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Abstract

We have investigated the dynamic critical behavior of the two-dimensional 4-state Potts model using an alternative order

parameter first used by Vanderzande [J. Phys. A 20 (1987) L549] in the study of the Z(5) model. We have estimated the

global persistence exponent yg by following the time evolution of the probability PðtÞ that the considered order parameter

does not change its sign up to time t. We have also obtained the critical exponents y, z, n, and b using this alternative

definition of the order parameter and our results are in complete agreement with available values found in literature.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In 1989, Janssen et al. [1] and Huse [2] pointed out, using renormalization group techniques and numerical
calculations, respectively, that there is universality and scaling behavior even at an early stage of the time
evolution of dynamic systems without conserved order parameter (model A in the terminology of Halperin
et al. [3]).

Since then, a great deal of works on phase transitions and critical phenomena using Monte Carlo
simulations in the short-time regime have been published and their results are in good agreement with
theoretical predictions and numerical results found in equilibrium [4–13]. In addition, the new approach has
proven to be useful in determining with good precision the dynamic exponent z, as well as the new exponent y
which governs the so-called critical initial slip [14], the anomalous behavior of the magnetization when the
system is quenched to the critical temperature Tc.

The dynamic scaling relation obtained by Janssen et al. [1] for the kth moment of the magnetization,
extended to systems of finite size, is written as

MðkÞðt; t;L;m0Þ ¼ bkb=nM ðkÞðb�zt; b1=nt; b�1L; bx0m0Þ, (1)
e front matter r 2006 Elsevier B.V. All rights reserved.
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where t is the time evolution, b is an arbitrary spatial scaling factor, t ¼ ðT � TcÞ=Tc is the reduced
temperature and L is the linear size of the lattice. The exponents b and n are as usual the equilibrium critical
exponents associated respectively with the order parameter and the correlation length and x0 is related to the
exponents z, y, b and n by the equation

x0 ¼ yzþ b=n. (2)

By setting the scaling factor b ¼ t1=z and t ¼ 0 in Eq. (1), we obtain the first moment of the magnetization

MðtÞ�m0t
y, (3)

where m0 represents the initial magnetization of the system.
Far from equilibrium, another dynamic critical exponent was proposed by Majumdar et al. [15] studying the

behavior of the global persistence probability PðtÞ that the order parameter has not changed its sign up to the
time t. At criticality, PðtÞ is expected to decay algebraically as

PðtÞ�t�yg , (4)

where yg is the global persistence exponent. If the time evolution would be a Markovian process, then the
exponent yg should obey the equation [15]

ygz ¼ �yzþ
d

z
�

b
n
. (5)

However, as shown in several works [15–25] the exponent yg is an independent critical index closely related to
the non-Markovian character of the process.

In this paper, we estimate the global persistence exponent of the 4-state Potts model employing an
alternative order parameter first used by Vanderzande [27] in the study of the Z(5) model. Our estimate is in
complete agreement with the results obtained recently for the Ising model with three-spin interactions in one
direction and for the 4-state Potts model [26] with its traditional order parameter (see Eq. (8)). In addition,
comparing with estimates for the Ising and 3-state Potts models [17], there are consistently increasing values
from q ¼ 2 to 4. In order to check the validity of that alternative order parameter, we also estimate the
dynamic critical exponents y and z, along with the static critical exponents n and b. Our results [y ¼ �0:046ð9Þ,
z ¼ 2:294ð3Þ, n ¼ 0:669ð6Þ, and b ¼ 0:0830ð6Þ] are in complete agreement with previous results found in the
literature. In Section 2 we describe the model and the order parameter. In Section 3 we show the short-time
scaling relations and present our results. In Section 4 we summarize and conclude.
2. The model

The q-state Potts model [28,29] is a generalization of the Ising model that preserves the next-nearest
neighbour interaction, works with only two energies (neighboring spins are in the same state or not) but
permits to put at each site any number of states (0pqo1). This model encloses a quite number of other
problems of statistical physics. It undergoes a first-order phase transition when q44 and a continuous phase
transition for qp4. Thus along with the Ising model, the Potts model is an important laboratory to check new
theories and algorithms in the study of critical phenomena. Although its exact solution is not known, several
results were obtained during the last 50 years [29–32].

