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Abstract – Physical statistics models such as the Peyrard-Bishop model are extensively used to
study thermodynamic properties of DNA. One of the interesting aspects of this model is that it
is a one-dimensional model exhibiting phase transitions which can be continuously changed from
smooth to very sharp transitions. The partition function for the Peyrard-Bishop model can be
calculated using the transfer integral technique yielding an eigenfunction which can be interpreted
as a probability density. In this work we show that it is possible to expand the eigenfunction of the
transfer integral operator using methods commonly used in wavelet signal analysis. The wavelet
coefficients obtained from multiresolution analysis can be used as a tool to monitor the melting
transition. This method is numerically very efficient and addresses the issue of eigenfunction
localisation which can be employed in problems that make use of the transfer integral technique,
demonstrating the application of wavelet multiresolution analysis in phase transition.

Copyright c© EPLA, 2009

Introduction. – Modelling the DNA denaturation
process both realistically and in a computationally
efficient way remains to date a major challenge [1]. Calcu-
lated DNA melting temperatures are needed for a variety
of technological applications, especially for techniques
based on hybridisation to DNA probes in next-generation
sequencing [2]. Probe design for instance requires the
calculation of temperatures for a huge variety of DNA
sequences [3], therefore coarse-grained models which allow
for numerical efficiency are an attractive option. One
of the most widely studied models, the Peyrard-Bishop
model [4], was used successfully for the calculation of
DNA melting temperatures [5] and a wealth of other
applications [6–9].
In addition to its practical interest in describing the

process of DNA denaturation, the Peyrard-Bishop model
provides a framework for studying several aspects of
thermodynamic phase transitions in one-dimensional
systems. Notably, anharmonic formulations of the stack-
ing interaction [10] as well as variants of the base-pair
potentials [6,11] allow changing continuously from second-
to first-order–type transitions [12]. Relevant thermo-
dynamic variables can be calculated from this model
by evaluating the classical partition function within the
framework of the transfer integral method. For instance,
the average base-pair stretching can be calculated as

(a)E-mail: gweberbh@gmail.com

a function of temperature and is generally used as a
criterion to determine the denaturation temperature.
This method results in an integral eigenequation whose

eigenfunction can be interpreted as classical analogs of
probability functions [13,14]. During the phase transition
these eigenfunction change from strongly localised cusp-
like functions to broadly distributed smooth functions.
For first-order transitions this change is quite dramatical
over a very short temperature range. In this work we use
wavelet multiresolution analysis to follow the change of
scale of the transfer integral eigenfunction. Multiresolution
analysis is extensively used for processing edges in images.
In this case a change of scale or resultion causes the loss
of image details which can be monitored for edge detec-
tion. Here we show that a similar approach can be used
to monitor the loss of detail caused by the change of
scale of the eigenfunction during the phase transition. This
method is numerically more efficient than the usual Gauss-
Legendre quadrature method [13].

Theory. –

The model and the transfer integral method. The
Peyrard-Bishop model [15] is defined by the Hamiltonian

H =
∑
i

p2i
2m
+W (yi, yi−1)+V (yi), (1)
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where pi =m
dyi
dt and m is the reduced mass of the i-th

base pair. V (yi) describes the interaction between the base
pairs and is given by the Morse potential

V (yi) =D(e
−ayi − 1)2, (2)

where D is the dissociation energy of the pair and a is a
parameter whose inverse gives the range of the potential.
The potential W (yi, yi−1) represents the stacking interac-
tion between bases along the DNA molecule. To account
for sharp melting transitions Dauxois et al. [10] proposed
a anharmonic stacking interaction

Wa(yi, yi−1) =
k

2

[
1+ ρe−α(yi+yi+1)

]
(yi− yi+1)2, (3)

where the exponential factor accounts for the fact that
the molecular packing decreases with base opening. We
will refer to this model as the anharmonic-Morse (AM)
model.
In this work we also consider an alternative base-pair

potential

Vs(yi) =D(e
−ayi − 1)2− fsD [tanh(yi/λs)] , (4)

which models the formation of hydrogen bonds between
the bases and the solvent whenever the distance between
two paired bases exceeds a certain amount λs [11]. The
factor fs controls the barrier height of the combined
potential. In this model the stacking interaction is given
by an harmonic potential

