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We study a stochastic lattice model describing the dynamics of coexistence of two interacting biological
species. The model comprehends the local processes of birth, death, and diffusion of individuals of each
species and is grounded on interaction of the predator-prey type. The species coexistence can be of two types:
With self-sustained coupled time oscillations of population densities and without oscillations. We perform
numerical simulations of the model on a square lattice and analyze the temporal behavior of each species by
computing the time correlation functions as well as the spectral densities. This analysis provides an appropriate
characterization of the different types of coexistence. It is also used to examine linked population cycles in
nature and in experiment.
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I. INTRODUCTION

The Lotka-Volterra model is the first one �1,2� describing
how the interaction between two biological species leads to
time oscillations. This model consists of a set of two coupled
ordinary differential equations for the density of prey and
predator and is set up in analogy with the laws of mass
action �3–6�. However, the Lotka-Volterra description does
not take in an explicit way the spatial structure of the envi-
ronment where the species coexist. One manner of taking
into account the spatial structure is to consider lattice models
in which the species individuals reside on the sites of the
lattice and interact with its neighbors by stochastic local tran-
sition rules �7–13,15–27,29–31�. These models are usually
continuous time Markovian processes defined by discrete
stochastic variables residing on the sites of the lattice, also
called interacting particle system �32,33�.

The stochastic transition rules embodied in the lattice
model imply stochastic fluctuations in the number of a given
species as a function of time. The stochasticity, which is
ubiquitous in nature and is observed in real data, is also an
essential ingredient of the stochastic lattice models, object of
our analysis, but is absent in the Lotka-Volterra model. The
stochastic lattice models, moreover, give a correct descrip-
tion of the local time oscillations in the sense that the ampli-
tude of the oscillations do not depend on the initial condi-
tions. The oscillations coming from the stochastic lattice
models are autonomous, or self-sustained, and depend only
on the external parameter. The stochastic lattice model as
well as some other approaches �34–38�, incorporates the dis-
creteness of the species individuals and local stochastic in-
teractions which are important ingredients to describe cyclic
fluctuation in population dynamics.

In the present work we study the coexistence and the
emergence of stable local self-sustained oscillations in a sto-
chastic lattice model that describes the interaction between
two species, in particular, predator and prey species. Here we
study a modified version of the model introduced by Satu-
lovsky and Tomé �8� by including diffusion of species indi-

viduals. It has been pointed out that diffusion provides a
more realistic description since the species individuals move
themselves in their habitat �27,39–45�. We focus on the
analysis of the time series by determining the time autocor-
relation function of each species as well as the time cross-
correlation function. As applications of this type of analysis
we examine two examples of real data coming from coexist-
ing biological species found in nature and in experiments.

II. MODEL

We depart from the stochastic lattice model for a predator-
prey system �8�. One considers a regular square lattice rep-
resenting the habitat where the two interacting species coex-
ist. Each site can be either empty or occupied by one
individual of different species. The state of a site is described
by a variable �i that takes the values 0, 1, or 2, according to
whether the site is empty, occupied by a prey individual or
by a predator, respectively. That is,

�i = �0, empty,

1, prey,

2, predator.
� �1�

A microscopic state of the system is denoted by the stochas-
tic vector �= ��1 , . . . ,�i , . . . ,�N�, where N is the total num-
ber of sites. The probability P�� , t� of configuration � at time
t evolves in time according to the master equation

d

dt
P��,t� = �

��

�W��,���P���,t� − W���,��P��,t�	 , �2�

where the summation is over all the microscopic configura-
tions ������ of the system, and W�� ,��� is the rate of tran-
sition �conditional probability per unit time� from state �� to
state �.

The transitions between the three states obey the cyclic
order shown in Fig. 1. The three processes are described as
follows: Prey individuals are born in empty sites; prey indi-
vidual dies and is instantaneously replaced by a new born
predator; finally a predator can die leaving an empty site.
The two first processes are catalytic whereas the third is
spontaneous.*Corresponding author; ttome@if.usp.br
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The predator-prey lattice model has three parameters: a,
the probability of birth of prey, b, the probability of birth of
predator and death of prey, and c, the probability of predator
death. The occupancy of a site by prey or by a predator is
conditioned, respectively, to the existence of prey or predator
in the neighborhood of the site. The third reaction, where
predator dies occurs with probability c, independently of the
states of the neighboring sites. By rescaling time it is pos-
sible to assume that a+b+c=1, with 0�a ,b ,c�1. We use
an auxiliary parameter p and write a= �1−c� /2− p and b
= �1−c� /2+ p.

