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1. Introduction and main results

In 1984, Struwe established a compactness result for the well-known Brézis–Nirenberg problem [40]
−1u = |u|

4
n−2 u + λu inΩ

u = 0 on ∂Ω,
(1)

where λ is a real parameter. Throughout this paper,Ω ⊂ Rn denotes a smooth bounded domain for n ≥ 2.
Our starting point is the following well-known existence result due to Brézis and Nirenberg [11].

Theorem A. Let λ1 be the first eigenvalue of the Laplace operator under the Dirichlet boundary condition. If n ≥ 4 and 0 < λ
< λ1, then (1) admits at least one positive solution.

This is a central result in the theory of elliptic equations as it addresses the existence of solutions for boundary problems
involving critical Sobolev growth, which in turn leads to a loss of compactness from a variational viewpoint.

Knowing TheoremA, Struwe investigated as a particular case the behavior of bounded solutions inW 1,2
0 (Ω) for (1). Before

we state his main result, we first describe some notations.
For each 1 < p < n, the Sobolev spaceW 1,p

0 (Ω) is defined as the completion of C∞

0 (Ω) under the norm

∥u∥W1,p
0 (Ω)

:=


Ω

|∇u|p dx
1/p

.
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The analogous form for the whole space, denoted by D1,p(Rn), is the completion of C∞

0 (R
n)with respect to the norm

∥u∥D1,p(Rn) :=


Rn

|∇u|p dx
1/p

.

Of course, we haveW 1,p
0 (Ω) ⊂ D1,p(Rn).

Given sequences (xα)α ∈ Ω and (rα)α of positive numbers with the property rα → +∞ as α → +∞, a 1-bubble is
defined as a sequence (Bα)α of functions

Bα(x) = (rα)
n−2
2 u(rα(x − xα)),

obtained by renormalization of a nontrivial solution u ∈ D1,2(Rn) of the equation

−1u = |u|
4

n−2 u in Rn. (2)

We refer to xα and rα as the centers and weights of the 1-bubble (Bα)α , respectively. We can write any positive solution u of
(2) as [13,37]

u(x) = a
n−2
2 u0(a(x − x0))

for all a > 0, where

u0(x) =


1 +

|x|2

n(n − 2)

−
n−2
2

.

Struwe’s main result [40] concerns decomposition into 1-bubbles for Palais–Smale sequences associatedwith the energy
functional of (1), namely,

Eλ(u) =
1
2


Ω

(|∇u|2 − λu2) dx −
n − 2
2n


Ω

|u|
2n
n−2 dx.

Thus, we have the following theorem.

Theorem B. Let n ≥ 3 and let (uα)α be a non-negative Palais–Smale sequence to Eλ in W 1,2
0 (Ω). Then there exists a solution

u0
∈ W 1,2

0 (Ω) of (1) and 1-bubbles (Bj
α)α, j = 1, . . . , l such that some subsequence (uα)α satisfiesuα − u0

−

l
j=1

Bj
α


D1,2(Rn)

→ 0 as α → +∞.

Subsequent to the work by Brézis and Nirenberg [11], much effort has been devoted to other questions and extensions
of (1) [41, Chapter 3]. The literature contains many discussions of this issue [3,12,15–18,23,28,29,39].

A particular extension that has been extensively investigated is
−∆pu = |u|p

∗
−2u + λ|u|p−2u inΩ

u = 0 on ∂Ω,
(3)

where 1 < p < n,∆pu = div(|∇u|p−2
∇u) denotes the p-Laplace operator, and p∗

=
np
n−p is the critical Sobolev exponent

for embedding ofW 1,p
0 (Ω) into Lq(Ω).

In 1987, Azorero and Peral extended Theorem A [4].

Theorem C. Let λ1,p be the first eigenvalue of the p-Laplace operator under the Dirichlet boundary condition. If n ≥ p2 and
0 < λ < λ1,p, then (3) admits at least one positive solution.

Several papers provide more details on the existence problem for (3) with p ≠ 2 and other interesting questions [2,4,21,
27,31].

Inspired by Theorem C, Mercuri and Willem [35] extended Theorem B to problems of the type (3). To state this, we
consider again sequences (xα)α ∈ Ω and (rα)α of positive numbers such that rα → +∞ as α → +∞. A 1-bubble of order
p is simply a sequence (Bα)α of functions

Bα(x) = (rα)
n−p
p u(rα(x − xα))

obtained by renormalization of a nontrivial solution u ∈ D1,p(Rn) of the equation

−∆pu = |u|p
∗
−2u in Rn. (4)

Analogous to the case p = 2, xα and rα denote the centers and weights, respectively, of the 1-bubble (Bα)α of order p.
Solutions of (4) have been classified by Ghoussoub and Yuan [30] and by Damascelli and co-workers [19,20] for the special
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case of positive radial solutions. Precisely, any positive radial solution u of (4) is of the form

u(x) =


n · a


n − p
p − 1

p−1
 n−p

p2 
a + |x|

p
p−1
−

n−p
p

for all constants a > 0.
Themain result ofMercuri andWillem [35] concerns decomposition into 1-bubbles of order p for Palais–Smale sequences

associated with the energy functional of (3):

Ep,λ(u) =
1
p


Ω

(|∇u|p − λ|u|p) dx −
1
p∗


Ω

|u|p
∗

dx.

When the Palais–Smale sequence is non-negative, their main result yields the following theorem.

Theorem D. Let n ≥ 2, 1 < p < n, and let (uα)α be a non-negative Palais–Smale sequence to Ep,λ inW 1,p
0 (Ω). Then there exists

a solution u0
∈ W 1,p

0 (Ω) of (3) and 1-bubbles (Bj
α)α of order p, j = 1, . . . , l, such that some subsequence (uα)α satisfiesuα − u0

−

l
j=1

Bj
α


D1,p(Rn)

→ 0 as α → +∞.

