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Abstract

This work presents three multi-objective heuristic algorithms based on Two-phase
Pareto Local Search with VNS (2PPLS-VNS), Multi-objective Variable Neighborhood
Search (MOVNS) and Non-dominated Sorting Genetic Algorithm II (NSGA-II). The
algorithms were applied to the open-pit-mining operational planning problem with
dynamic truck allocation (OPMOP). Approximations to Pareto sets generated by the
developed algorithms were compared considering the hypervolume and spacing met-
rics. Computational experiments have shown the superiority of the algorithms based
on VNS methods, which were able to find better sets of non-dominated solutions,
more diversified and with an improved convergence.
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1 Introduction

This work deals with the open-pit mining operational planning problem (OP-
MOP). In this problem, there is a set of mining pits P , a set of trucks T and a
set of load equipments L. It is necessary to blend ores from different mining
pits to form a final product, taking into account the minimization of the three
conflicting objectives: deviations of the production and quality goals, as well
as the number of trucks necessary to the production process.

A solution for OPMOP is represented by a matrix R = [Y |N ], where Y is a
matrix |P | × 1 and N a matrix |P | × |T |. Each cell yp of the matrix Y|P |×1

represents shovel l ∈ L allocated to the pit p ∈ P . In the matrix N|P |×|T |, each
cell npt represents the number of trips performed by the truck t ∈ T to the
pit p ∈ P . The dynamic truck allocation is considered, therefore trucks can
be allocated to different pits after each discharge of material. This allocation
system contributes to increasing fleet productivity and, therefore, to reduce
the number of trucks needed to the process.

The OPMOP is an NP-hard problem [9] and, for this reason, it is usually
solved by heuristic algorithms. Unlike [9], who treated the problem through a
mono-objective optimization algorithm, we develop here three multi-objective
heuristic algorithms. The first one is based on Multi-objective Variable Neigh-
borhood Search (MOVNS) inspired on previous works ([3], [10]) also due to the
good results of VNS [4] in the mono-objective version of this problem [9]. The
others are based on Two-phase Pareto Local Search with VNS (2PPLS-VNS) [5]
and Non-dominated Sorting Genetic Algorithm II (NSGA-II) [2]. The three al-
gorithms used the construction phase of Greedy Randomized Adaptive Search
Procedures (GRASP) [7] to generate good initial populations.

In the multi-objective approach there is no single solution that satisfies all
the objectives. What is sought is a set of non-dominated solutions, also called
efficient solutions, or Pareto Front, being incumbent upon the decision maker
the choice of the most suitable solution.

2 Proposed Algorithms

In this work, three multi-objective algorithms are proposed. The first one,
called GMOVNS, combines ideas from Greedy Randomized Adaptive Search Pro-
cedure – GRASP [7] and Multi-objective Variable Neighborhood Search – MOVNS
[3] procedures. The second one, called G2PPLS-VNS, combines GRASP and Two-
phase Pareto Local Search with VNS – 2PPLS-VNS procedures [5]. The third
one, so called GNSGAII-PR, combines the procedures GRASP and NSGA-II [2]
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with Path Relinking – PR [8] as a crossover operator.

The pseudo-code of the algorithm GMOVNS is outlined in Algorithm 1.

Algorithm 1 GMOVNS

Input: Neighborhoods Nk(x); graspMax; levelsMax
Output: Approximation of the efficient set Xe

1: Xe← BuildInitialSet(graspMax)
2: level← 1 ; shaking ← 1
3: while stop criterion not satisfied do
4: Select a not “visited” solution s ∈ Xe and check it as “visited”
5: s′ ← s
6: for i← 1 until shaking do
7: Select one neighborhood Nk(.) at random
8: s′ ← Shake(s′, k)
9: end for

10: Let kult ← k ; changeLevel← true
11: for all s′′ ∈ Nkult

(s′) do
12: addSolution(Xe, s′′, f(s′′), Added)
13: if Added = true then
14: changeLevel← false;
15: end if
16: end for
17: if changeLevel = true then
18: level← level+ 1
19: else
20: level← 1; shaking← 1
21: end if
22: if level ≥ levelMax then
23: level← 1; shaking← shaking + 1
24: end if
25: if all s ∈ Xe are “visited” then
26: check all s ∈ Xe as “non-visited” solutions
27: end if
28: end while
29: return Xe

A set of non-dominated initial solutions (line 1 of Algorithm 1) are gener-
ated by the construction phase of the GRASP procedure, as detailed in Algo-
rithm 2. The steps of this algorithm were proposed by [9]. The addSolution
procedure (line 5 of Algorithm 2) [5], adds the solutions created by the GRASP
procedure to the efficient set Xe.
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Algorithm 2 BuildInitialSet

