Omega|\right)}, \quad \text { for } x \in B_{R}, \\
& z(x)=0, \quad \text { for } x \in \partial B_{R} . \tag{19}
\end{align*}
$$

We also have that $z \leqslant v$ in B_{R}. In fact, this follows from Lemma 1, since

$$
-\Delta_{p} z=\frac{\omega h}{a\left(M^{q}|\Omega|\right)} \leqslant \frac{\mathrm{w} f(u)}{a\left(\int_{\Omega}|u|^{q} d x\right)}=-\Delta_{p} v \quad \text { in } B_{R}
$$

and $z=0 \leqslant v$ on $\partial \Omega$.
Because $z \leqslant v$ in B_{R}, we complete the proof by verifying that $\delta \leqslant z$ in $B_{\alpha} \subset B_{R}$. But this is a consequence of the definition of z and $k_{2}(M)$ and of the inequality (18) since, if $x \in B_{\alpha}$, we have that

$$
\begin{aligned}
z(x) & \geqslant \int_{\alpha}^{R}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{n-1} \frac{\omega(s) h(s)}{a\left(M^{q}|\Omega|\right)} d s\right)^{\frac{1}{p-1}} d \theta \\
& \geqslant \int_{\alpha}^{R}\left(\int_{0}^{\alpha}\left(\frac{s}{\theta}\right)^{n-1} \frac{\omega(s) h(s)}{a\left(M^{q}|\Omega|\right)} d s\right)^{\frac{1}{p-1}} d \theta \\
& \geqslant \int_{\alpha}^{R}\left(\int_{0}^{\alpha}\left(\frac{s}{\theta}\right)^{n-1} \frac{\omega(s) k_{2}(M) \delta^{p-1}}{a\left(M^{q}|\Omega|\right)} d s\right)^{\frac{1}{p-1}} d \theta=\delta
\end{aligned}
$$

the last equality being a consequence of (15).

4. An example

In this section we present an explicit application of Theorem 3, by considering the nonlocal problem

$$
\begin{cases}-\|u\|_{q}^{\gamma} \Delta_{p} u=\mathrm{w}(x) u^{\beta} & \text { in } \Omega \tag{20}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\|u\|_{q}$ denotes the L_{q}-norm in Ω. Here we have $a(t)=t^{\gamma / q}$ and $f(u)=u^{\beta}$. We claim that a necessary and sufficient condition for the application of Theorem 3 is

$$
\begin{equation*}
0<\beta+\gamma<p-1 \tag{21}
\end{equation*}
$$

Since the nonlinearity u^{β} is increasing, in order to verify (4) it is sufficient to solve the system (in the unknowns δ and M)

$$
\left\{\begin{array}{l}
k_{1}(\delta) M^{p-1}=M^{\beta}, \\
k_{2}(M) \delta^{p-1}=\delta^{\beta}
\end{array}\right.
$$

Taking into account the definitions of $k_{1}(\delta), k_{2}(M)$ and the equality (16), we can write this system as

$$
\left\{\begin{array}{l}
\left\lvert\, B_{\alpha}{ }^{\frac{\gamma}{q}} \delta^{\gamma}\|\phi\|_{\infty}^{1-p} M^{p-1}=M^{\beta}\right., \\
|\Omega|^{\frac{\gamma}{q}} M^{\gamma}\left(c\|\phi\|_{\infty}\right)^{1-p} \delta^{p-1}=\delta^{\beta} .
\end{array}\right.
$$

Dividing the first equation by the second, we find

$$
\left(\frac{\delta}{M}\right)^{p-1-\gamma-\beta}=C(\mathrm{w}, \Omega)
$$

where

$$
C(\mathrm{w}, \Omega):=\left(\frac{\left|B_{\alpha}\right|}{|\Omega|}\right)^{\frac{\gamma}{q}} c^{p-1}<1 .
$$

Therefore, since $\delta<M$, condition (21) is necessary and sufficient to obtain

$$
\delta=\theta M
$$

and

$$
M=\left(\|\phi\|_{\infty}^{p-1}\left|B_{\alpha}\right|^{-\frac{\gamma}{q}} \theta^{-\gamma}\right)^{\frac{1}{p-1-\beta+\gamma}}=\left(|\Omega|^{-\frac{\gamma}{q}}\left(c\|\phi\|_{\infty}\right)^{p-1} \theta^{1-p+\beta}\right)^{\frac{1}{p-1-\beta+\gamma}},
$$

where

$$
\theta:=C(\mathrm{w}, \Omega)^{\frac{1}{p-1-\beta-\gamma}}
$$

Therefore, it results from Theorem 3 the existence of at least one solution u of (20), with

$$
\delta \leqslant\|u\|_{\infty} \leqslant M .
$$

5. Multiplicity of solutions

It is clear that

$$
\begin{equation*}
k_{2}(M) \delta^{p-1} \leqslant k_{1}(\delta) M^{p-1} \quad \text { for } 0<\delta<M, \tag{22}
\end{equation*}
$$

is a necessary and sufficient condition for the existence of a "tunnel." We remark that, in the case of the equality $k_{2}(M)=k_{1}(\delta)$, the "tunnel" is degenerated, in the sense that it is a segment of the line. In this case, a nonlinearity f passes through it if, and only if, f is constant between δ and M.

As a consequence of (16), condition (22) is equivalent to

$$
\begin{equation*}
c^{p-1} \frac{a\left(\left|B_{\alpha}\right| \delta^{q}\right)}{a\left(|\Omega| M^{q}\right)} \geqslant\left(\frac{\delta}{M}\right)^{p-1} \quad \text { for } 0<\delta<M, \tag{23}
\end{equation*}
$$

where $c<1$ is defined by (17). Therefore, it is evident that the existence of a "tunnel" is connected with properties of the nonlocal coefficient $a(t)$.