Barbosa and Montenegro [5] established an extension of Theorem C dealing with potential (or gradient) elliptic systems,
namely systems of the form−∆pu =

1
p∗

∇F(u)+
1
p
∇G(u) inΩ

u = 0 on ∂Ω,
(5)

where 1 < p < n, u = (u1, . . . , uk),∆pu = (∆pu1, . . . ,∆puk), and F ,G : Rk
→ R are C1 functions with F positive and

homogeneous of degree p∗ and G homogeneous of degree p. For physical reasons, the functions F and G are known in the
literature as potential functions.

After a succession of papers addressed systems of the type (5) [1,7,22,36], Barbosa andMontenegro proved the following
existence result that simultaneously extends Theorems A and C [5].

Theorem E. Let k ≥ 1 and let F ,G : Rk
→ R be C1 functions with F positive and homogeneous of degree p∗ and G homogeneous

of degree p. If n ≥ p2,MG := maxt∈Sk−1
p

G(t) < λ1,p and G(t0) > 0 for some maximum point t0 of F on Sk−1
p := {t ∈ Rk

:

|t|p = 1}, then (5) admits at least one nontrivial solution.

Barbosa and Montenegro also presented some classes of potential systems that admit non-negative solutions [5, Section
5]. By a non-negative map, we mean one in which each coordinate is non-negative.

When k = 1, note that (5) takes the form (3), since modulo constant factors F(t) = |t|p
∗

and G(t) = λ|t|p. In particular,
in this case, the conditionsMG < λ1 and G(t0) > 0 assumed in Theorem E correspond to λ < λ1 and λ > 0, respectively.

When k > 1, there are many homogeneous potential functions. The following are canonical examples.

1. F(t) = |t|p
∗

q , F(t) = |πl(t)|
p∗
l −1πl(t); and

2. G(t) = |t|pq,G(t) = |πl(t)|
p
l −1πl(t),G(t) = |⟨At, t⟩|(p−2)/2

⟨At, t⟩,

where |t|q := (
n

i=1 |ti|q)1/q is the Euclidean q-norm for q ≥ 1, πl is the lth elementary symmetric polynomial, l =

1, . . . , k, ⟨·, ·⟩ denotes the usual Euclidean inner product, and A = (aij) is a real k × kmatrix.
Our main goal in this paper is to derive a compactness theorem for bounded non-negative solutions in the Sobolev

k-space W 1,p
0 (Ω,Rk) := W 1,p

0 (Ω) × · · · × W 1,p
0 (Ω) with respect to the product norm of (5) for the full range 1 < p < n.

For this, we introduce the notion of generalized bubbles, the so-called k-bubbles of order p, and prove a factorization into
k-bubbles of order p for Palais–Smale sequences associated with the energy functional of (5). Our theorem works well for
bounded non-negative solutions of a family of potential systemswhose corresponding potential functions converge in some
sense to F and G.

Consider the Sobolev k-space D1,p(Rn,Rk) := D1,p(Rn) × · · · × D1,p(Rn) on Rn endowed with the product norm.
Obviously, we have W 1,p

0 (Ω,Rk) ⊂ D1,p(Rn,Rk). We begin by taking sequences (xα)α ∈ Ω and (rα)α of positive numbers
satisfying rα → +∞ as α → +∞. We define a k-bubble of order p as a sequence (Bα)α of maps

Bα(x) = r
n−p
p

α u(rα(x − xα)) (6)
obtained by renormalization of a nontrivial solution u = (u1, . . . , uk) ∈ D1,p(Rn,Rk) of the system

−∆pu =
1
p∗

∇F(u) in Rn. (7)

As before, we call xα and rα the centers and weights, respectively, of the k-bubble (Bα)α of order p.
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Our main result establishes a decomposition into k-bubbles of order p for non-negative Palais–Smale sequences associ-
ated with the following energy functional of (5):

EF ,G(u) =
1
p


Ω

(|∇u|p − G(u)) dx −
1
p∗


Ω

F(u) dx,

where
Ω

|∇u|pdx :=

k
i=1


Ω

|∇ui|
p dx.

Theorem 1.1. Let k ≥ 1, n ≥ 2, 1 < p < n, and Rk
+

:= {t ∈ Rk
: ti ≥ 0}. Let F ,G : Rk

→ R be C1 functions with F positive,
even, homogeneous of degree p∗ and, for some i,DiF(t) > 0 for all t ∈ Rk

+
\ {0}, and G homogeneous of degree p. Let (uα)α be a

non-negative Palais–Smale sequence to EF ,G in W 1,p
0 (Ω,Rk). Then there exists a solution u0

∈ W 1,p
0 (Ω,Rk) of (5) and k-bubbles

(B j
α)α of order p, j = 1, . . . , l, such that some subsequence (uα)α satisfiesuα − u0

−

l
j=1

B j
α


D1,p(Rn,Rk)

→ 0 as α → +∞.

Theorem 1.1 is a complete extension of Theorems B and D. Following the ideas of Mercuri and Willem [35], it is possible
to relax the assumption of non-negativity for (uα)α by assuming only that the negative part of each component of (uα)α
converges to zero in Lp

∗

(Ω).
Note that Theorems B, D, and 1.1 provide compactness results for bounded sequences of non-negative solutions of (1),

(3), and (5), respectively, since any such sequences are Palais–Smale sequences to each corresponding energy functional.
A more general fact for the compactness of the solutions can be stated as a consequence of Theorem 1.1.