More specifically, the transition probabilities are de-
scribed in what follows:

�a� If a site i is empty ��i=0� and there is at least one prey
individual in its first neighborhood, there is a favorable con-
dition for the birth of a new prey. The probability of site i
being occupied in the next time step by a prey is proportional
to the parameter a and to the number of prey individuals in
the first neighborhood of the empty site. The transition prob-
ability per site associated to this process is given by

wi�0 → 1� = ���i,0�
a

4�
k

���k,1� , �3�

where the summation is over the four nearest neighbors of
site i in a regular square lattice. The notation ��x ,y� stands
for the Kronecker � function.

�b� If a site is occupied by a prey ��i=1� and there is at
least one predator in its first neighborhood, then the site has
a probability of being occupied by a new predator in the next
time step. In this process the prey dies instantaneously. The
transition probability is proportional to the parameter b and
to the number of predators in the first neighborhood of the
site. The transition probability for this process is

wi�1 → 2� = ���i,1�
b

4�
k

���k,2� . �4�

�c� If site i is occupied by a predator ��i=2� it dies with
probability c. The corresponding transition probability is
given by

wi�2 → 0� = c���i,2� , �5�

These stochastic local rules define the dynamics of the
stochastic lattice model for a predator-prey system without
diffusion.

Here we consider a reaction-diffusion process by adding
to the above transitions, related to the reactive processes, a
diffusion process to mimic the explicit movement of prey.
That is, with probability D a diffusion is attempted; with
probability 1−D one performs the transitions �a�, �b�, and �c�
above. The diffusion is realized as follows. One site is cho-
sen at random. Suppose it is occupied by one prey indi-
vidual, there are n empty nearest-neighbor sites. Then the
individual jumps to one of the n empty sites with equal prob-
ability. In analogous way, if the chosen site is empty and
there are n nearest-neighbor prey individuals, one of them is
chosen at random and jumps to the empty site. Otherwise,
that is, if the chosen site is occupied by a predator state of
sites remains unchanged.

III. TIME CORRELATION

To characterize the time behavior of the density of the two
species, we measure the time autocorrelation function for
each species and the time cross-correlation function between
the two species. Let us denote by x�t� and y�t� the times
series for the prey and predator, respectively, and let x̄ and ȳ
be their respective average in time. We define the prey and
predator time autocorrelation functions as

cx�t� =
 �x�t� + t� − x̄��x�t�� − x̄�dt� �6�

and

cy�t� =
 �y�t� + t� − ȳ��y�t�� − ȳ�dt�. �7�

The time cross-correlation function between prey and preda-
tor is given by

cxy�t� =
 �x�t� + t� − x̄��y�t�� − ȳ�dt�. �8�

Instead of these correlations we use in actual calculations the
normalized correlations, defined by

2

b

c

1

0

a

FIG. 1. Transitions of the predator-prey model. The three states
are prey �1�, predator �2�, and empty �0�. The allowed transitions
obey the cyclic order shown.

FIG. 2. �Color online� Average densities of prey �lower points�
and predator �upper points� for p=0.3 and c=0.05 as a function of
D.
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rx�t� =
cx�t�
cx�0�

, �9�

ry�t� =
cy�t�
cy�0�

, �10�

rxy�t� =
cxy�t�
cxy�0�

. �11�

For each of the two autocorrelation functions, we have
determined the Fourier transform, given by

Sx��� =
 rx�t�ei�tdt , �12�

Sy��� =
 ry�t�ei�tdt . �13�

According to the Wiener-Kinchin theorem, Sx��� and Sy���
may be identified with the power spectral density relative to
prey and predator time series, respectively.

Let us assume that the correlation function is described, at
least qualitatively, by the function

r�t� = e−��t�f�t� , �14�

where � is a parameter describing the time decay and f�t� is
a periodic even function of time with a certain period. If we
expand f�t� in Fourier series we obtain

r�t� = e−��t��
n

An cos�n�0t� , �15�

where An are the amplitudes and �0 is the main frequency.
The Fourier transform of the correlation r�t� is then

S��� = �
n

An� �

�2 + �n�0 + ��2 +
�

�2 + �n�0 − ��2
 ,

�16�

which has local maxima at �=n�0. For large values of �,
that is, ���, and assuming that An decreases rapidly with n,
we have

FIG. 3. �Color online� �a� Density of prey x and density of
predator y versus c for p=0.3 and D=0.9. �b� The quantity �1
−x�1/� versus c, where �=0.58. The critical point occurs at cc

=0.320�5�.
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FIG. 4. �a� Value of the cross-correlation r at the first maximum
as a function of the parameter c, for p=0.3 and D=0.9. �b� Plot of
r2 as functions of c. The linear regression gives the value c�

=0.278�5� for the transition from oscillatory to ordinary
coexistence.
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S��� �
�

�� , � = 2, �17�

so that the log-log plot of S versus � has a slope �=2 char-
acterizing the exponential decay of the correlation function.