The Hamiltonian of the q-state Potts model is given by

bH ¼ �K
X
hi;ji

dsisj
, (6)

where b ¼ 1=kBT and kB is the Boltzmann constant, hi; ji represents nearest-neighbor pairs of lattice sites, K is
the dimensionless ferromagnetic coupling constant and si is the spin variable which takes the values si ¼

0; . . . ; q� 1 on the lattice site i. It is well known that the critical point of this model is given by [29]

Kc ¼ logð1þ
ffiffiffi
q
p
Þ. (7)
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Usually, the order parameter of this model is given by [4,33]

M1ðtÞ ¼
1

Ld ðq� 1Þ

X
i

ðqdsiðtÞ;1 � 1Þ

* +
, (8)

where L is the linear size of the lattice and d is the dimension of the system.
In this paper, we use a different definition for the order parameter, first proposed by Vanderzande [27]

studying the Z(5) model. It can be written as

M2ðtÞ ¼
1

Ld

X
i

ðdsiðtÞ;0 � dsiðtÞ;1Þ

* +
, (9)

where the average h� � �i is taken over independent initial configurations.
3. Results

We performed short-time Monte Carlo simulations to obtain the critical exponents for the 4-state Potts
model.

Simulations were carried out for square lattices with periodic boundary conditions and dimensions L ¼ 120,
180 and 240. We also used the lattice sizes L ¼ 20, 30, 40, 50, 60 and 90 just to estimate the exponent z through
the scaling collapses for different lattice sizes. The estimates for each exponent were obtained from five
independent bins in the critical temperature. For the exponents yg, z, b and n, each bin consisted of 20 000
samples, whereas for the exponent y we have used 100 000 samples. When estimating the exponent z through
the scaling collapses, we used 50 000 samples. The error bars are fluctuations of the averages obtained from
those bins. The dynamic evolution of the spins is local and updated by the heatbath algorithm.

In the following sections we show the results for the dynamic and static exponents of the 4-state Potts
model.
3.1. The dynamic critical exponent yg

First of all we are concerned with the global persistence probability PðtÞ. It is defined as the probability that
the global order parameter has not changed its sign up to time t. For t ¼ 0, the global persistence probability
decays algebraically as [15]

PðtÞ�t�yg , (10)

where yg is the global persistence exponent.
In order to estimate the critical exponent yg, a sharp preparation of the initial states is demanded in order to

obtain a precise value for the initial magnetization m051. After obtaining the critical exponent yg for several
values of the initial magnetization m0, the final value is achieved from the limit m0 ! 0.

In this moment, it is worth to explain how to obtain a small value of m0 in Eq. (9). First, each site on the
lattice is occupied by a spin variable which takes the values s ¼ 0, 1, 2 or 3 with equal probability. After, the
magnetization is measured by using M2ðtÞ and then, the variables in the sites are randomly chosen up to
obtain a null value for the magnetization. The last procedure is to change d sites on the lattice in order to
obtain the desired initial magnetization. It is given simply by

m0 ¼
d

L2
(11)

and a value of m0 is obtained changing d sites occupied by s ¼ 2 or 3 and substituting them by s ¼ 0.
In Fig. 1 we show the behavior of the global persistence probability for L ¼ 240 and m0 ¼ 0:000625 in

double-log scales, together with the behavior of the exponent yg for m0 ¼ 0.005, 0.0025, 0.00125 and 0.000625.
In order to obtain these initial magnetizations for this lattice, d should correspond to d ¼ 288, 144, 72, and 36.
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Fig. 1. The time evolution of the global persistence probability PðtÞ for a lattice size L ¼ 240 and m0 ¼ 0:000625. The error bars calculated
over five sets of 20 000 samples are smaller than the symbols. The inset displays the exponent yg for four different initial magnetizations, as

well as its extrapolated values.
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The extrapolated value of yg, when m0! 0 and L ¼ 240 is

yg ¼ 0:474ð7Þ. (12)

The extrapolated values of yg for L ¼ 120 and 180 are shown in Table 1. We emphasize that sometimes the
value of the initial magnetizations for the lattice size L ¼ 180 are slightly different from those of the L ¼ 240.
This is necessary in order to obtain an integer value of d.