Corollary 1.1. Let k ≥ 1, n ≥ 2, and 1 < p < n, and let (Fα)α and (Gα)α be sequences of C1 functions on Rk converging to F
and G in C1

loc(R
k), respectively. Assume that Fα and F are homogeneous of degree p∗, F is even, positive and, for some i, satisfies

DiF(t) > 0 for all t ∈ Rk
+

\ {0}, and Gα and G are homogeneous of degree p. Let (uα)α ⊂ W 1,p
0 (Ω,Rk) be a bounded sequence

constructed from non-negative solutions uα of the systems−∆pu =
1
p∗

∇Fα(u)+
1
p
∇Gα(u) inΩ,

u = 0 on ∂Ω.
(8)

Then there exists a solution u0
∈ W 1,p

0 (Ω,Rk) of (5) and k-bubbles (B j
α)α of order p, j = 1, . . . , l, such that some subsequence

(uα)α satisfiesuα − u0
−

l
j=1

B j
α


D1,p(Rn,Rk)

→ 0 as α → +∞.

The proof of this corollary is quite simple. It suffices to note that the convergence of (Fα)α and (Gα)α in C1
loc(R

k) implies that
(uα)α is a Palais–Smale sequence to EF ,G in W 1,p

0 (Ω,Rk).
Compactness problems in PDEs still attract considerable interest, such as for singularly perturbed critical elliptic

equations on bounded domains [14], critical anisotropic equations on bounded domains [32], critical elliptic equations on
compact manifolds [25,38], critical potential systems on compact manifolds [24,26,33], and the Yamabe problem [8,9,34].

We conclude the paper with a classification result for certain solutions of (7), namely, those generated by solutions of (4).
In other words, we provide an extension to k > 1 of the result established by Ghoussoub and Yuan for (4) [30]. Druet et al.
determined an explicit form of the positive solutions (i.e., each positive coordinate) for F(t) =

1
2∗ |t|2

∗

2 [26]. For k > 1 and
p = 2, Barbosa and Montenegro obtained a characterization of solutions of (7) that are extremal for a Sobolev inequality
related to the potential F [6].

Theorem 1.2. Let k ≥ 1, n ≥ 2, and 1 < p < n, and let F : Rk
→ R be an even p∗-homogeneous positive C1 function.

Then (7) admits a nontrivial solution of the form tu, where t = (t1, . . . , tk) ∈ Rk and u is a nontrivial solution of (4), if and only
if the vectors tp = (|t1|p−2t1, . . . , |tk|p−2tk) and ∇F(t) are parallel. In this case, for any vector t0 parallel to t there exists a radial
solution u0 of (7) satisfying u0(0) = t0. In particular, for F(t) =

1
p∗ |t|p

∗

p and any vector t0 ∈ Rk, (7) admits a unique radial
solution u0 satisfying u0(0) = t0.
Of course, there exist vectors t ∈ Rk such that tp and ∇F(t) are parallel. To see this, it suffices to pick a maximum or mini-
mum point t of the function F on the p-sphere Sk−1

p := {t ∈ Rk
: |t|pp =

k
i=1 |ti|p = 1}, as can easily be seen from Lagrange

multipliers.
The remainder of the paper is devoted to proofs of Theorems 1.1 and 1.2 in Sections 2 and 3, respectively.
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2. Proof of Theorem 1.1

In this section we prove the decomposition into k-bubbles for Palais–Smale sequences associated with the energy func-
tional EF ,G as described in the Introduction. We recall that a sequence (uα)α in W 1,p

0 (Ω,Rk) is said to be Palais–Smale for
EF ,G if

EF ,G(uα) is bounded

and

DEF ,G(uα) → 0 inW 1,p
0 (Ω,Rk)∗.

The proof of Theorem 1.1 requires the following seven steps.

Step 1. Palais–Smale sequences for EF ,G are bounded in W 1,p
0 (Ω,Rk).

Step 1 is used in the proof of the next step.

Step 2. Let (uα)α be a non-negative Palais–Smale sequence for EF ,G. Then, up to a subsequence, (uα)α converges weakly to u0 in
W 1,p

0 (Ω,Rk). Moreover, u0 is a non-negative weak solution of (5).

Step 3. Let I : W 1,p
0 (Ω,Rk) → R be the energy functional

I(u) =
1
p


Ω

|∇u|p dx −
1
p∗


Ω

F(u) dx

associated with the system−∆pu =
1
p∗

∇F(u) inΩ,

u = 0 on ∂Ω.

Let (uα)α be a Palais–Smale sequence for EF ,G converging weakly to u0 in W 1,p
0 (Ω,Rk). Then

EF ,G(uα) = EF ,G(u0)+ I(uα − u0)+ o(1)

and (uα − u0)α is a Palais–Smale sequence for I.

In what follows, we let KF (n, p) be a sharp constant for the potential-type Sobolev inequality
Rn

F(u) dx
 1

p∗

≤ K


Rn
|∇u|p dx

 1
p

. (9)

More precisely,

KF (n, p) = sup


Rn

F(u) dx
 1

p∗

: u ∈ D1,p(Rn,Rk), ∥u∥D1,p(Rn,Rk) = 1


.

Barbosa and Montenegro proved that KF (n, p) = M
1
p∗

F K(n, p) [5], where MF is the maximum of F on Sk−1
p and K(n, p) is

the sharp constant for the classical Sobolev inequality
Rn

|u|p
∗

dx
 1

p∗

≤ K


Rn
|∇u|p dx

 1
p

.