Wh(yi, yi−1) =
k

2
(y2i − 2yiyi+1 cos θ+ y2i+1), (5)

where θ is the twist angle between neighboring bonds [11]
which was introduced to avoid well known divergence
problems in the partition function [13]. The Hamiltonian
given by eqs. (4) and (5) also gives rise to a sharp
denaturation [11], and we will refer to it as the harmonic-
solvent (HS) model. Both models are representative of
several variations of the original harmonic-Morse model [4]
which have been proposed recently [6,16,17].
To obtain the equilibrium thermodynamical properties

of the system we evaluate the configurational part of the
canonical partition function

Zy =

∫ N+1∏
i=1

dyi

[
N∏
i=1

exp(−βK(yi, yi+1))
]
, (6)

and

K(yi, yi+1) =
1

2
W (yi, yi+1)+V (yi). (7)

The function Zy can be calculated by means of the transfer
integral (TI) method by defining a TI operator

∫ ∞
−∞

K(x, y)ϕ(y)dy= λϕ(x), (8)

where λ is an eigenvalue and ϕ(x) its associated eigenvec-
tor. The average distance between two bases will be given
by

〈y〉= 1
Zy

∑
n

〈n|y|n〉λNn , (9)

where

〈n|y|m〉 ≡
∫
ϕn(y)yϕm(y)dy. (10)

The eigenfunction |ϕn(y)|2 can be interpreted as a
probability density and indeed the TI operator in eq. (8)
can be mapped to a pseudo-Schrödinger equation [4]. For
numerical purposes, we replace upper and lower limits of
the improper integral in eq. (8) by ysup and yinf chosen
such that outside this interval the probability density
is negligibly small. This replacement, especially that of
ysup, is valid as long as there are localised (bound) states
(eigenfunctions) whose identity and number depend on
temperature. In fact, in the range from 80K to 350K there
is only one localised state that becomes non-localised for
high enough temperatures, signalling the melting of the
molecule [13]. If the eigenvalues are sorted in descending
order, this localised state is the first one and in the melting
transition it is expected that λ1 ≈ λ2. In the limit of very
long molecules (N →∞) the partition function reduces
to Zy = λ

N
1 and 〈y〉= 〈1|y|1〉 [4]. Also, we shift y by ym,

i.e. y′ = y+ ym such that the new lower limit becomes
y′inf = 0. This is useful for the analysis which will be carried
out in the next section since we will avoid negative values
for y. To ease the notation, for the remaining sections of
this letter y is always shifted by ym, i.e. means y

′, unless
noted otherwise.

The box spline expansion. By choosing a suitable
method for numerical quadrature such as Gauss-Legendre,
the integral in eq. (8) can be written as an eigenvalue
problem (see, e.g., [18]). Here, we propose an alternative
approach to this problem using box spline expansion of
the eigenfunction. The first step is to write the eigenfunc-
tions in eq. (8) as

ϕ(x) =
∑
i

ciφi�(x), (11)

with

φi�(x) =
1√
�
φ

(
x− i�
�

)
, (12)

which is a contraction by the factor � followed by a
translation of i� of a function φ(x) that has a compact
suport (null outside an interval [xa, xb]). Functions of this
kind are obtained by p− 1 convolutions of the function
1[0,1] with itself are called box splines of degree p. One
convolution (p= 2) yields

φ(x) =



x+1, if − 1<x< 0
1−x, if 0<x< 1
0, otherwise


 , (13)
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with xa =−1 and xb = 1. In this case the support of
φi�(x) is given by the closed interval [(i− 1)�, (i+1)�].
Substitution of eq. (11) into eq. (8) gives

M∑
i=1

ci

∫
Λi

K(x, y)φi�(x)dy= λ

M∑
k=1

cjφk�(x), (14)

where
∫
Λi
denotes integration over the support of φi�(x)

and M is the minimum number of translations necessary
to cover the domain of ϕ(x). Multiplying both sides of
eq. (14) by φj�(x) and integrating over Λj we obtain the
matrix equation

Ac= λBc, (15)

where the elements of the M ×M matrix A are given by

Aij =

∫
Λj

∫
Λi

φj�(x)K(x, y)φi�(y)dydx, (16)

and the elements of B by

Bij =

∫
Λi∩Λj

φi�(x)φj�(x)dx, (17)

and c is the M × 1 matrix whose elements are the
coefficients ci in eq. (11). The elements Bij will be null
whenever Λi ∩Λj = ∅. This property renders the matrix B
symmetric band-diagonal. For φ(x) given by eq. (13) we
have

B=
1

6




4 1 0 · · · 0
1 4 1 · · · 0
...
. . .
. . .
. . .
...

