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Abstract

In this paper, we discuss a new method for computing the first Dirichlet eigenvalue of the p-Laplacian
inspired by the inverse power method in finite dimensional linear algebra. The iterative technique is inde-
pendent of the particular method used in solving the p-Laplacian equation and therefore can be made as
efficient as the latter. The method is validated theoretically for any ball in R

n if p > 1 and for any bounded
domain in the particular case p = 2. For p > 2 the method is validated numerically for the square.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

In finite dimensional linear algebra, the power method is often used in order to compute the
first eigenvalue of invertible linear operators defined on Euclidean spaces (see [9], for instance).
Briefly, given an invertible linear operator L, one picks a vector x and forms the sequence

x,Ax,A2x, . . . .

In order to produce this sequence, it is not necessary to get the powers of A explicitly, since
each vector in the sequence can be obtained from the previous one by multiplying it by A. It is
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easy to show that the sequence converges, up to scaling, to the dominant eigenvector. Thus the
largest eigenvalue can be found. In order to obtain the first (and therefore smallest) eigenvalue,
one considers instead powers of A−1, a method which is sometimes called the inverse power
method or inverse iteration. More specifically, if {yn}n∈N denotes the normalized sequence of
vectors produced by the inverse power method, then the first eigenvalue λ1 of A can be explicitly
given as (see [5])

λ1 = lim
n→∞

(
yn · A−1yn

)
,

where · denotes the Euclidean inner product.
In this work we carry this idea further, to nonlinear operators in infinite dimensional spaces, in

order to develop a numerical method to compute the first eigenvalue of the nonlinear degenerate
elliptic p-Laplacian operator. In order to describe the technique, first we establish some notation
and recall some well-known results. Throughout this paper, Ω will denote a smooth bounded
region in R

N , N � 1, and �p will denote the p-Laplacian operator, that is,

�pu = div
(|∇u|p−2∇u

)
(1)

for 1 < p < ∞. We consider the Dirichlet eigenvalue problem for the p-Laplacian{
−�pu = λ|u|p−2u in Ω,

u = 0 on ∂Ω.
(2)

As it is well known, the first eigenvalue λp(Ω) is positive, simple, can be variationally character-
ized, and the corresponding eigenfunction belongs to the Hölder space C1,α(Ω), does not change
sign and therefore can be taken positive. If p = 2, when �p becomes the Laplacian operator �,
the value of λp(Ω) is well known for domains with simple geometry; for more general domains
it can be determined by several methods. For p > 1 and N = 1, the value of λp(Ω) is known: if
Ω = (a, b), then

λp(Ω) = (p − 1)

(
πp

b − a

)p

,

where

πp := 2

1∫
0

ds
p
√

1 − sp
= 2

π/p

sen(π/p)
.

However, if p �= 2 and N � 2, the value of λp(Ω) is not explicitly known, not even for simple
domains such as a ball or a square. In such cases, there are few available numerical methods for
finding λp(Ω). In the absence of an exact value or even a good approximation for λp(Ω), lower
bounds play an important role in its estimation, being of special interest in the literature (upper
bounds are more easily obtainable from the variational characterization of λp(Ω)). An important
lower bound for λp(Ω) (see [7]) is λp(B) where B ⊂ R

N is a ball centered at the origin and with
the same N -dimensional Lebesgue measure of Ω .

We propose a method based on the inverse power method for obtaining λp(Ω) and prove its
applicability in the case when Ω = B (without loss of generality we choose B to be the unit ball).
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We believe this specific result is very relevant and certainly will contribute to research on quasi-
linear problems in which spherical geometry or the estimation of λp(Ω) are important. Moreover,
the main results that support the method are valid for a general domain (even unbounded) and
thus they lead us to conjecture that our method is applicable to a more general class of domains.

In the remainder of this introduction we describe in more detail the main results of this paper
and our conjecture.

Let W
1,p

0 (Ω) denote the standard Sobolev space with norm ‖u‖
W

1,p
0 (Ω)

= ‖∇u‖Lp(Ω). We

recall that u ∈ W
1,p

0 (Ω) is a weak solution to the homogeneous Dirichlet problem

{−�pu = f in Ω,

u = 0 on ∂Ω,
(3)

for a given function f ∈ Lp′
(Ω), where p′ = p/(p − 1) denotes the conjugate exponent of p, if

∫
Ω

|∇u|p−2∇u · ∇v dx =
∫
Ω

f v dx (4)

for every test function v ∈ W
1,p

0 (Ω). It is well known that if f ∈ C0(Ω) then the corresponding

weak solution u belongs to C1,α(Ω) and the inverse operator (−�p)−1 : C0(Ω) → W
1,p

0 (Ω) ∩
C1,α(Ω) ↪→ C0(Ω) is continuous and compact.

The technique runs as follows. First, iteratively define a sequence of functions (φn)n∈N ⊂
W

1,p

0 (Ω) ∩ C1.α(Ω) by setting φ0 ≡ 1 and, for n = 1,2,3, . . . , letting φn be the solution to the
Dirichlet problem

{−�pφn = φ
p−1
n−1 in Ω,

φn = 0 on ∂Ω.
(5)

Then, for n � 1, define the following sequences of real numbers

γn := inf
Ω

(
φn

φn+1

)p−1

(6)

and

Γn := sup
Ω

φn

φn+1
=

∥∥∥∥ φn

φn+1

∥∥∥∥
L∞(Ω)

. (7)

We show that sequence (6) is indeed well defined and bounded above by the first Dirichlet eigen-
value of the p-Laplacian λp . This result in itself is of particular importance, since lower bounds
for λp are hard to obtain. For sequence (7), we give strong evidence that it is well defined for at
least all sufficiently large n (we prove this is true for balls and for general domains in the special
case p = 2) and that it is bounded below by λp . We also show that sequence (6) is increasing
(which implies among other things that we can obtain successively better lower bounds for λp),



246 R.J. Biezuner et al. / Journal of Functional Analysis 257 (2009) 243–270
whereas sequence (7) is decreasing. Thus, the limit

γ := limγn

exists and is finite, the limit

Γ := limΓn

exists and is likely finite (it is definitely finite in some cases), and they satisfy

γ � λp � Γ.