In the absence of oscillation we may describe the time
autocorrelation function qualitatively by the following func-
tion:

r�t� = A0e−��t�, �18�

which may be understood as the expression �15� in which all
coefficients An vanish except the coefficient A0. Its Fourier
transform is given by the Lorentzian

S��� =
2A0�

�2 + �2 , �19�

and is a monotonic decreasing function of frequency. For
large values of �, that is, ���, the Fourier transform be-
haves according to Eq. �17�.

IV. NUMERICAL SIMULATION

The simulations of the stochastic lattice model were per-
formed in a square lattice of N=160	160 sites starting from
a random configuration of prey and predator in which each
site has a probability 1/3 of being occupied by a predator and
1/3 of being occupied by a prey individual. The total number
of Monte Carlo steps ranged from 105 to 106. At each time
step the configuration of the lattice was updated according to
the stochastic rules presented in Sec. II. To explore the sev-
eral possible states of the model we may use a phase diagram
in the variables p and c for a given fixed value of the diffu-
sion parameter D. Since we are concerned with the charac-
terization of the time series, it suffices to consider a repre-
sentative section of the phase diagram, which we choose to
be p=0.3 and D=0.9. The choice of D is discussed in what
follows.

The explicit diffusion enhances the species coexistence
and the oscillatory behavior. The introduction of the diffu-
sion process promotes the increase of the average species
densities as can be seen in Fig. 2. Even a small value of D
suffices to entail this behavior as shown by the rapid increase

FIG. 5. �Color online� �a� Densities of prey �lower curve� and predator �upper curve� as a function of time for p=0.3, c=0.03, and D
=0.9. �b� Cross-correlation function between prey and predator. �c� Time autocorrelation function for prey. �d� Power spectral density for
prey. The largest peak occurs at �=0.0057 which gives a period T=1.10	103. The second and the third peaks occur at �=0.0112 and
�=0.016. The slope of the tail equals �=2.0.
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in the average species densities up to D�0.05. Above this
value the average densities become almost constant indicat-
ing that the behavior of the system is similar for values of
D
0.05. It is therefore enough to study the properties of the
system for just one point within this interval, which we
choose here to be D=0.9.

The present model predicts a state in which the lattice is
full of prey, called prey absorbing state, in which the system
cannot escape, remaining there forever. This absorbing state
occurs if the parameter c, that regulates the death of predator,
is sufficiently high. As one increases the external parameter c
the system then shows a continuous phase transition from a
state where the species coexist to a prey absorbing state. For
D=0.9 and p=0.3, this occurs at a critical value cc as shown
in Fig. 3, where the averages x and y, density of prey and
predator, respectively, are plotted as a function of c. The prey
absorbing state is characterized by x=1 and y=0. In this
figure we have also plotted �1−x�1/� as a function of c. Since
we expect that this critical behavior belongs to the universal-
ity class of direct percolation �25,29� we used �=0.58. The
straight line fitted to the data points corroborates this expec-
tation and gives the value cc=0.320�5�.

In the interval between c=0 and c=cc the system exhibits
the most interesting states, which are the active states where

prey and predator coexist. We distinguish two types of coex-
istence: One with time oscillatory behavior, for small values
of c, and the other without oscillations, which we call ordi-
nary coexistence, for values of c near cc. Our numerical
study predicts the change from one behavior to another at
c=c��0.28 for p=0.3 and D=0.9, as can be inferred from
Fig. 4, and to be explained shortly.

In Figs. 5–8 we show the densities of prey and predator as
functions of time for p=0.3, D=0.9 and for the following
values of c: 0.03, 0.15, 0.25, and 0.29, respectively. We
present also the time autocorrelation function for prey, the
cross-correlation between prey and predator, and the Fourier
transform of the autocorrelation of prey. For the first three
values of c the system shows clear oscillations characterized
by oscillating correlation functions whose amplitudes decay
exponentially.