Step 4. Let (vα)α be a Palais–Smale sequence for I converging weakly to 0 in W 1,p
0 (Ω,Rk) such that I(vα) → β . If

β < β∗
:= n−1KF (n, p)−n

then β = 0 and (vα)α converges strongly to 0 in W 1,p
0 (Ω,Rk).

Step 5. Let u0
∈ D1,p(Rn,Rk) be a nontrivial solution of the system (7). Then we have J(u0) ≥ β∗, where J : D1,p(Rn,Rk) →

R denotes the energy functional given by

J(u) =
1
p


Rn

|∇u|p dx −
1
p∗


Rn

F(u) dx.
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Step 6. Let H = {x ∈ Rn
: xn > 0} and let u ∈ D

1,p
0 (H,Rk) be a non-negative weak solution of the potential system

−∆pu =
1
p∗

∇F(u) in H,

where D
1,p
0 (H,Rk) denotes the completion of C∞

0 (H,R
k) under the norm

∥u∥ :=


H

|∇u|p dx
1/p

.

Then u ≡ 0 on H.

Step 6 is used in the proof of the next step.

Step 7. Let (vα)α be a non-negative Palais–Smale sequence for I converging weakly to 0 in W 1,p
0 (Ω,Rk), but not strongly. Then

there exists a sequence of points (xα)α of Ω and a sequence of positive numbers (rα)α with rα → +∞, a nontrivial solution v
to (7) and a Palais–Smale sequence (wα) for I in W 1,p

0 (Ω,Rk) such that, modulo a subsequence (vα)α , the following holds:

wα(x) = vα(x)− B̂α(x)+ o(1),

where B̂α(x) = r
n−p
p

α v(rα(x − xα)) and o(1) → 0 in D1,p(Rn,Rk). Moreover,

I(wα) = I(vα)− J(v)+ o(1)

and

rαdist(xα, ∂Ω) → +∞ α → +∞.

For the moment, we postpone the proofs of Steps 1–7 to present the following proof.

Proof of Theorem 1.1. By Step 2, (uα)α converges weakly to u0 inW 1,p
0 (Ω,Rk); if (uα)α converges strongly to u0, the proof

is complete. Otherwise, by [35, Lemma 3.5], without loss of generality we can consider that (uα − u0)α is non-negative, so
we take the sequence (v1α)α given by v1α = uα − u0 and evoke Step 7 to find a sequence (B1

α)α of k-bubbles of order p such
that the sequence (v2α)α defined by v2α = v1α − B1

α is Palais–Smale for I. If (v2α)α converges strongly to 0 inW 1,p
0 (Ω,Rk), the

proof is complete. Otherwise, we proceed inductively by letting

v1α = uα − u0 and vjα = uα − u0
−

j−1
i=1

B i
α = vj−1

α − B j−1
α ,

where B i
α = r

n−p
p

α ui(rα(· − xα)) and ui
∈ D1,p(Rn,Rk) is a nontrivial solution of (7). By Steps 3 and 5, we obtain

I(vjα) = EF ,G(uα)− EF ,G(u0)−

j−1
i=1

J(ui) ≤ EF ,G(uα)− EF ,G(u0)− (j − 1)β∗.

We claim that this process stops after l steps. In fact, the preceding inequality and Step 4 furnish I(vl+1
α ) ≤ 0 for some

index l ≥ 0. Thus, vl+1
α = uα − u0

−
l

i=1 B i
α converges strongly to 0 in D1,p(Rn,Rk) and

EF ,G(uα)− EF ,G(u0)−

l
i=1

J(ui) → 0. �

Now we prove the seven steps.
Proof of Step 1. Let (uα)α be a Palais–Smale sequence for EF ,G. Thanks to the homogeneity properties satisfied by F and G,
we derive

DEF ,G(uα) · uα =


Ω


|∇uα|p − G(uα)− F(uα)


dx = o(∥uα∥W1,p(Ω,Rk)), (10)

so that

EF ,G(uα) =
1
n


Ω

F(uα) dx +
1
p
DEF ,G(uα) · uα =

1
n


Ω

F(uα) dx + o(∥uα∥W1,p(Ω,Rk)).

Since EF ,G(uα) ≤ c for some constant c > 0 independent of α, we obtain
Ω

F(uα) dx ≤ nc + o

∥uα∥W1,p(Ω,Rk)


.



M. Montenegro, G.F. Souza / J. Math. Anal. Appl. 408 (2013) 829–842 835

Furthermore, since F is continuous, by Holder’s inequality, we easily deduce that
Ω

|uα|p dx ≤ c + o

∥uα∥

p/p∗

W1,p(Ω,Rk)


,

where c > 0, like all the constants below, is independent of α. Writing
Ω


|∇uα|p − G(uα)


dx = pEF ,G(uα)+

p
p∗


Ω

F(uα) dx,

we also obtain
Ω


|∇uα|p − G(uα)


dx ≤ c + o


∥uα∥W1,p(Ω,Rk)


.

Noting by the continuity of G that

∥uα∥
p
W1,p(Ω,Rk)

≤


Ω


|∇uα|p − G(uα)


dx + c∥uα∥

p
Lp(Ω,Rk)

,

it follows from the above equations that

∥uα∥
p
W1,p(Ω,Rk)

≤ c + o

∥uα∥W1,p(Ω,Rk)


+ o


∥uα∥

p/p∗

W1,p(Ω,Rk)


.