We conjecture that

λp = γ = Γ. (8)

If this conjecture is true, we also show that the first eigenfunction might be construed as the
limit of a certain scaling of sequence (φn). We are able to show that this indeed happens in the
special cases of balls, for general p, and general domains, for p = 2. In the latter case we use
the Hilbert space structure of the space W

1,2
0 (Ω) and some well-known results for generalized

Fourier expansions in eigenfunctions of the Laplacian. Needless to say, such an argument does
not work for p �= 2. However, numerical experiments indicate that for general p we do have

γ = Γ

and that these values approach known values of λp obtained by other authors using different
techniques.

We also consider the sequence of numbers

νn =
( ‖φn‖Lp(Ω)

‖φn+1‖Lp(Ω)

)p−1

(9)

and show that it is bounded below by λp and above by the sequence (Γn), so that it is also our
(independent) conjecture that

λp = ν := limνn. (10)

In numerical experiments, it is observed that the convergence of this sequence is significantly
faster than the convergences of the above two sequences.

This paper is organized as follows. In Section 2, we prove the monotonicity of sequences
(γn) and (Γn), and that the first eigenvalue is an upper bound for sequence (γn). We also study
sequence (νn) and find that the first eigenvalue is a lower bound for this sequence as well as
for sequence (Γn). In Section 3, we show that if conjecture (8) is true, a certain scaled limit
of sequence (φn) might approach the first eigenfunction. Section 4 gives a complete proof of
conjecture (8) in the case of n-dimensional balls. In Section 5, we prove the convergence of all
three sequences to the first eigenvalue in the case p = 2. Section 6 shows that in principle this
technique can be extended to yield higher eigenvalues and corresponding eigenfunctions, at least
in the p = 2 case. Finally, in Section 7 we describe the numerical experiments performed and
their results.
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2. Behavior of sequences (γn), (Γn) and (νn)

In the following, we denote by ‖u‖∞ and ‖u‖p respectively the L∞ and Lp norms of a

function u in Ω . Let (φn)n∈N ⊂ W
1,p

0 (Ω)∩C1.α(Ω) be the sequence defined by φ0 ≡ 1 and, for
n � 1, φn is the solution to the Dirichlet problem

{−�pφn = φ
p−1
n−1 in Ω,

φn = 0 on ∂Ω.
(11)

2.1. Sequence (γn)

Set

γn := inf
Ω

(
φn

φn+1

)p−1

.

First we show that sequence (γn) is well defined. In the sequel we will resort several times to
the well-known comparison principle for the p-Laplacian (see [4], for instance). For easiness of
reference we state it here.

Proposition 2.1 (Comparison principle). Let u1, u2 ∈ C1.α(Ω) satisfy

{−�pu1 � −�pu2 in Ω,

u1 � u2 on ∂Ω.

Then, u1 � u2 in Ω .

Proposition 2.2. The sequence (φn)n∈N satisfies

0 < φn � ‖φ1‖∞φn−1 in Ω

for every n � 1.

Proof. First we show that φn is positive by using a simple argument involving the comparison
principle. The comparison principle already implies that φn � 0.

Fix an arbitrary x0 ∈ Ω and let R > 0 be such that the ball BR(x0) centered at x0 with radius
R is contained in Ω . We will show that φn(x) > 0 for all x ∈ BR(x0).

Let ψ1 be the solution to the Dirichlet problem

{−�pψ1 = 1 in BR(x0),

ψ1 = 0 on ∂BR(x0).

It is well known that the solution to this problem is radially symmetric, that is, ψ1(x) = v1(r) for
r = |x − x0|, where v1 satisfies the problem

{
−(

rN−1
∣∣v′

1

∣∣p−2
v′

1

)′ = rN−1 for 0 < r < R,

v′ (0) = v (R) = 0.
1 1
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Integrating the differential equation we find

v1(r) =
R∫

r

( r∫
0

(
s

r

)N−1

ds

) 1
p−1

dr

and hence v1 > 0 for 0 < r < R. Thus, since

{−�pφ1 = −�pψ1 in BR(x0),

φ1 � 0 = ψ1 on ∂BR(x0),

it follows from the comparison principle that

φ1 � ψ1 > 0 in BR(x0).

For n � 2 define the sequence (ψn) iteratively by

{−�pψn+1 = ψ
p−1
n in BR(x0),

ψn+1 = 0 on ∂BR(x0).

As before, ψn+1(x) = vn+1(r) where vn+1 is the solution to the (nonlinear) problem

{
−(

rN−1
∣∣v′

n+1

∣∣p−2
v′
n+1

)′ = rN−1v
p−1
n for 0 < r < R,

v′
n+1(0) = vn+1(R) = 0,

so that

ψn+1(x) =
R∫

|x−x0|

( r∫
0

(
s

r

)N−1

v
p−1
n (s) ds

) 1
p−1

dr > 0 for x ∈ BR(x0).

Assuming by induction that φn � ψn in BR(x0), it follows that

{−�pφn+1 = φ
p−1
n � ψ

p−1
n = −�pψn+1 in BR(x0),

φn+1 � 0 = ψn+1 on ∂BR(x0),

which implies that φn+1 � ψn+1 in BR(x0). Therefore, we conclude that φn+1 � ψn+1 > 0 in
BR(x0) for all n. Since x0 is arbitrary, it follows that φn > 0 in Ω for all n.

It remains to show that φn � ‖φ1‖∞φn−1. Again we use an induction argument together with
the comparison principle. Trivially,

φ1 � ‖φ1‖∞ = ‖φ1‖∞φ0.

Assume

φn � ‖φ1‖φn−1.
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We have {−�pφn+1 = φ
p−1
n � ‖φ1‖p−1∞ φ

p−1
n−1 = −�p

(‖φ1‖∞φn

)
in Ω,

φn+1 = 0 = ‖φ1‖∞φn on ∂Ω,

whence

φn+1 � ‖φ1‖∞φn. �
As a consequence of Proposition 2.2, it follows that

‖φn+1‖∞ � ‖φ1‖∞‖φn‖∞

and

φn

φn+1
� 1

‖φ1‖∞
> 0.