The plots in Figs. 5–7, indicate that the correlation and the
power spectral density are in qualitative agreement with Eqs.
�15� and �16�. Moreover, the slope of the tail is equal to �
=2, in agreement with Eq. �17�, confirming the exponential
decay of the correlation function. In Fig. 8, corresponding to
a value of c nearly above c�, where no oscillatory behavior is
expected, the plots are in qualitative agreement with Eqs.
�18� and �19�. The slope of the tail is equal to �=2, in agree-

FIG. 6. �Color online� �a� Densities of prey �upper curve� and predator �lower curve� as a function of time for p=0.3, c=0.15, and D
=0.9. �b� Cross-correlation function between prey and predator. �b� Time autocorrelation function for prey. �d� Power spectral density for
prey. The largest peak occurs at �=0.0102 which gives a period T=616. The slope of the tail equals �=2.0.
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ment with Eq. �17�, confirming the exponential decay of the
correlation function, characterizing the fluctuations as
Brownian noise.

We observe that the time behavior of the cross-correlation
function between the predator and prey shown in Figs. 5–8
are very similar to the respective autocorrelation functions.
For the cases of Figs. 5–7, corresponding to the oscillatory
coexistence, apart from a phase shift, the cross-correlation
behaves just like the autocorrelation. We notice also that the
first maximum of rxy occurs at a nonzero value of the time
lag implying that the predator oscillations are delayed with
respect to the prey oscillations and that a maximum in prey
population is followed by a maximum in predator popula-
tion. For instance, in Fig. 6 we can observe that the first
maximum of rxy as a function of time occurs at approxi-
mately one-quarter cycle.

The oscillations are not observed at a global level, that is,
they are not synchronized oscillations. However, they can be
understood as oscillations occurring at a local level in the
sense that the amplitudes of the oscillations in predator-prey
lattice models, in two-dimensions and with no diffusion, de-
creases as 1 /�N as the size N of the system increases
�8,14,19,26,28�. This result is also observed in a class of

predator-prey lattice models with explicit diffusion
�14,26,28�, such as the one studied here as can be seen in
Fig. 9, where the oscillations in prey densities are shown for
different system sizes. The plot of the amplitude in density A
versus the system size N shows that indeed A decreases as
1 /�N. Therefore, although the explicit diffusion enhances
the oscillatory behavior it is not sufficient to hinder the
washing out of the oscillatory behavior in the thermody-
namic limit. In spite of the vanishing of A, the Fourier trans-
form of the autocorrelation function for prey, that is, the
power spectrum density for prey, for distinct system sizes,
remains with the same form; the peaks are in the same
places, independently of the system size as shown in Fig. 9.
This behavior of the power spectrum density was also ob-
served in similar systems �26�.

As one increases the parameter c the oscillation decreases
and ceases above the value c�. Below this value, for instance,
at c=0.03, the trajectories in the plane x-y form a stochastic
limit cycle as shown in Fig. 10. For other values of c below
c� the cycles exist but their sizes are smaller than the one for
c=0.03 and become blurred by fluctuations as can be seen in
the same figure. As one approaches the value c=c� the aver-
age radius of the limit cycle seems to vanish. To determine c�

FIG. 7. �Color online� �a� Densities of prey �upper curve� and predator �lower curve� as a function of time for p=0.3, c=0.25, and D
=0.9. �b� Cross-correlation function between prey and predator. �c� Time autocorrelation function for prey. �d� Power spectral density for
prey. The largest peak occurs at �=0.007 which gives a period T=9	102. The slope of the tail equals �=2.0.
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we proceed as follows. From the cross-correlation function
we determine, for each value of c, the values r1, r2 , . . ., of the
first local maximum, the second local maximum, and so on.
The plot of r1, for instance, as a function of c, as shown in
Fig. 4, indicates that r1 vanishes at the c�. Near c=c�, r1
behaves as �c�−c�1/2.

V. REAL DATA EXAMPLES

The above-mentioned features related to the oscillating
coexistence of the two species, predicted by the stochastic
lattice model, namely, the persistence of prey and predator
over a large number of periods of time, the lag of predator
relative to prey, a peak in prey abundance followed by a peak
in predator abundance, and the independence from the initial
conditions, are actually observed in real data for predator-
prey and host-parasite population cycles as the examples
shown in Figs. 11 and 12, respectively.