However, this clearly implies that (uα)α is bounded inW 1,p
0 (Ω,Rk), which completes the proof of Step 1. �

Proof of Step 2. By Step 1 and the Sobolev embedding theorems, modulo a subsequence uα ⇀ u0 in W 1,p
0 (Ω,Rk) and

uα → u0 in Lq(Ω,Rk) for all q < p∗, where Lq(Ω,Rk) := Lq(Ω)× · · · × Lq(Ω), is endowed with the product norm.
Since (uα)α is a Palais–Smale sequence, we have

k
i=1


Ω

|∇ui
α|

p−2
⟨∇ui

α,∇ϕi⟩ dx −


Ω

∇G(uα) · ϕ dx −


Ω

∇F(uα) · ϕ dx = o(1) (11)

for all ϕ = (ϕ1, . . . , ϕk) ∈ C∞

0 (Ω,R
k), where uα = (u1

α, . . . , u
k
α). The strong convergence of (uα)α in Lq(Ω,Rk) and the

regularity and homogeneity conditions on F and G yield
Ω

∇F(uα) · ϕ dx →


Ω

∇F(u0) · ϕ dx

and 
Ω

∇G(uα) · ϕ dx →


Ω

∇G(u0) · ϕ dx

as α → +∞. Conversely, the convergence of the first term of (11) is standard [38, Step 1.2 of Theorem 0.1]. Thus, we
conclude from (11) that u0 is a weak solution of (5) and it is straightforward to show that u0 is non-negative. �

Proof of Step 3. A standard fact is that |∇ui
α|

p
→ |∇u0i

|
p a.e. inΩ for all i [38, Step 1.2 of Theorem0.1], so by the Brézis–Lieb

lemma [10] we have
Ω

|∇uα|p dx =


Ω

|∇(uα − u0)|p dx +


Ω

|∇u0
|
p dx + o(1). (12)

According to the compactness,
Ω

G(uα) dx =


Ω

G(uα − u0) dx +


Ω

G(u0) dx + o(1) (13)

and by a version of the Brézis–Lieb lemma for maps [5],
Ω

F(uα) dx =


Ω

F(uα − u0) dx +


Ω

F(u0) dx + o(1). (14)

By setting vα = uα − u0 and using (12)–(14), we can write

EF ,G(uα) =
1
p


Ω


|∇(vα + u0)|p − G(vα + u0)


dx −

1
p∗


Ω

F(vα + u0) dx

=
1
p


Ω


|∇vα|

p
+ |∇u0

|
p
− G(vα)− G(u0)


dx −

1
p∗


Ω


F(vα)+ F(u0)


dx + o(1)

= EF ,G(u0)+ I(vα)+
1
p


Ω

G(vα) dx + o(1).
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By the compactness and assumptions for G, the integral on the right-hand side goes to 0. In particular,

EF ,G(uα) = EF ,G(u0)+ I(vα)+ o(1). (15)

To show that (vα)α is a Palais–Smale sequence for I, we note first that

I(vα) = EF ,G(uα)− EF ,G(u0)+ o(1) = O(1)+ o(1)

implies the boundedness of (I(vα))α . Arguing as in Step 2, we have
Ω

∇F(uα) · ϕ dx =


Ω

∇F(u0) · ϕ dx + o(1) (16)

and 
Ω

∇G(uα) · ϕ dx =


Ω

∇G(u0) · ϕ dx + o(1) (17)

for any ϕ ∈ C∞

0 (Ω,R
k).

Combining Eqs. (12)–(14), (16) and (17), we compute

DEF ,G(vα + u0) · ϕ − DI(vα) · ϕ

=

k
i=1


Ω


|∇(viα + u0i)|p−2

⟨∇(viα + u0i),∇ϕi⟩

− ∇G(viα + u0i) · ϕi dx −


Ω

∇F(vα + u0) · ϕ dx

−

k
i=1


Ω

|∇viα|
p−2

⟨∇viα,∇Φi⟩ dx +


Ω

∇F(vα) · ϕ dx

=

k
i=1


Ω

⟨|∇viα|
p−2

∇u0i
+ |∇u0i

|
p−2

∇viα,∇ϕi⟩ dx

+

k
i=1


Ω

|∇u0i
|
p−2

⟨∇u0i,∇ϕi⟩ dx −


Ω

∇G(u0) · ϕ dx −


Ω

∇F(u0) · ϕ dx + o

∥ϕ∥W1,p

0 (Ω,Rk)


.

Using the fact that u0 is a weak solution of (5), we can derive the desired result. �

Proof of Step 4. By Step 1, it follows that (vα)α is bounded inW 1,p
0 (Ω,Rk). Then we can write

DI(vα) · vα =


Ω

|∇vα|
p dx −


Ω

F(vα) dx = o(1)

and

I(vα) =
1
p


Ω

|∇vα|
p dx −

1
p∗


Ω

F(vα) dx = β + o(1).

From these relations, we obtain
Ω

F(vα) dx = nβ + o(1)

and 
Ω

|∇vα|
p dx = nβ + o(1).

In particular, we deriveβ ≥ 0. By its compactness, we can assume that vα → 0 in Lp(Ω,Rk). The F-Sobolev inequality [5]
Ω

F(vα) dx
 p

p∗

≤ KF (n, p)p

Ω

|∇vα|
p dx

leads to

(nβ)
p
p∗ ≤ KF (n, p)pnβ.
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We assert that β = 0. Assume, by contradiction, that β > 0. Then

(nβ)
p
p∗ −1

= (nβ)−
p
n ≤ KF (n, p)p,

so that

KF (n, p)p = (nβ∗)−
p
n < (nβ)−

p
n ≤ KF (n, p)p.

Since β = 0, we have
Ω

|∇vα|
p dx = o(1).

In other words, (vα)α converges to 0 inW 1,p
0 (Ω,Rk), which completes the proof of Step 4. �

Proof of Step 5. Let u0
∈ D1,p(Rn,Rk) be a nontrivial solution of (7) Then, it follows directly from (7) that

Rn
|∇u0

|
p dx =


Rn

F(u0) dx ≤ KF (n, p)p
∗


Rn

|∇u0
|
p dx

 p∗
p

.