Therefore, the sequence

γn = inf
Ω

(
φn

φn+1

)p−1

(12)

is well defined. Observe that

γ0 = inf
Ω

(
1

φ1

)p−1

= 1

‖φ1‖p−1∞
. (13)

Next we show that (γn) is an increasing sequence, bounded above by the first eigenvalue. We
will need the following lemma:

Lemma 2.3. Let Ω ⊂ RN be a smooth bounded region and h ∈ C0(Ω) a nonnegative function.
If u ∈ W

1,p

0 (Ω) ∩ C1,α(Ω) is a positive solution to the Dirichlet problem

{−�pu = λpup−1 + h in Ω,

u = 0 on ∂Ω,
(14)

then h ≡ 0 in Ω and consequently u is a positive eigenfunction corresponding to the first eigen-
value λp .

Proof. This proof is adapted from [1, Theorem 2.4] and based on the inequality

|∇w|p � |∇u|p−2∇u · ∇
(

wp

up−1

)
, (15)

valid for all differentiable functions u,w in Ω that satisfy u > 0 and w � 0; this inequality
follows from Picone’s identity.
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Multiplying Eq. (14) by any v ∈ W
1,p

0 (Ω) and integrating on Ω , we have

∫
Ω

|∇u|p−2∇u · ∇v dx =
∫
Ω

(
λpup−1 + h

)
v dx. (16)

Let up ∈ W
1,p

0 (Ω)∩C1,α(Ω) be a positive eigenfunction corresponding to λp . Applying (15)
with w = up and integrating on Ω , we find that

∫
Ω

|∇up|p dx �
∫
Ω

|∇u|p−2∇u · ∇
(

u
p
p

up−1

)
dx.

Now, since u > 0 in Ω , by Hopf’s lemma we have u
p
p/up−1 ∈ W

1,p

0 (Ω). Therefore, we can
apply (16) to conclude that

∫
Ω

|∇up|p dx �
∫
Ω

(
λpup−1 + h

) u
p
p

up−1
dx.

Thus,

0 =
∫
Ω

|∇up|p dx −
∫
Ω

λpu
p
p dx �

∫
Ω

h
φp

up−1
dx � 0,

which implies that h ≡ 0. �
Proposition 2.4. For all n � 2 the following hold:

(i) γ0 < λp .
(ii) γ0 � γn � γn+1 < λp .

(iii) There exists

γ := limγn

and γ0 � γ � λp .

Proof. Property (iii) is a direct consequence of (i) and (ii). We prove (i) by a contradiction
argument. Assume γ0 � λp . Then, setting

h = 1 − λpφ
p−1
1 ,

it follows by (13) that

h � 1 − γ0φ
p−1 � 0.
1
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Write

{−�pφ1 = 1 = λpφ
p−1
1 + h in Ω,

φ1 = 0 on ∂Ω.

From Lemma 2.3, we conclude that h ≡ 0 and so λpφ1 ≡ 1. This implies that φ1 is constant,
contradicting −�pφ1 = 1 in Ω .

In order to prove (ii), observe that γ0 � γn follows immediately from Proposition 2.2:

γ0 = 1

‖φ1‖p−1∞
�

(
φn

φn+1

)p−1

.

The monotonicity of the sequence (γn) can be shown by using the comparison principle. We have
by definition

{−�pφn = φ
p−1
n−1 � γn−1φ

p−1
n = −�p

(
γ

1/(p−1)

n−1 φn+1
)

in Ω,

φn = 0 = φn+1, on ∂Ω,

whence

φn � γ
1/(p−1)

n−1 φn+1,

and, therefore

γn = inf
Ω

(
φn

φn+1

)p−1

� γn−1.

Finally, in order to verify that γn < λp we use again a contradiction argument. Suppose that
γn � λp for some n. Then,

λpφ
p−1
n+1 � γnφ

p−1
n+1 �

(
φn

φn+1

)p−1

φ
p−1
n+1 = φ

p−1
n ,

the second inequality a consequence of (12). Thus,

h := φ
p−1
n − λpφ

p−1
n+1 � 0

in Ω . Since

{−�pφn+1 = φ
p−1
n = λpφ

p−1
n+1 + h in Ω,

φn+1 = 0 on ∂Ω,

it follows from Lemma 2.3 that h ≡ 0. Thus,

φ
p−1
n = λpφ

p−1 (17)
n+1
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and hence

λp ≡
(

φn

φn+1

)p−1

= inf
Ω

(
φn

φn+1

)p−1

= γn.

Furthermore, it also follows from (17) that

φ
p−1
n−1 = −�pφn = −�p

(
λ

1/(p−1)
p φn+1

) = λp(−�pφn+1) = λpφ
p−1
n

whence

λp ≡
(

φn−1

φn

)p−1

= inf
Ω

(
φn−1

φn

)p−1

= γn−1.

Proceeding recursively we obtain

λp = γ0,

which contradicts (i). �
As a consequence from Propositions 2.2 and 2.4(i), we obtain the following behavior for the

sequence (φn):

Corollary 2.5. φn

‖φ1‖n∞ → 0 monotonically and uniformly.

Proof. Set

wn := φn

‖φ1‖n∞
,

so that, by (13), {
−�pwn = γ0w

p−1
n−1 in Ω,

wn = 0 on ∂Ω.

It follows from Proposition 2.2 that the sequence (wn) is decreasing and uniformly bounded,
since

wn+1

wn

= ‖φ1‖n∞
‖φ1‖n+1∞

φn+1

φn

= 1

‖φ1‖∞
φn+1

φn

� 1

and

‖wn‖∞ = ‖φn‖∞
‖φ1‖n∞

� ‖φn−1‖∞‖φ1‖∞
‖φ1‖n∞

� ‖φn−2‖∞‖φ1‖2∞
‖φ1‖n∞

� · · · � 1.