In Fig. 11 we present data corresponding to the fluctuation
in the abundance of snowshoe hare and Canadian lynx in
Canada �6�. Using these data we determined the time cross-
correlation function and the time autocorrelation functions
for hare and lynx. From these last functions we calculated

the respective power spectral densities. One observes that the
cross-correlation function implies a lag of lynx relative to
hare of about one-quarter of a cycle. The correlation func-
tions show clearly that the species are synchronized with a
cycle about 10 years. This period of 10 years is corroborated
by a peak in the power spectra for both species. The decay of
the power spectra for large � is not clearly defined since the
tail is very short. However, it seems to be consistent with the
behavior given by �17�.

As a second example we show in Fig. 12 one of the ex-
perimental populations obtained in the laboratory by Utida
�46� from a mixed population of the azuki bean weevil, the
host, and its parasite larval wasp. From the population den-
sities as functions of time �in generations� we have deter-
mined the cross-correlation function and the two autocorre-
lation functions as well as the respective power spectral
density. From the correlation we conclude that the period T
�7 generations. This result is corroborated by a maximum
peak in the power spectra, occurring at w�0.9 which gives
T�7.

Concerning the Canadian lynx and the snowshoe hare
data, it is worth noticing that although the cross-correlation
function shows that the two populations are indeed coupled,

FIG. 8. �Color online� �a� Densities of prey �upper curve� and predator �lower curve� as a function of time for p=0.3, c=0.29, and D
=0.9. �b� Cross-correlation function between prey and predator. �c� Time autocorrelation function for prey. �d� Power spectral density for
prey. The slope of the tail equals �=2.0.
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the cause of the observed correlation between these two
populations may not be generated just from their mutual in-
teraction, but may have other causes. It has been pointed out
�47,48� that the oscillations in hare appear to be regulated not
just by the interaction of the hare with the lynx but also by
the hare food supply. The lynx oscillations in turn appear to
be induced by the oscillations in the snowshoe hare �47�. On
the other hand, the dynamics of the azuki weevil and its
parasite can be considered as typical dynamics of the host-
parasitoid interaction which in turn is similar to predator-
prey interaction �5�.

VI. CONCLUSION

We have studied a stochastic lattice model describing a
predator-prey system. By means of numerical simulations of
the model defined on a square lattice, the time series of the

FIG. 9. �Color online� Simulational data obtained at p=0.3, c=0.05, and D=0.9. �a� Densities of prey as a function of time for L=40,
100, and 320, from bigger to smaller amplitudes. �b� Amplitude of prey density oscillations as a function of �N, where N=L	L is the total
number of sites. The linear behavior of the log-log plot shows that A�1 /�N. �c� Time autocorrelation function for prey for L=40, 100, and
320. �d� Power spectral density for prey for L=40, 100, and 320.

FIG. 10. �Color online� Predator density, y, versus prey density,
x, corresponding to p=0.3 and D=0.9, for c=0.03, c=0.15,
c=0.25, and c=0.29, from the left-hand side to the right-hand side,
respectively.
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population densities of each species were obtained. The se-
ries were analyzed by determining the time autocorrelation
functions for prey and for predator from which we calculate

the respective power spectra densities. The time cross-
correlation function between prey and predator was also de-
termined. The results coming from this analysis indicate that

FIG. 11. �Color online� Oscillatory time behavior in the abundance of the snowshoe hare and the Canadian lynx in Canada. �a� Number
of lynx �y, dotted curve� and number of hares �x, continuous curve� in thousands as a function of time in years �redrawn from Ref. �6��. �b�
Cross-correlation function between lynx and hare. �c� Time autocorrelation function for hare. �d� Power spectral density for hare. �e� Time
autocorrelation function for lynx. �f� Power spectral density for lynx.
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the stochastic lattice model is able to predict species coexist-
ence with linked cycles of species populations and ordinary
coexistence, that is, coexistence without oscillations. The

time correlation functions and the power spectra provided a
set of important information which allowed us to distinguish
the two types of coexistence. Moreover, we have found that

FIG. 12. �Color online� Oscillation in the populations of the host-parasite system azuki weevil and its parasite larval wasp �46�. �a�
Population versus time in generations: Parasite population �dotted curve� and host population �continuous curve� �redrawn from Ref. �46��.
�b� Cross-correlation function between host and parasite. �c� Autocorrelation for host. �d� Power spectral density of host. �e� Autocorrelation
for parasite. �f� Power spectral density of parasite.
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the power spectra present a tail, for high values of the fre-
quency with slope equal to 2, characterizing the fluctuations
in this regime as Brownian noise. Finally, the present analy-
sis was used to examine real data.
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