However, this clearly implies

J(u0) =
1
p


Rn

|∇u0
|
p dx −

1
p∗


Rn

F(u0) dx ≥
1
n
KF (n, p)−n

= β∗. �

We prove Step 6 using two lemmas. The first is the following weakened form of the divergence theorem presented by
Mercuri and Willem [35].

Lemma 2.1. Let Ω be a smooth bounded domain in Rn with outer normal unit vector ν(·) and let v ∈ C(Rn,Rn) be such that
div v ∈ L1loc(R

n). Then
Ω

div v dx =


∂Ω

v(σ ) · ν(σ ) dσ .

Hereafter we denote H = {x ∈ Rn
: xn > 0}. The next lemma is inspired by Mercuri and Willem [35] and its proof

proceeds in the same spirit.

Lemma 2.2. Let k ≥ 1, n ≥ 2, and 1 < p < n, and let F : Rk
→ R be a function of the C1 class that is positive, even, and

homogeneous of degree p∗. Let u ∈ D
1,p
0 (H,Rk) be weak solution of the system

−∆pu =
1
p∗

∇F(u) in H. (18)

Then Dnu :=
∂
∂xn

u = 0 everywhere on ∂H.

Proof. Let u ∈ D
1,p
0 (H,Rk) be a weak solution of (18). By the anti-reflection of u in Rn

\ H with respect to ∂H , we can
extend u to a map v ∈ D1,p(Rn,Rk). Since F is even, it follows that v is a weak solution of (7). By [5, Lemma 2.5], we have
v ∈ C1,α

loc (R
n,Rk). Thus, since |∇F(v)| ∈ L∞

loc(R
n), by [42, Proposition 1] we find v ∈ W 2,q

loc (R
n,Rk) with q = min{p, 2}. In

particular,

−∆pv =
1
p∗

∇F(v)

almost everywhere in Rn. Thus, we can easily derive

div(Dnvi|∇vi|
p−2

∇vi) = Dnvi ∆pvi + |∇vi|
p−2

∇vi · ∇(Dnvi) ∈ L1loc(R
n).

Let Bρ be a ball of center 0 and radius ρ in Rn. From Lemma 2.1, we have
H∩Bρ

Dnui div(|∇ui|
p−2

∇ui) dx =


∂(H∩Bρ )

Dnui |∇ui|
p−2

∇ui · ν(σ ) dσ −


H∩Bρ

|∇ui|
p−2

∇ui · ∇(Dnui) dx

=


∂(H∩Bρ )

Dnui |∇ui|
p−2

∇ui · ν(σ ) dσ −


∂(H∩Bρ )

|∇ui|
p

p
νn(σ ) dσ

and
1
p∗


H∩Bρ

∇F(u) · Dnu dx =
1
p∗


∂(H∩Bρ )

F(u)νn(σ ) dσ =
1
p∗


H∩∂Bρ

F(u)νn(σ ) dσ .
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Let X = (|∇u1|
p−2

∇u1 · ν, . . . , |∇uk|
p−2

∇uk · ν). Thanks to (18), we obtain
1 −

1
p


∂H∩Bρ

|Dnu|p dσ =


H∩∂Bρ

Dnu · X(σ ) dσ −


H∩∂Bρ

|∇u|p

p
νn(σ ) dσ +


H∩∂Bρ

F(u)νn(σ ) dσ .

Note that the right-hand side is bounded by

M(ρ) =


1 +

1
p


H∩∂Bρ

|∇u|p

p
dσ +


H∩∂Bρ

F(u) dσ .

Since ∇u ∈ Lp(H,Rk) and u ∈ Lp
∗

(H,Rk), there exists a sequence ρα → ∞ such that M(ρα) → 0. The monotone
convergence theorem then furnishes


∂H |Dnu|p dσ = 0, which concludes the proof of Lemma 2.2. �

Proof of Step 6. Assume that u is a nontrivial non-negativeweak solution. SinceDiF(u) > 0 and ui ≥ 0, we obtain∆pui ≤ 0
and ∆pui ≢ 0. Since u ∈ C1,α

loc (H,R
k), by the strong maximum principle [43] we obtain Dnui > 0 on ∂H . Conversely, by

Lemma 2.2 we have Dnui = 0 on ∂H . This contradiction leads us to the conclusion of Step 6. �

Proof of Step 7. We prove Step 7 using three lemmas that are introduced during the proof. First, up to a subsequence, we
can assume that I(vα) → β as α → +∞. Moreover, by the density of C∞

0 (Ω,R
k) in W 1,p

0 (Ω,Rk), we assume that each
map vα is smooth. Since DI(vα) → 0,

1
n


Ω

|∇vα|
p dx = I(vα)−

1
p∗

DI(vα) · vα → β,

and hence, by Step 4,

lim inf
α→+∞


Ω

|∇vα|
p dx = nβ ≥ KF (n, p)−n. (19)

For t > 0, let

µα(t) = sup
x∈Ω


Bt (x)

|∇vα|
p dx


,

where Bt(x) denotes the ball with radius t and center x in Rn. It follows from (19) that µα(t) > 0 and limt→+∞ µα(t) ≥

KF (n, p)−n. Let 0 < δ < KF (n, p)−n. Since vα is smooth, µα(·) is continuous. Thus, for any λ ∈ (0, δ), there exists
tα ∈ (0,+∞) such that µα(tα) = λ. There also exists yα ∈ Ω such that

Btα (yα)
|∇vα|

p dx = λ.