The uniform boundedness of (wn) together with the compacity of the operator (−�p)−1 :
C0(Ω) → C0(Ω) imply that (wn) = (−�p)−1(γ0wn−1) has a subsequence which converges
uniformly to some function w ∈ C0(Ω). The monotonicity of (wn) guarantees that the whole
sequence converges uniformly and monotonically to w. The continuity of −�−1 implies that
p
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w = (−�p)−1(γ0w). Therefore,{
−�pw = γ0w

p−1 in Ω,

w = 0 on ∂Ω.

Since γ0 < λp and λp is the first eigenvalue for −�p , we conclude that w = 0. �
2.2. Sequence (Γn)

Set

Γn := sup
Ω

(
φn

φn+1

)p−1

=
∥∥∥∥ φn

φn+1

∥∥∥∥
p−1

L∞(Ω)

. (18)

Observe that

Γ0 =
∥∥∥∥φ0

φ1

∥∥∥∥
p−1

∞
= ∞,

since φ0 = 1 on Ω and φ1 = 0 on the boundary ∂Ω . However, if one can guarantee that Γn0 is
finite for some n0, then sequence (Γn) is well defined from n0 on:

Proposition 2.6. Assume Γn0 < ∞ for some n0 � 1. Then

(
φn

φn+1

)p−1

� Γn0 for all n � n0

and therefore (Γn) is well defined and bounded from above for n � n0. Moreover, the sequence
(Γn) is decreasing for n � n0.

Proof. Proceeding by induction, assume we have shown Γn0+k � · · · � Γn0 . Then, for j = n0 +k

we observe that

−�pφj+1 = φ
p−1
j =

(
φj

φj+1

)p−1

φ
p−1
j+1 � Γjφ

p−1
j+1 = −�p

(
Γ

1
p−1

j φj+2
)

in Ω , and

φj+1 = 0 = Γ
1

p−1
j φj+2

on ∂Ω . Thus, it follows from the comparison principle that

φj+1 � Γ
1

p−1
j φj+2 in Ω.

Hence,

Γj+1 =
∥∥∥∥φj+1

∥∥∥∥
p−1

� Γj . �

φj+2 ∞



254 R.J. Biezuner et al. / Journal of Functional Analysis 257 (2009) 243–270
For special domains, we are able to prove that there exists n0 such that Γn0 is finite. Indeed,
the following result holds:

Proposition 2.7. Let Ω = BR be the ball of center at the origin and radius R. Then Γ1 is finite.

Proof. Using the same notation as in Proposition 2.2, we have φn(x) = vn(r) with

vn(r) =
1∫

r

( θ∫
0

(
s

θ

)N−1

vn−1(s)
p−1 ds

) 1
p−1

dr. (19)

Thus, if x ∈ ∂BR , L’Hôpital’s rule implies that

φ1(x)

φ2(x)
= lim

r→R−
v1(r)

v2(r)
= lim

r→R−
v′

1(r)

v′
2(r)

=
( ∫ R

0 sN−1 ds∫ R

0 sN−1v1(s)p−1 ds

) 1
p−1

< ∞. �

2.3. Sequence (νn)

Set

νn =
( ‖φn‖Lp(Ω)

‖φn+1‖Lp(Ω)

)p−1

.

Clearly, sequence (νn) is well defined. We show that both it and sequence (Γn) are bounded
below by the first eigenvalue.

Proposition 2.8. There holds

λp � νn � Γn

for all n � 1.

Proof. By (4) and Hölder’s inequality we have

‖∇φn+1‖p
p =

∫
Ω

|∇φn+1|p dx =
∫
Ω

φ
p−1
n φn+1 dx �

∥∥φ
p−1
n

∥∥
p′ ‖φn+1‖p,

whence

‖∇φn+1‖p
p � ‖φn‖p−1

p ‖φn+1‖p.

Hence, from this and the variational characterization of the first eigenvalue

λp = inf
v∈W

1,p
0 (Ω)\{0}

‖∇v‖p

‖v‖p

,

it follows that
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λp � ‖∇φn+1‖p
p

‖φn+1‖p
p

� ‖φn‖p−1
p ‖φn+1‖p

‖φn+1‖p
p

= νn

= 1

‖φn+1‖p−1
p

(∫
Ω

(
φn

φn+1

)p

φ
p

n+1 dx

) p−1
p

� 1

‖φn+1‖p−1
p

∥∥∥∥ φn

φn+1

∥∥∥∥
p−1

∞

(∫
Ω

φ
p

n+1 dx

) p−1
p

= Γn. �
Corollary 2.9. If

limΓn = λp

then

limνn = λp.

As an interesting consequence of Propositions 2.4 and 2.8 we have

Corollary 2.10. If Ω is connected and Γn0 < ∞ for some n0 � 1, then for each n � n0 there
exists at least one xn ∈ Ω such that

λp = φn(xn)

φn+1(xn)
.

3. The first eigenvalue and the first eigenfunction

Recall that if

γ = limγn,

then it follows from Proposition 2.4 that

γ � λp.

If we set

Γ := limΓn

and

ν := limνn,
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we have from Propositions 2.6 and 2.8 that ν < ∞ and

λp � ν � Γ.

We conjecture the following:

Conjecture 3.1. There holds

λp = γ = Γ = ν. (20)

In order to find a sequence of functions approximating the first eigenfunction, we define for
each n ∈ N the function

un := φn

an

,

where an is such that

an

an+1
= γ

1
p−1

n = inf
Ω

φn

φn+1
.

For instance, if we set

a1 := ‖φ1‖∞,

then

a2 = a1

γ
1/(p−1)

1

= a1

infΩ
φ1
φ2

= ‖φ1‖∞
∥∥∥∥φ2

φ1

∥∥∥∥∞

and, in general,

an = ‖φ1‖∞
infΩ

φ1
φ2

1

infΩ
φ2
φ3

· · · 1

infΩ
φn−1
φn

= ‖φ1‖∞
∥∥∥∥φ2

φ1

∥∥∥∥∞

∥∥∥∥φ3

φ2

∥∥∥∥∞
· · ·

∥∥∥∥ φn

φn−1

∥∥∥∥∞
. (21)

Since

‖φk‖∞
‖φk−1‖∞

�
∥∥∥∥ φk

φk−1

∥∥∥∥∞
,

we have

an � ‖φ1‖∞
‖φ2‖∞
‖φ1‖∞

‖φ3‖∞
‖φ2‖∞

· · · ‖φn‖∞
‖φn−1‖∞

= ‖φn‖∞.