0 · · · 1 4 1
0 · · · 0 1 4


 . (18)

So, the original problem turns into the generalised
eigenvalue problem in eq. (15). The matrices A and
B are both symmetric and sparse. This is obvious for
matrix B for M 
 1. Numerical evaluation of eq. (16)
shows that the largest elements of A are of order 10−2

while the smallest ones are of order 10−18. If we assume
that elements smaller than the cutoff 10−13 are null
we end up having to calculate only between 14 and 18
percent of the M ×M elements. These properties turns
this problem into a natural candidate to be handled by
the Lanczos method [19]. In this iterative method only
extreme eigenpairs are calculated with good precision and
that is just what we need since we are interested only
in the largest eigenvalues. The only operation involving
the matrices in the Lanczos algorithm are multiplications
by vectors, which can be accomplished in a very efficient
way because we can take advantage of the structure of B
and of techniques for dealing with sparse matrices such as
row-indexed sparse storage mode [20].
The average base-pair stretching 〈y〉, eq. (9), can now

be evaluated as a function of �

〈y�〉= �

6

∑
i

ci [(i− 1)ci−1+4ici+(i+1)ci+1] . (19)

Another useful quantity to characterise the phase transi-
tion which is closely related to the average stretching is
the average fraction of closed bonds. We say that the i-th
base pair is open if yi is greater than a reference value yref .
From eq. (9) one can see that this fraction is given by

f =

∫ yref
yinf

ϕ(y)2dy, (20)

which yields
f = cTmBmcm, (21)

where cm is the vector obtained from c by taking only its
first m elements, cTm is its transpose and Bm is the matrix
that one obtains when the matrix B is restricted to its first
m lines and columns. Since f = 1 form=M from eq. (17),
f close to 1 implies the vanishing of the elements ci of c
for i�m.
Wavelet coefficients. The approach outlined in the

previous section allows us to obtain an additional tool to
characterise the phase transition of thermal denaturation
which is based on the multiresolution analysis used in
signal processing [21]. In this technique a certain signal
f(x) can be viewed at different scales by means of the
expansion

f(x) =
∑
i

a�[i]φi�(x), (22)

where

a�[i] = 〈f(x)φi�(x)〉=
∫ +∞
−∞

f(x)φi�(x)dx (23)

and φi�(x) is given by eq. (12). In the jargon of wavelet
analysis φ is called the scaling function. When one changes
the resolution from � to 2� the new coefficients will be given
by

a2�[i] =

∞∑
n=−∞

a�[n]h[n− 2i], (24)

with

h[n] =
1√
π

∫ +π
−π

φ̂(2ω)

φ̂(ω)
exp(inω), (25)

where φ̂(ω) is the Fourier transform of φ(x). The reverse
is also true, that is, given the Fourier transform of h[n]

ĥ(ω) =

+∞∑
n=−∞

h[n] exp(−inω), (26)

φ̂(ω) will be given by

φ̂(ω) =

+∞∏
p=1

h(2−pω)√
2

. (27)

One can show that [21]

ĥ(ω) =
√
2 exp

(−iεω
2

)(
cos

ω

2

)p
, (28)
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with p positive integer and ε= 0 for p even and ε= 1 for
p odd, renders

φ̂(ω) = exp

(−iεω
2

)(
sin(ω/2)

ω/2

)p
, (29)

which is the Fourier transform of a box spline of degree
p− 1. The signal in eq. (22) has another decomposition
given by

f(x) =
∑
i

ã�[i]φ̃i�(x), (30)

in a space Ṽ� orthogonal to V� whose basis is given by
{φ̃i�(x)}i∈Z . The Fourier transform of the scaling function
φ̃(x) can be obtained by the same method as φ̂(ω) but with