On the other hand, if $a \equiv 1$, the choice of $0<\delta<M$ such that

$$
0<\frac{\delta}{M} \leqslant c^{p-1}<1
$$

always produces a "tunnel." By choosing sequences $\left(\delta_{j}\right)$ and $\left(M_{j}\right)$ satisfying

$$
\delta_{j}<M_{j}<\delta_{j+1}<M_{j+1} \quad \text { and } \quad \frac{\delta_{j}}{M_{j}}<N^{p-1}
$$

we obtain a sequence of "tunnels" Γ_{j} such that $\Gamma_{j} \cap \Gamma_{i}=\emptyset$ if $j \neq i$. It is then easy to produce examples of nonlinearities $f(u)$ for which problem (1) has a sequence $\left(u_{j}\right)$ of (distinct) solutions satisfying

$$
\begin{equation*}
\delta_{j} \leqslant\left\|u_{j}\right\|_{\infty} \leqslant M_{j}<\delta_{j+1} \leqslant\left\|u_{j+1}\right\|_{\infty} \leqslant M_{j+1}, \tag{24}
\end{equation*}
$$

thus implying that $\left\|u_{j}\right\|_{\infty} \rightarrow \infty$.

For instance, such a nonlinearity can be chosen to be continuous, increasing and satisfying

$$
\left\{\begin{array}{l}
f\left(\delta_{j}\right)=k_{2}\left(M_{j}\right) \delta_{j}^{p-1} \tag{25}\\
f\left(M_{j}\right)=k_{1}\left(\delta_{j}\right) M^{p-1}
\end{array}\right.
$$

Since the graph of this function passes through all tunnels Γ_{j} we find, according to Theorem 3, a sequence $\left(u_{j}\right)$ of positive solutions satisfying (24).

Let us now consider again the case $a(t)=t^{\gamma / q}$. Following the same reasoning just presented, denote $\mu=$ $\delta / M \in(0,1)$. Then, condition (23) can be written as

$$
\mu^{p-1} \leqslant c^{p-1}\left(\frac{\left|B_{\alpha}\right|}{|\Omega|}\right)^{\frac{\gamma}{q}} \mu^{\gamma} .
$$

Thus, if $0<\gamma<p-1$ and

$$
\mu^{p-1-\gamma} \leqslant K_{*}:=c^{p-1}\left(\frac{\left|B_{\alpha}\right|}{|\Omega|}\right)^{\frac{\gamma}{q}} \in(0,1),
$$

then there exists a sequence of disjunct tunnels Γ_{j} formed by sequences $\left\{\delta_{j}\right\}$ and $\left\{M_{j}\right\}$ satisfying

$$
\delta_{j}<M_{j}<\delta_{j+1}<M_{j+1} \quad \text { and } \quad \frac{\delta_{j}}{M_{j}}<K_{*} .
$$

As in the case $a \equiv 1$, these sequences can be used to produce a nonlinearity $f(u)$ such that the nonlocal problem

$$
\begin{aligned}
& -\|u\|_{q}^{\gamma} \Delta_{p} u=\mathrm{w}(x) f(u) \quad \text { in } \Omega, \\
& u=0 \quad \text { on } \partial \Omega,
\end{aligned}
$$

has a sequence $\left(u_{j}\right)$ of solutions satisfying (24). For this, it is enough to take a continuous and increasing function $f(u)$ satisfying (25).

References

[1] C.O. Alves, F.J.S.A. Corrêa, T.F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005) 85-93.
[2] A. Anane, Etude des valeurs propres et de la résonnance pour l'opérateur p-Laplacien, Th. Doc., Université Libre de Bruxelles, 1987.
[3] C. Azizieh, P. Clément, A priori estimates and continuation methods for positive solutions of p-Laplace equations, J. Differential Equations 179 (2002) 213-245.
[4] H. Bueno, G. Ercole, A. Zumpano, Positive solutions for the p-Laplacian and bounds for its first eigenvalue, submitted for publication.
[5] F.J.S.A. Corrêa, On positive solutions of nonlocal and nonvariational elliptic problems, Nonlinear Anal. 59 (2004) $1147-1155$.
[6] M. Cuesta, Existence results for quasilinear problems via ordered sub and supersolutions, Ann. Fac. Sci. Toulouse 6 (1997) $591-608$.
[7] L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. H. Poincaré 15 (1998) 493-516.
[8] E. DiBenedetto, $C^{1, \alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1998) $827-850$.
[9] P. Drábek, J. Hernández, Existence and uniqueness of positive solutions for some quasilinear elliptic problems, Nonlinear Anal. 44 (2001) 189-204.
[10] G. Ercole, A. Zumpano, Existence of positive radial solutions for the n-dimensional p-Laplacian, Nonlinear Anal. 44 (2001) $355-360$.
[11] G. Ercole, A. Zumpano, Positive solutions for the p-Laplacian in annuli, Proc. Roy. Soc. Edinburgh Sect. A 132A (2002) 595-610.
[12] G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988) $1203-1219$.
[13] J. García-Melián, J.S. de Lis, Maximum and comparison principles for operators involving the p-Laplacian, J. Math. Anal. Appl. 218 (1998) 49-65.
[14] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984) 126-150.

[^0]: * The authors were supported in part by CNPq-Brazil.
 * Corresponding author.

 E-mail address: hamilton@mat.ufmg.br (H. Bueno).