Therefore,

un � φn

‖φn‖∞
� 1.
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Proposition 3.2. Let (un) ⊂ W
1,p

0 (Ω) ∩ C1.α(Ω) be the sequence of functions defined above.
Then (un) is decreasing and satisfies

{
−�pun+1 = γnu

p−1
n in Ω,

un = 0 on ∂Ω.

Furthermore, (un) converges uniformly to a function u ∈ C1.α(Ω) which satisfies

{
−�pu = γ up−1 in Ω,

u = 0 on ∂Ω.

Proof. We have

−�pun+1 =
(

φn

an+1

)p−1

=
(

an

an+1

)p−1

u
p−1
n = γnu

p−1
n .

Moreover,

un+1 = φn+1

an+1
= φn+1

an

inf
Ω

φn

φn+1
� φn+1

an

φn

φn+1
= φn

an

= un,

which proves that (un) is decreasing and therefore we can define a function u in Ω by

u(x) := limun(x)

for each x ∈ Ω . Since (un) ⊂ C1,α(Ω), 0 � un � u1, and the operator (−�p)−1 : C0(Ω) →
C0(Ω) is compact, the whole sequence (un) converges to u uniformly and we can pass the limit
in

−�pun+1 = γnu
p−1
n

to obtain

−�pu = γ up−1. �
In view of Conjecture 3.1, this result suggests that u is the eigenfunction corresponding to

the first eigenvalue. However, since we are not able to guarantee that u is not the null function,
this does not follow automatically. On the other hand, since Proposition 3.2 is independent of the
conjecture, its proof would show that γ = λp .

We end this section by remarking that all results proved above are valid if we consider a
positive weight ω(x) multiplying the right-hand side of the eigenvalue equation, that is, if we
consider the equation −�pu = λω(x)|u|p−1u in Ω . The above arguments are easily adapted
to contemplate this case and the most remarkable change appears in the sequence (νn) which
becomes

νn =
( ‖ω(x)1/pφn‖p

‖ω(x)1/pφn+1‖p

)p−1

.
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4. Spherical domains

In this section we show the validity of Conjecture 3.1 for balls. Let B = B1(0) ⊂ R
N , N � 2,

denote the unit ball centered at the origin. The following lemma in the form it is given was
first stated in [2], even though it has already often been used as a technical tool in differential
geometry. A proof is provided for completeness.

Lemma 4.1. Let f,g : [a, b] → R be continuous on [a, b] and differentiable in (a, b). Suppose
g′(x) �= 0 for all x ∈ (a, b). If f ′

g′ is (strictly) increasing [decreasing], then both f (x)−f (a)
g(x)−g(a)

and
f (x)−f (b)
g(x)−g(b)

are (strictly) increasing [decreasing].

Proof. Assume f ′
g′ is increasing. Then the Cauchy mean value theorem implies that for each

x ∈ (a, b) there exists y ∈ (a, x) such that

f (x) − f (a)

g(x) − g(a)
= f ′(y)

g′(y)
� f ′(x)

g′(x)
.

On the other hand, since g′ �= 0 we always have

g′(x)

g(x) − g(a)
> 0.

Thus,

d

dx

(
f (x) − f (a)

g(x) − g(a)

)
= f ′(x)

g(x) − g(a)
− g′(x)

g(x) − g(a)

f (x) − f (a)

g(x) − g(a)

� f ′(x)

g(x) − g(a)
− g′(x)

g(x) − g(a)

f ′(x)

g′(x)
= 0,

and so f (x)−f (a)
g(x)−g(a)

is increasing.

If f ′
g′ is decreasing, then the same arguments prove that f (x)−f (a)

g(x)−g(a)
is decreasing. Moreover,

the above inequalities are strict if the monotonicity of f ′
g′ is strict. The proof for f (x)−f (b)

g(x)−g(b)
is

similar. �
We use this lemma in order to show that for each n � 0 the quotient φn

φn+1
is increasing as a

function of r = |x|:

Theorem 4.2. Let p > 1 and for r ∈ [0,1] set

φ0(r) ≡ 1,

φn(r) =
1∫ ( θ∫ (

s

θ

)N−1

φ
p−1
n−1 (s) ds

) 1
p−1

dθ, if n � 1.
r 0
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Then, for each n � 1 the function φn is strictly decreasing and for each n � 0 the quotient φn

φn+1
is strictly increasing on [0,1].

Proof. As

φ′
n(r) = −

( r∫
0

(
s

r

)N−1

φ
p−1
n−1 (s) ds

) 1
p−1

< 0,

for r > 0, the functions φn are strictly decreasing for n � 1.
In particular, the quotient φn

φn+1
is strictly increasing when n = 0. In order to show that the quo-

tients are strictly increasing for n � 1, we use an induction argument. Assume that the quotient
φn−1
φn

is strictly increasing for some n � 1. Noticing that φn(1) = φn+1(1) = 0, we can write

φn

φn+1
(r) = φn(r) − φn(1)

φn+1(r) − φn+1(1)
.

We will apply the previous lemma in order to show that the quotient in the right-hand side of this
equation is strictly increasing. For this, it is enough to verify that

φ′
n(r)

φ′
n+1(r)

=
(∫ r

0 sN−1φ
p−1
n−1 (s) ds∫ r

0 sN−1φ
p−1
n (s) ds

) 1
p−1

is increasing. Since the map ξ �→ ξ
1

p−1 is increasing, this is equivalent to showing that

∫ r

0 sN−1φ
p−1
n−1 (s) ds∫ r

0 sN−1φ
p−1
n (s) ds

is increasing. But this is itself a consequence of the lemma, for both
∫ r

0 sN−1φ
p−1
n−1 (s) ds and∫ r

0 sN−1φ
p−1
n (s) ds equal zero at r = 0 and

(
∫ r

0 sN−1φ
p−1
n−1 (s) ds)′

(
∫ r

0 sN−1φ
p−1
n (s) ds)′

=
(

φn−1(r)

φn(r)

)p−1

,

which is strictly increasing by the induction hypothesis. �
Corollary 4.3.