In conclusion, we can choose xα ∈ Ω and rα such that the rescaling

ṽα(x) = r
−

n−p
p

α vα


x
rα

+ xα


satisfies

µ̃α(1) = sup
x∈Rn

x
rα +xα∈Ω


B1(x)

|∇ṽα|
p dx =


B1(0)

|∇ṽα|
p dx =

1
2L

KF (n, p)−n, (20)

where L ∈ N is such that B2(0) is covered by L balls of radius 1 centered on B2(0). According to (19), there exists r0 > 0 such
that rα ≥ r0 for all α. Of course,

∥ṽα∥
p
D1,p(Rn,Rk)

= ∥vα∥
p
W1,p(Ω,Rk)

→ nβ < ∞,

so that ṽα ⇀ ṽ0 in D1,p(Rn,Rk) up to a subsequence. Furthermore, by construction, ṽ0 ≥ 0.
Our first lemma is as follows.

Lemma 2.3. We have ṽα → ṽ0 in W 1,p(Ω ′,Rk) for anyΩ ′
⊂⊂ Rn.

Proof. To prove this claim, it suffices to verify its validity forΩ ′
= B1(x0) for any x0 ∈ Rn. By Fubini’s theorem, we have 2

1


∂Bρα (x0)

|∇ṽα|
p dσ


dr ≤


B2(x0)

|∇ṽα|
p dx ≤ nβ + o(1).
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By the mean value theorem, we obtain that there exists a radius ρα ∈ [1, 2] such that
∂Bρα (x0)

|∇ṽα|
p dσ ≤ 2nβ + o(1). (21)

Let p̂ =
p−1
p and W p̂,p(∂Ω,Rk) be the space product W p̂,p(∂Ω,Rk) = W p̂,p(∂Ω) × · · · × W p̂,p(∂Ω) endowed

with the product topology, where W p̂,p(∂Ω) denotes the space of the trace function in W 1,p(Ω). By the compactness
of the embedding W 1,p(∂Bρα (x0),R

k) ↩→ W p̂,p(∂Bρα (x0),R
k) [41, Appendix A], up to a subsequence we deduce that ṽα

converges strongly to v0 inW p̂,p(∂Bρα (x0),R
k). In addition, by the compactness of the trace operatorW 1,p(Bρα (x0),R

k) ↩→

Lp(∂Bρα (x0),R
k), we have ṽ0 = v0. We define

φα =


ṽα − ṽ0 in Bρα (x0)
w̃α in B3(x0) \ Bρα (x0)
0 otherwise,

where w̃α denotes the solution of the Dirichlet problem
∆pw̃α = 0 in B3(x0) \ Bρα (x0)
w̃α = ṽα − ṽ0 on ∂Bρα (x0)
w̃α = 0 on ∂B3(x0)

.

The existence of such w̃α is guaranteed [38, Step 2.2 of Lemma 1.1]. The same step guarantees the existence of a constant
c > 0, independent of ρα, w̃α and ṽα − ṽ0, such that

∥w̃α∥W1,p(B3(x0)\Bρα (x0),Rk) ≤ C ∥ṽα − ṽ0∥W p̂,p(∂Bρα (x0),Rk) ,

which gives us

∥w̃α∥W1,p(B3(x0)\Bρα (x0),Rk) → 0. (22)

Consider the rescaling φ̂α(x) = r
n−p
p

α φα(rα(x − xα)). Since supp φα ⊂ B3(x0) for α large enough, we obtain supp φ̂α ⊂

B3r−1
α


x0
rα

+ xα


⊂ Ω . Since (vα)α is a Palais–Smale sequence for I, we have

DJ(ṽα) · φα = DI(vα) · φ̂α = o(1).

Thanks to the definition of φα , Eqs. (12) and (14), the assumptions on F , the strong convergence ṽα → ṽ0 in Lq(Ω,Rk)
with q < p∗, and Eqs. (9) and (22), we deduce that

o(1) = DJ(ṽα) · φα

=

k
i=1


Rn


|∇ṽiα|

p−2
⟨∇ṽiα,∇φ

i
α⟩ −

1
p∗
∂iF(ṽα) · φi

α


dx

=


Bρα (x0)


|∇(ṽα − ṽ0)|

p
− F(ṽα − ṽ0)


dx + o(1)

=


Rn


|∇φα|

p
− F(φα)


dx + o(1)

≥ ∥φα∥
p
D1,p(Rn,Rk)


1 − KF (n, p)p

∗

∥φα∥
p∗

−p
D1,p(Rn,Rk)


+ o(1), (23)

where o(1) → 0 as α → +∞. Conversely, by the definition of φα and Eqs. (12), (21), and (22),
Rn

|∇φα|
p dx =


Bρα (x0)

|∇(ṽα − ṽ0)|
p dx +


B3(x0)\Bρα (x0)

|∇w̃α|
p dx + o(1)

=


Bρα (x0)

|∇(ṽα − ṽ0)|
p dx + o(1)

≤


Bρα (x0)

(|∇ṽα|
p
− |∇ṽ0|

p) dx + o(1)

≤


B2(x0)

|∇ṽα|
p dx + o(1)

≤ Lµ̃α(1) =
KF (n, p)−n

2
+ o(1).
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Therefore, from (23), we conclude that φα → 0 in D1,p(Rn,Rk). In particular, ṽα → ṽ0 in W 1,p(B1(x0)). �

Given ψ ∈ C∞

0 (R
n,Rk), we then derive

DJ(ṽ0) · ψ = lim
α→+∞

DJ(ṽα) · ψ = 0

so that ṽ0 ∈ D1,p(Rn,Rk) is a non-negative weak solution of (7). By Lemma 2.3 and (20), we find
B1(0)

|∇ṽ0|
p dx =

KF (n, p)−n

2L
> 0,

so that ṽ0 ≢ 0 on Rn.
Let Ω̃α = {x ∈ Rn

:
x0
rα

+ xα ∈ Ω}. SinceΩ is smooth, it follows that the limit set Ω̃∞ of Ω̃α as α → +∞ is an open set.
The next lemma in particular shows that Ω̃∞ = Rn.