ˆ̃
h(ω) =

√
2 exp

(−iεω
2

)(
cos

ω

2

)p̃

×
q−1∑
k=0

(
q− 1+ k

k

)(
sin

ω

2

)2k
, (31)

instead of ĥ(ω) in eq. (27), where q= (p+ p̃)/2 and p̃ is
a free parameter. This parameter gives the number of
vanishing moments of the wavelet function

ψ(x) =
√
2
+∞∑
n=−∞

(−1)1−nh̃[1−n]φ(2x−n). (32)

This function plays an essential role in the multiresolution
analysis, since the set {ψi2�(x)}i∈Z with

ψi2�(x) =
1√
2l
ψ
( x
2�
− i
)
, (33)

is a basis for the space W2� orthogonal to V2� such
that V� =V2�⊕W2�. The details lost due to the change
from the resolution � to the coarser 2� are given by the
coefficients

d2�[i] = 〈ψi2�(x)f(x)〉=
∞∑

n=−∞
a�[n]g[n− 2i], (34)

with g[n] = (−1)1−nh̃[1−n]. We will show in the next
section that these coefficients can be used as tools to
characterize the phase transition that takes place during
the DNA thermal denaturation.

Results and discussion. – For the AMmodel we used
the following parameters D= 0.04 eV, a= 4.5 Å−1, ym =
0.3 Å, k= 0.06 eV/Å2 and α= 0.35 Å−1 andM = 29 = 512.
For the HS model we used the additional parameters
fs = 0.1 and θ= 0.01 rad. We used as integration limits
y′inf = 0.0 and y

′
sup = 30 Å, corresponding to a resolution

�= (y′sup− y′inf)/M = 0.058 Å. For the matrices in eq. (21)
we used m=M/10 which corresponds to yref of 3.0 Å.
Depending on the parameters used, both the

anharmonic-Morse (AM) model and the harmonic-
solvent (HS) model display either sharp first-order or

0

5

10

15

〈 y
〉 (

A°  )

350 400
Temperature (K)

0

0.5

1

f

(a) 

(b) 

Fig. 1: (Colour on-line) (a) Average stretching as a function of
temperature and (b) fraction of open bonds for the AM model
for two different values of the anharmonic parameter ρ= 0.5
(dashed red line) and ρ= 1.5 (blue line).

smooth second-order transitions. For instance, for the AM
model the order of the transition is characterized by the
anharmonicity parameter ρ in eq. (3). For large values of
ρ the model exhibits sharp transitions while for low values
a much smoother transition is obtained [12]. The phase
transition is usually characterized by an increase of the
average stretching 〈y〉 or by the decrease of the average
fraction of open hydrogen bonds f . In fig. 1 we show our
calculations of the average stretching and average fraction
of open bonds for the AM model using the box spline
expansion of eq. (11). These results are numerically very
close to other implementations using Gauss-Legendre
integration quadratures [13] which confirms the reliabilty
of this method.
The phase transition can also be characterized by the

spatial localization of the eigenfunction ϕ(x) [13,22]. This
eigenfunction is strongly localized around the equilibrium
position ym for low temperatures and broadly distrib-
uted along the potential plateau for high temperatures.
This behaviour is illustrated in fig. 2 where we show
ϕ(x) for the AM model using a second-order–type anhar-
monic parameter. At low temperatures the eigenfunction
is completely confined to the potential well and gradu-
ally distributes over a broader region as the tempera-
ture increases. However, if we choose a larger anharmonic
parameter, this change of eigenfunction localization takes
place over a very narrow range of temperatures as show
in fig. 3.
For both orders of phase transition, the eigenfunc-

tions at low temperatures exhibit a cusp like singularity
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0.08

Fig. 2: (Colour on-line) Eigenfunctions ϕ(x) for the second-
order–type parameter ρ= 0.5 at four different temperatures:
340K (black line), 390K (red line), 392K (green line), and
400K (blue line). The vertical dashed line shows the distance
ym and the inset shows long-range details of the eigenfunction.