γn = inf
B

(
φn

φn+1

)p−1

=
( ‖φn‖∞

‖φn+1‖∞

)p−1

.
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Proof. Since φn and φn+1 are decreasing functions, we have ‖φn‖∞ = φn(0) and ‖φn+1‖∞ =
φn+1(0). Therefore, since φn

φn+1
is increasing,

inf
B

(
φn

φn+1

)p−1

=
(

φn(0)

φn+1(0)

)p−1

=
( ‖φn‖∞

‖φn+1‖∞

)p−1

. �
Theorem 4.4. Let (un) be the sequence defined by

un := φn

‖φn‖
for each n ∈ N. Then

γ = λp(B)

and (un) converges uniformly (and monotonically) to a positive function u ∈ C1,α(B) such that
‖u‖∞ = 1 and {

−�pu = λpup−1 in B,

u = 0 on ∂B.
(22)

Proof. Notice that sequence (un) is the same as that defined in Proposition 3.2, since an defined
in (21) is now, in view of Corollary 4.3,

an = ‖φ1‖∞
infΩ

φ1
φ2

1

infΩ
φ2
φ3

· · · 1

infΩ
φn−1
φn

= ‖φ1‖∞
‖φ1‖∞
‖φ2‖∞

1
‖φ2‖∞
‖φ3‖∞

· · · 1
‖φn−1‖∞
‖φn‖∞

= ‖φn‖∞.

Thus, it satisfies the nonlinear problem{
−�pun+1 = γnu

p−1
n in B,

un = 0 on ∂B,
(23)

and is decreasing. Therefore, arguing as in the proof of Proposition 3.2, we can pass the limit in
(23) in order to obtain (22). However, differently from the sequence of Proposition 3.2, we have
in addition

‖un‖∞ = 1

for every n ∈ N, which allows us to conclude that ‖u‖∞ = lim‖un‖∞ = 1, hence u is not the
null function and thus γ = λp (see remark after Proposition 3.2). �

Next we will show that the sequence (φn/φn+1) converges uniformly to the constant function
λp on each compact set contained in B .

Lemma 4.5. For each 0 < ε < 1 define

Kε :=
( 1∫ (

ε

θ

)N−1
p−1

dθ

)−1

.

1−ε
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Then

0 �
(

φn

φn+1

)′
� Kε

∥∥∥∥φ1

φ2

∥∥∥∥∞
on the interval [ε,1 − ε]. (24)

Proof. Since (see Propositions 2.6 and 2.7)

∥∥∥∥ φn

φn+1

∥∥∥∥∞
�

∥∥∥∥φ1

φ2

∥∥∥∥∞
, if n � 2 (25)

and

0 �
(

φn

φn+1

)′
= φn+1φ

′
n − φnφ

′
n+1

φ2
n+1

= φn

φn+1

|φ′
n+1|

φn+1
− |φ′

n|
φn

� φn

φn+1

|φ′
n+1|

φn+1
,

it suffices to show that

|φ′
n+1|

φn+1
� Kε in [ε,1 − ε].

And indeed, for ε � r � 1 − ε < 1 we have

φn+1(r) =
1∫

r

( θ∫
0

(
s

θ

)N−1

φ
p−1
n (s) ds

) 1
p−1

dθ

�
( 1∫

r

θ
− N−1

p−1 dθ

)( r∫
0

sN−1φ
p−1
n (s) ds

) 1
p−1

=
( 1∫

1−ε

θ
− N−1

p−1 dθ

)
r

N−1
p−1

∣∣φ′
n+1(r)

∣∣

�
( 1∫

1−ε

(
ε

θ

)N−1
p−1

dθ

)∣∣φ′
n+1(r)

∣∣. �

Theorem 4.6. For each fixed 0 < ε < 1 we have

[
φn(|x|)

φn+1(|x|)
] 1

p−1 → λp

uniformly on the annulus Ω1−ε
ε := {ε < |x| < 1 − ε} ⊂ B1.

Proof. In view of (24) and (25), it follows from Arzela–Ascoli’s theorem that, up to a subse-
quence, (

φn(r)
) converges uniformly to a function w ∈ C([ε,1 − ε]).
φn+1(r)
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Taking un(|x|) = φn(|x|)
‖φn‖∞ as in the proof of Theorem 4.4, we can write

−�pun+1 = φ
p−1
n

‖φn+1‖p−1∞
=

(
φn

φn+1

)p−1

u
p−1
n+1 in Ω1−ε

ε .

Thus, passing the limit in this equation for a convenient subsequence, we obtain

−�pu = wp−1u,

where u is the eigenfunction given in Theorem 4.4. Therefore,

wp−1 ≡ λp,

for −�pu = λpup−1.
The proof is complete since the limit is independent of the particular subsequence that con-

verges to w. �
Corollary 4.7.

Γ = λp.

Proof. We have

Γn = sup
0�r�1

(
φn

φn+1

)p−1

= lim
r→1+

(
φn(r)

φn+1(r)

)p−1

=
(

φ′
n(1)

φ′
n+1(1)

)p−1

and

(
φ′

n(1)

φ′
n+1(1)

)p−1

=
∫ 1

0 sN−1φ
p−1
n−1 (s) ds∫ 1

0 sN−1φ
p−1
n (s) ds

=
∫ 1

0 sN−1(
φn−1
φn

(s))p−1(
φn(s)

‖φn‖∞ )p−1 ds∫ 1
0 sN−1(

φn(s)
‖φn‖∞ )p−1 ds

.