Lemma 2.4. Up to a subsequence, rα → +∞ and rαdist(xα, ∂Ω) → +∞ as α → +∞.

Proof. Since ṽ0 is a nontrivial non-negative weak solution of (7), we claim that rα → +∞ as α → +∞. Otherwise, there
exists a constant c > 0 such that rαdist(xα, ∂Ω) ≤ c for all α. In this case, after a suitable change of coordinates, we can
assume that

Ω̃∞ = H = {x ∈ Rn
: xn > 0}.

Using the fact that ṽ0 is a non-negative weak solution of (18), it follows by Step 6 that ṽ0 must vanish identically, which
is a clear contradiction. �

Now let

η ∈ C∞

0 (R
n), 0 ≤ η ≤ 1, η ≡ 1 in B1(0) and η = 0 outside B2(0)

and

wα(x) = vα(x)− r
n−p
p

α η(rα(x − xα)) · ṽ0(rα(x − xα)) ∈ W 1,p
0 (Ω,Rk),

where the sequence (rα)α is chosen in such a way that

r̃α = rα(rα)−1
→ +∞ and rα dist(xα, ∂Ω) → +∞.

Note that the maps v and B̂α presented in Step 7 are given by ṽ0 and r
n−p
p

α ṽ0(rα(x − xα)), respectively.
The last lemma in the proof of Step 7 is as follows.

Lemma 2.5. We havewα ⇀ 0 in W 1,p
0 (Ω,Rk) and DI(wα) → 0 in W 1,p

0 (Ω,Rk)∗ as α → +∞. Moreover,

I(wα) = I(vα)− J(ṽ0)+ o(1),

where o(1) → 0 as α → +∞.

Proof. Consider the rescaling

w̃α(x) = r
−

n−p
p

α w


x
rα

+ xα


= ṽα(x)− ṽ0(x)η


x
r̃α


and let

ηα(x) = η


x
r̃α


.

We have
Rn

|∇(ηα ṽ0 − ṽ0)|
p dx =


Rn

|∇((ηα − 1)ṽ0)|p dx

≤ c
k

i=1


Rn

|∇ṽi0|
p
|(ηα − 1)|p dx + c


Rn

|ṽ0|
p
|∇(ηα − 1)|p dx

≤ c


Rn\Br̃α (0)
|∇ṽ0|

p dx + c r̃−p
α


B2r̃α (0)\Br̃α (0)

|ṽ0|
p dx.
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Since |∇ṽi0|
p is integrable on Rn, the first term of the above inequality tends to 0 as r̃α → +∞. In addition, by Hölder’s

inequality and the fact that |ṽi0|
p∗

is integrable on Rn, we conclude that the second term tends to 0 as α → +∞. Thus, from
what we just have proved, we derive

w̃α = ṽα − ṽ0 + o(1),

where o(1) → 0 in D1,p(Rn,Rk).
However,

J(w̃α) = I(wα)

and by the Brézis–Lieb lemma we have

J(w̃α) = J(ṽα)− J(ṽ0)+ o(1) = I(vα)− J(ṽ0)+ o(1),

where o(1) → 0 as α → +∞. Consequently,

I(wα) = I(vα)− J(ṽ0)+ o(1),

so that (I(wα))α is bounded. We conclude the proof by showing that DI(wα) → 0 inW 1,p
0 (Ω,Rk)∗. In fact, since (vα)α is a

Palais–Smale sequence for I and ṽ0 is a critical point of J, we obtain

∥DI(wα)∥ = ∥DJ(w̃α)∥ ≤ ∥DJ(ṽα)∥ + ∥DJ(ṽ0)∥ + o(1)
= ∥DI(vα)∥ + o(1) = o(1). � �

3. Proof of Theorem 1.2

In this last section, we characterize the existence of solutions of the potential system (7) generated by solutions of (4).

Proof of Theorem 1.2. Assume first that (7) admits a solution of the form tu, with t = (t1, . . . , tk) ∈ Rk
\ {0}, and u is a

nontrivial solution of (4). Then, using the fact that F is even and p∗-homogeneous, we can easily check that (−∆pu)tp =

|u|p
∗
−2u∇F(t). Since u is a nontrivial solution of (4), we obtain ∇F(t) = tp. Conversely, let tp and ∇F(t) be parallel vectors,

so that ∇F(t) = θ tp for some non-null number θ ∈ R. Taking the Euclidean inner product on both sides with the vector t ,
we obtain

p∗F(t) = ∇F(t) · t = θ |t|pp,

so that θ is positive. Let c > 0 be such that cp
∗
−pθ = 1 and let u be a nontrivial solution of (4). We can easily deduce that

the map c → u satisfies (7).
Suppose now that tp and ∇F(t) are parallel and let t0 be a vector parallel to t . Since F is even, arguing, if necessary, with

−t0 in the place of t0, we can assume that t0 and t point to the same direction. In particular, the same holds for the vectors
t0 and ∇F(t0), so that ∇F(t0) = λtp0 for some number λ > 0. Let u0 be the unique radial solution of (4) satisfying u0(0) = 1.
Finally, the map u = t0u0 is radial, clearly satisfies u(0) = t0 and, by straightforward computation, solves (7). �
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