Input: graspMax;
Output: Approximation of the efficient set Xe

1: for i← 1 until graspMax do
2: sw ← BuildWasteSolution()
3: Generate a random number γ ∈ [0, 1]
4: si ← BuildWasteSolution(sw, γ)
5: addSolution(Xe, si, f(si))
6: end for
7: return Xe

As it can be seen, the GMOVNS algorithm has an iterative mechanism reg-
ulating the intensity of the perturbation phase. This strategy, proposed in
this work, makes the algorithm perform more distant searches after iterMax
iterations without any improvement in the current solution. For each unit
of the variable shaking, a random movement is applied, among six previously
developed neighborhoods: NNT , NL, NTT , NTP , NST and NSS (line 7 of Al-
gorithm 1). Line 20 yields the values of the variables level and shaking to one
unit when at least one solution is added to the potentially efficient set Xe.

The G2PPLS-VNS (Algorithm 3) follows the same structure proposed by
[5], in which 2PPLS procedure is combined with an exchange neighborhood
mechanism, mirrored in the VNS [4] method. In the first phase, a diversified
initial set is generated (line 1 of Algorithm 3). In the second phase, the
Pareto Local Search (PLS) [6] is applied to each individual of the population
(line 2). The PLS can be regarded as a multi-objective generalization of the
hill-climbing method.

Algorithm 3 G2PPLS-VNS

Input: graspMax; Neighborhoods Nk(x)
Output: Approximation of the efficient set Xe

1: P0 ← BuildInitialSet(graspMax);
2: Xe← 2PPLS-VNS(P0, Nk(x)); [5]
3: return Xe

Finally, the pseudo-code of GNSGAII-PR is outlined in Algorithm 4. As
in GMOVNS and G2PPLS-VNS, the initial population P0 is initialized by adding
individuals generated by the GRASP procedure of [9] (lines 3 to 6 of Algorithm
4), although, in this case the stop criterion (line 2) is the size of the population
P0, input parameter of the algorithm.
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Algorithm 4 GNSGAII-PR

Input: Population size N ; Neighborhoods Nk(x)
Output: Approximation of the efficient set Xe

1: Initial population P0

2: while |P0| ≤ N do
3: sw ← BuildWasteSolution()
4: Generate a random number γ ∈ [0, 1]
5: si ← BuildWasteSolution(sw, γ)
6: P0 ← si
7: end while
8: Q0 ← SelectionPRCrossoverMutation(P0, Neighborhoods N

(k)(.))
9: Xe← NSGA-II(P0, Q0, N , SelectionPRCrossoverMutation(.)) [2]
10: return Xe

In order to achieve the offspring population Q0 (line 8 of Algorithm 4),
the SelectionPRCrossoverMutation procedure is triggered. This procedure,
which is described in Algorithm 5, enables the genetic operators of selection,
crossover and mutation. The Path Relinking method was used as an advanced
genetic operator, as in [8].

The NSGA-II procedure [2] is activated in line 9 of Algorithm 4. In this
procedure, the steps of selection, crossover and mutation are replaced by the
SelectionPRCrossoverMutation procedure.

Algorithm 5 SelectionPRCrossoverMutation

Input: mutationRate; localSearchRate
Input: Population P ; Neighborhoods N (k)(.)
Output: Offspring population Q

1: while |Q| ≤ N do
2: Select two random individuals s1 and s2 ∈ P ;
3: s← best(Path Relinking(s1, s2), Path Relinking(s2, s1))
4: addSolution(Q, s, f(s))
5: Generate a random number apmutation ∈ [0, 1]
6: if apmutation < mutationRate then
7: Select one neighborhood Nk(.) at random
8: s′ ← N (k)(s)
9: else

10: s′ ← s
11: end if
12: Generate a random number aplocalSearch ∈ [0, 1]
13: if aplocalSearch < localSearchRate then
14: s′′ ← VND(s′)
15: addSolution(Q, s′′, f(s′′))
16: else
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17: addSolution(Q, s′, f(s′))
18: end if
19: end while
20: return Q

Given two individuals s1 and s2, chosen randomly in the population, in line
3 of Algorithm 5 the Path Relinking procedure is applied in a bidirectional
manner by exploring the two possible paths connecting the individuals s1 and
s2. The best individual found s, evaluated by the mono-objective function of
[9], is returned. The attributes considered in this strategy are the positions
that the shovels hold in the guide solution.