Since φn−1
φn

and φn

‖φn‖∞ are bounded, λp = lim(
φn−1
φn

)p−1 and u(|x|) = lim(
φn(|x|)
‖φn‖∞ )p−1 is the eigen-

function obtained above, we can apply Lebesgue’s dominated convergence theorem to obtain

Γ = lim

(
φ′

n(1)

φ′
n+1(1)

)p−1

=
∫ 1

0 sN−1λ
p−1
p up−1(s) ds∫ 1

0 sN−1up−1(s) ds
= λp. �

Corollary 4.8.

ν := lim

( ‖φn‖p

‖φn+1‖p

)p−1

= λp.
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Proof. In view of the last corollary, this follows from Corollary 2.9. �
This result in fact holds for any Lq -norm (q > 1):

Corollary 4.9. For any q > 1 there holds

lim

( ‖φn‖q

‖φn+1‖q

)p−1

= λp.

Proof. As before set u(|x|) = lim(
φn(|x|)
‖φn‖∞ )p−1. Then it follows from Lebesgue’s dominated con-

vergence theorem that

lim

( ‖φn‖q

‖φn+1‖q

)p−1

= lim

( ∫ 1
0 sN−1φ

q
n(s) ds∫ 1

0 sN−1φ
q

n+1(s) ds

) p−1
q

= lim

( ‖φn‖∞
‖φn+1‖∞

)p−1( ∫ 1
0 sN−1 lim(

φn(s)
‖φn‖∞ )q ds∫ 1

0 sN−1 lim(
φn+1(s)

‖φn+1‖∞ )q ds

) p−1
q

= λp

(∫ 1
0 sN−1uq(s) ds∫ 1
0 sN−1uq(s) ds

) p−1
q

= λp. �
As at the end of last section, we also remark that all results in this section remain valid if we

consider a radially symmetric weight ω(|x|). Moreover, the results can be naturally extended to
the Dirichlet problem in R

N with an appropriate weight.

5. The case p = 2

In this section, we give a complete proof of the convergence of the three sequences to the first
eigenvalue of the Laplacian.

Let

0 < λ1 < λ2 � λ3 � · · ·

be the increasing sequence of Dirichlet eigenvalues for the Laplacian −� in Ω and (en)n∈N ⊂
W

1,2
0 (Ω) ∩ C2(Ω) be a corresponding sequence of eigenfunctions which is also an orthogonal

system for L2(Ω) and normalized by the sup-norm, that is, ‖en‖∞ = 1 for all n ∈ N. Denote the
inner product in L2(Ω) by

〈u,v〉 =
∫

uv dx.
Ω
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If ξ ∈ W
1,2
0 (Ω) ∩ C2(Ω) is such that ξ > 0 in Ω , then

ξ =
∞∑

k=1

αkek (26)

with

αk = 〈ξ, ek〉, k = 1,2, . . . ,

and we may assume

α1 = 〈ξ, e1〉 =
∫
Ω

ξe1 dx > 0,

since we can take e1 > 0 in Ω . Moreover,

∞∑
k=2

α2
k‖ek‖2 = ‖ξ‖2

2 − α2
1‖e1‖2 < ‖ξ‖2

2.

Now, if φ ∈ W
1,2
0 (Ω) ∩ C2(Ω) is such that

{−�φ = ξ in Ω,

φ = 0 on ∂Ω,

it follows that

φ =
∞∑

k=1

〈φ, ek〉ek

with

∞∑
k=1

αkek = ξ = −�φ =
∞∑

k=1

〈φ, ek〉(−�ek)

=
∞∑

k=1

λk〈φ, ek〉ek,

whence

〈φ, ek〉 = αk

λk

.

Thus,

φ =
∞∑ αk

λk

ek.
k=1
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Returning to sequence (φn), if

1 =
∞∑

k=1

αkek

is the expansion of the function ξ ≡ 1, we obtain recursively

φn =
∞∑

k=1

αk

λn
k

ek,

that is,

φn = 1

λn
1
(α1e1 + ψn),

where

ψn :=
∞∑

k=2

(
λ1

λk

)n

αkek.

Theorem 5.1. λ1 = lim ‖φn‖2‖φn+1‖2
.

Proof. We assert that if (ψn)n∈N is the sequence defined above, then

ψn → 0 in L2(Ω).

Indeed, this follows immediately from the estimate

‖ψn‖2
2 =

∞∑
k=2

(
λ1

λk

)2n

α2
k‖ek‖2

2 �
(

λ1

λ2

)2n ∞∑
k=2

α2
k‖ek‖2

2 � ‖1‖2

(
λ1

λ2

)n

and the fact that λ1 < λ2.
Therefore,

lim
‖φn‖2

‖φn+1‖2
= lim

(
λ1

‖α1e1 + ψn‖2

‖α1e1 + ψn+1‖2

)
= λ1 lim

(
α2

1‖e1‖2
2 + ‖ψn‖2

2

α2
1‖e1‖2

2 + ‖ψn+1‖2
2

) 1
2 = λ1. �

Theorem 5.2. ψn → 0 uniformly in Ω .

Proof. Since the convergence of the eigenfunction expansion of ξ ≡ 1 is absolute, let

M :=
∞∑

|αk|.

k=1
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Then

‖ψn‖∞ =
∥∥∥∥∥

∞∑
k=2

(
λ1

λk

)n

αkek

∥∥∥∥∥∞
� M

(
λ1

λ2

)n

and the result follows letting n → ∞. �
Corollary 5.3. φn

φn+1
→ λ1 uniformly in any compact subset K � Ω .

Proof. Let K � Ω be a compact set and set

mK := min
K

e1 > 0.

Since ψn → 0 uniformly in Ω , we have for all sufficiently large n that

α1mK � α1e1 � |α1e1 + ψn+1| + |ψn+1|
< |α1e1 + ψn+1| + α1

2
mK,

whence

|α1e1 + ψn+1| � α1

2
mK.