0 2 4 6
x (A° )

0

1

2

ϕ(
x)

 (
A°-

1/
2 )

×300

0 10 20 30
0.00

0.05

0.10

Fig. 3: (Colour on-line) Eigenfunctions ϕ(x) for the first-
order–type parameter ρ= 1.5 at two different temperatures:
330K (black line) and 330.5K (red line, scaled by a factor of
300). The vertical dashed line shows the distance ym and the
inset shows long-range details of the eigenfunction.

centered at ym. The presence of this singularity is ideally
suited to be quantified by means of the wavelet coefficients
d2� in eq. (34). If the wavelets in eq. (34) have p̃ moments,
that is, if

∫ +∞
−∞

xkψ(x)dx= 0, for 0� k < p̃ (35)

then d2� will be very small, provided � is very small as
well and f(x) is locally Ck (k-times differentiable) with
k < p̃. This is indeed the case since if f(x) is locally Ck,
then it can be approximated by a polynomial of degree k
over a small interval. Choosing p̃= p= 2, and f(x) =ϕ(x)
in eq. (34), the resulting coefficients allow us to monitor
the evolution of the cusp singularity of the eigenfunction
ϕ(x). Essentially, all we need to do is to perform the
summation in eq. (34) with a�[n] replaced by cn that
are the components of the eigenvector c in eq. (15). The
coefficients h̃[n] depend only on p and p̃ [21]. For our

Table 1: Coefficients g[n] for the AM model.

n g[n]
−3, 5 0.03314563036812
−2, 4 0.06629126073624
−1, 3 −0.17677669529664
0, 2 −0.41984465132951
1 0.99436891104358

320 360 400
Temperature (K)

0

0.5

1

1.5

d m
ax

 (
× 

10
-2

)
Fig. 4: (Colour on-line) Largest wavelet coefficient for first-
order (red line) and second-order (black line) parameters as
function of temperature.

choice parameters there are only nine non-null coefficients
shown in table 1. In fig. 4 we show the largest wavelet
coefficient as function of temperature for the two types
of phase transition of the AM model. One can see that
the vanishing of the cusp singularity at the transition for
the first-order phase transition is reflected by an abrupt
fall of dmax with temperature. On the other hand, the
smooth behaviour of dmax with temperature for second-
order phase transitions signals the persistence of the cusp
singularity and the eventual flattening of the eigenfunction
ϕ(x) in the transition region. For high temperatures in
both cases we obtain low values of dmax reflecting the
appropriateness of approximating a smooth curve (the
bell-like curve in fig. 2 and fig. 3) by a polynomial with
degree less than 4 over small intervals.
The harmonic-solvent (HS) model has sharp first-order

transitions for large values of λs in eq. (4), see figs. 5a
and b and results in ref. [11]. In contrast to the AM
model where the first-order transition is caused by the
anharmonicity of the stacking potential, for the HS model
this transition is caused by the solvent base-pair poten-
tial. In other words, the first-order transitions of these
models have completely different origins. Therefore, if the
wavelet coarsening loss coefficient dmax truly monitors the
eigenfunction cusp this should also be true for the HS
model. This is indeed the case as shown in fig. 5c. This
supports the conclusion that the anharmonicity in the AM
model and the solvent term HS model give rise the same
kind of transition namely a transition characterised by the
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Fig. 5: (Colour on-line) (a) Average stretching, (b) fraction of
closed bonds and (c) largest wavelet coefficient as a function
of temperature for the HS model. Four different values of the
parameter λs were used (in Å): 1.0 (black line); 3.0 (green line);
5.0 (red line) and 10.0 (blue line).

flattening of the eigenfunction ϕ(x) and the persistence, or
absence, of its the cusp singularity at equilibrium position
of the Morse potential.

Conclusion. – The wavelet coefficient allows us to
distinguish the transitions that fall in either category in
a quantitative way. These transitions are qualitatively
different from the one that takes place for high values
of ρ in the AM model. In this case the transition is
really sharp with the cusp singularity of the eigenfunction
ϕ(x) vanishing in a very narrow range of temperatures.
The absence of flattening of ϕ(x) in this case signals
the strong cooperativity of the transition. These physical
scenarios are quite different and determining which is the
one that fits the thermal denaturation is essential for our
understanding of this process.
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