In the line 8 of Algorithm 5 a random movement is applied to the indi-
vidual s if the variable apmutation is less than the parameter mutationRate.
The same happens in the line 14, in which the VNS procedure is applied if a
similar condition is satisfied. Finally, in the lines 4, 15 and 17, we check if the
individuals s, s′ and s′′ should be added to the offsprings population Q.

3 Computational Experiments and Conclusions

The proposed algorithms were coded in C++ programming language with
the computational framework OptFrame [1]. The algorithms were tested in a
PC DELL XPS 8300 i7-2600, 3.4 GHz, with 16 GB of RAM, running Linux
Ubuntu 10.10. The instances used for testing the algorithms were those of [9].

First, a comparison was made among the developed algorithms. The bat-
tery of tests was composed of 30 runs for each algorithm with a computational
time limited to 2 minutes (since this runtime is suitable for real applications).

Table 1 shows the average values obtained using the hypervolume and spac-
ing metrics. According to the results, G2PPLS-VNS obtained the best average
values in the two metrics used. For the spacing metric it was noted that the al-
gorithm achieved a more uniform distribution in the objective space in relation
to GMOVNS and GSGAII-PR algorithms. The average values of the hypervolume
metric also indicates the superiority of G2PPLS-VNS, which obtained the bests
volumes dominated by its approximations of the Pareto fronts.

Due to the superiority of algorithms based on the local search procedure
VNS, the algorithms G2PPLS-VNS and GMOVNS were chosen for a further com-
parison. Table 2 shows the results between these two algorithms with respect
to the Coverage metric.

Table 2 shows that G2PPLS-VNS algorithm was able to generate better sets
than GMOVNS algorithm in seven instances. Furthermore, analysing the average
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Table 1
G2PPLS-VNS × GMOVNS × GSGAII-PR: Spacing and Hypervolume

Instance Spacing Hypervolume (106)

G2PPLS-VNS GMOVNS GNSGAII-PR G2PPLS-VNS GMOVNS GNSGAII-PR

opm1 4566.51 2868.68 6924.42 78.13 78.23 75.68

opm2 1166.88 2041.59 6557.20 75.15 76.12 73.15

opm3 3824.96 6188.99 14368.62 71.17 70.42 64.98

opm4 2243.74 8232.88 18295.27 67.45 66.94 59.75

opm5 4795.68 2563.72 7544.48 78.04 78.67 75.68

opm6 1212.87 2025.84 5963.77 77.97 77.23 74.32

opm7 6676.54 8311.12 14673.57 75.28 74.39 73.69

opm8 6381.39 8045.67 14874.73 73.77 73.56 73.22

Table 2
G2PPLS-VNS × GMOVNS: Coverage

Instance Coverage
C(G2PPLS-VNS, GMOVNS) C(GMOVNS, G2PPLS-VNS)

Best Average Std. dev. Best Average Std. dev.
opm1 1.00 0.79 0.14 0.13 0.02 0.03
opm2 1.00 0.80 0.03 0.10 0.06 0.11
opm3 1.00 0.65 0.21 0.25 0.02 0.05
opm4 0.95 0.57 0.23 0.35 0.04 0.09
opm5 0.73 0.38 0.14 0.57 0.22 0.14
opm6 0.96 0.79 0.11 0.18 0.07 0.06
opm7 0.90 0.34 0.25 0.50 0.11 0.17
opm8 0.90 0.41 0.29 1.00 0.11 0.25

values, it was also able to obtain sets that covered GMOVNS in eight instances.

Finally, one last battery of tests aimed to verify if this new multi-objective
approach could also find a good mono-objective solution. Table 3 shows the
best mono-objective solutions obtained in 30 executions of G2PPLS-VNS com-
pared to the results of the GGVNS algorithm [9]. As it can be seen, G2PPLS-VNS
proved to be competitive with the literature mono-objective GGVNS algorithm,
obtaining better or equal solutions in seven of eight instances.

Instance

Algorithm opm1 opm2 opm3 opm4 opm5 opm6 opm7 opm8

G2PPLS-VNS 228.12 256.37 164046.32 164074.32 227.04 236.35 164018.81 164022.63

GGVNS 230.12 256.37 164039.12 164099.66 228.09 236.58 164021.28 164023.73

Finally, it is worth mentioning that the combination between G2PPLS-VNS

and GMOVNS allows to generate good literature references sets, available at

Table 3
Comparison of best results: G2PPLS-VNS × GGVNS
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http://www.decom.ufop.br/prof/marcone/projects/mining.html.
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