Thus, on K we obtain

∣∣∣∣ φn

φn+1
− λ1

∣∣∣∣ = λ1

∣∣∣∣ α1e1 + ψn

α1e1 + ψn+1
− 1

∣∣∣∣
= λ1

∣∣∣∣ ψn − ψn+1

α1e1 + ψn+1

∣∣∣∣
� 2λ1

α1mK

|ψn − ψn+1|
→ 0

uniformly. �
6. Higher eigenvalues

In the case p = 2, higher eigenvalues and their respective eigenfunctions can also in principle
be obtained by this technique. Suppose now that the first nonzero coefficient of ξ ∈ W

1,2
0 (Ω) ∩

C2(Ω) is αk0 for some k0 > 1, that is,

ξ =
∞∑

αkek (27)

k=k0
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with

αk = 〈v, ek〉, k = k0, k0 + 1, . . . .

Then

φn =
∞∑

k=k0

αk

λn
k

ek,

which we write in the form

φn = 1

λn
k0

(αk0ek0 + ψn), (28)

where now

ψn :=
∞∑

k=k0+1

(
λk0

λk

)n

αkek.

Following the same steps of the previous section, we can conclude that ψn → 0 in L2(Ω) and
that

λk0 = lim
‖φn‖2

‖φn+1‖2
.

Moreover, choosing ξ sufficiently regular so that the series of the coefficients

M :=
∞∑

k=1

|αk|

is absolutely convergent, we also have

‖ψn‖∞ =
∥∥∥∥∥

∞∑
k=k0+1

(
λk0

λk

)n

αkek

∥∥∥∥∥∞
� M

(
λk0

λk0+1

)n

,

that is, ψn → 0 uniformly in Ω , which implies as above that φn

φn+1
converges uniformly to the

constant function λk0 in compact subsets of K � Ω ∩ supp(ek0).

7. Numerical results

In this section we present some of the numerical results which we were able to compute for
some domains. We compare them with results obtained elsewhere. Computations were performed
on a Windows XP/Pentium 4 – 2.8 GHz platform, using the GCC compiler.
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Table 1
First eigenvalue for the p-Laplacian on the unit ball.

p N = 2 N = 3 N = 4

1.1 2.5694 3.8728 5.1871
1.2 2.9656 4.5151 6.1020
1.3 3.3263 5.1283 7.0064
1.4 3.6741 5.7431 7.9390
1.5 4.0180 6.3717 8.9154
1.6 4.3624 7.0201 9.9443
1.7 4.7098 7.6920 11.0314
1.8 5.0619 8.3898 12.1810
1.9 5.4195 9.1153 13.3969
2.0 5.7835 9.8698 14.6822
2.1 6.1543 10.6545 16.0400
2.2 6.5321 11.4701 17.4730
2.3 6.9174 12.3177 18.9841
2.4 7.3103 13.1979 20.5759
2.5 7.7108 14.1115 22.2510

p N = 2 N = 3 N = 4

2.6 8.1192 15.0590 24.0121
2.7 8.5355 16.0412 25.8617
2.8 8.9598 17.0586 27.8027
2.9 9.3921 18.1117 29.8374
3.0 9.8324 19.2013 31.9687
3.1 10.2809 20.3278 34.1991
3.2 10.7375 21.4917 36.5314
3.3 11.2022 22.6937 38.9681
3.4 11.6751 23.9341 41.5120
3.5 12.1561 25.2136 44.1659
3.6 12.6453 26.5327 46.9325
3.7 13.1427 27.8919 49.8144
3.8 13.6482 29.2916 52.8146
3.9 14.1619 30.7325 55.9359
4.0 14.6838 32.2150 59.1810

Fig. 1. Graphs of p (1 < p � 4) versus values of γ10, ν10 and Γ10 for the N -dimensional unit ball and N = 2 (left),
N = 3 (center), N = 4 (right).

7.1. The unit ball

In order to compute the value of the first eigenvalue for the p-Laplacian in the unit ball, we
mixed the composite Simpson and trapezoidal methods for computation of the associated inte-
grals in the expression of νn. In Table 1, the results for the first eigenvalue of the p-Laplacian for
values of p ranging from 1.1 to 4.0 for balls of dimensions N = 2,3,4, are displayed, truncated
at the fourth decimal place, after 10 iterations. The results are also visually displayed in Fig. 1.
For comparison, the known value of the first eigenvalue for the Laplacian on the unit bidimen-
sional ball is 5.7832, which means that our error should be about 0.04%. This result compares
well with the one obtained in [8], where a 1.3% precision was attained.

7.2. The unit square

In order to solve the p-Laplacian in the unit square [0,1] × [0,1] we used the algorithm
proposed in [3], coupled with the homotopy perturbation method (HPM) of [6] for the ex-
act line searches in the nonlinear conjugate gradient method. In Table 2 we see the values
for the first eigenvalue of the p-Laplacian for values of p ranging from p = 2 to p = 3,
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Table 2
First eigenvalue for the p-Laplacian on the unit square.

p γ5 ν5 Γ5

2.0 19.7145 19.7348 19.9270
2.1 22.3239 22.3460 22.4447
2.2 25.2168 25.2412 25.3343
2.3 28.2413 28.4495 28.6139
2.4 31.9750 32.0024 32.5685
2.5 35.5746 35.9344 37.6961
2.6 38.5547 40.2827 40.8167
2.7 41.4917 45.0890 52.8657
2.8 5.5593 50.3972 642.6432
2.9 7.8823 56.2567 670.7254
3.0 14.6719 62.7208 205.0535

Fig. 2. Graph of p (2 � p � 3) versus ν5 for the square [0,1] × [0,1].

with 0.1 increment, truncated at the fourth decimal place, after 5 iterations, for all three se-
quences. We see that sequence (νn) has a much faster rate of convergence and less numer-
ical error, especially as the value of p increases. For comparison, the known value of the
first eigenvalue for the Laplacian on the unit square is 2π2 = 19.7392, which means that the
error in ν5 is about 0.02%. Fig. 2 displays the results for ν5. This result with only 5 itera-
tions compares very favourably with the one obtained in [8], where a 3% precision was at-
tained.

It must be remarked that better and faster results should be obtainable with more precise and
faster methods for solving the p-Laplacian equation in each iteration.
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