The estimates obtained with the three lattice sizes show that the finite size effects are less than the statistical
errors. Therefore, we conclude that the values for an infinite lattice are within the error bars of our results for
L ¼ 240.

3.2. The dynamic critical exponent y

Another critical exponent found only in the nonequilibrium state is the exponent y that characterizes the
anomalous behavior of the order parameter in the short-time regime. Formerly, a positive value was always
associated to this exponent [4,8,34–38] and the phenomenon was known as critical initial slip. However, some
models can exhibit negative values for the exponent y. This is the case, for instance, of the Baxter–Wu model
[5] and the tricritical Ising model, anticipated by Janssen et al. [39] and numerically confirmed by da Silva et al.
[7].

In this paper we reobtain the dynamic critical exponent y for the 4-state Potts model using the order
parameter described in Section 2 (Eq. (9)).

Usually the exponent y has been calculated using Eq. (3) or through the autocorrelation

AðtÞ�ty�d=z, (13)

where d is the dimension of the system. In the present work however we estimated the exponent y using the
time correlation of the magnetization [37]

CðtÞ ¼ hMð0ÞMðtÞi, (14)

which behaves as ty when hMðt ¼ 0Þi ¼ 0. The average is taken over a set of random initial configurations.
Initially, this approach had shown to be valid only for models which exhibit up-down symmetry [37].
Nevertheless, it has been demonstrated recently that this approach is more general and can include models
with other symmetries [40]. This approach can thus be used for the qa2 Potts models.
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Fig. 2. Time correlation of the total magnetization for samples with hMðt ¼ 0Þi ¼ 0. The error bars were calculated over five sets of

100 000 samples.

Table 1

Global persistence exponent yg

L yg

120 0.470(5)

180 0.473(6)

240 0.474(7)
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When compared to the other two techniques (Eq. (3) and Eq.(13)), this method has at least two advantages.
It does not demand a careful preparation of the initial configurations (m051) neither a delicate limit m0 ! 0,
as well as the knowledge in advance of the exponent z (see Eq. (13)), which is an order of magnitude greater
than y. In this case, a small relative error in z induces a large error in y.

In Fig. 2 we show the time dependence of the time correlation CðtÞ in double-log scales for the system with
L ¼ 240. The linear fit of this curve leads to the value y ¼ �0:046ð9Þ.

For the lattice sizes L ¼ 120 and 180 we obtained respectively y ¼ �0:045ð8Þ and �0:046ð8Þ. These results
are in good agreement with those found for the same model using the order parameter of the Eq. (8) [26,33].
3.3. The dynamic critical exponent z

The critical exponent z was estimated independently by means of two techniques. We began using mixed
initial conditions, in order to obtain the function F2ðtÞ, given by [41]

F2ðtÞ ¼
hM2ðtÞim0¼0

hMðtÞi2m0¼1

�td=z, (15)

where d is the dimension of the system. This approach proved to be very efficient in estimating the exponent z

for a great number of models [5,7,8,19,38,42]. In this technique, for different lattice sizes, the double-log curves
of F2 versus t fall on the same straight line, without any rescaling of time, resulting in more precise estimates
for z.

The time evolution of F2 is shown on log-scales in Fig. 3 for L ¼ 240.
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Fig. 3. The time evolution of F2ðtÞ. The error bars are smaller than the symbols. Each point represents an average over five sets of 20 000

samples.
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The slope of the straight line gives

d

z
¼ 0:872ð1Þ, (16)

yielding

z ¼ 2:294ð3Þ. (17)

This result is in good agreement with the values z ¼ 2:294ð6Þ recently obtained for the Baxter–Wu model [5],
z ¼ 2:3ð1Þ for the Ising model with multispin interactions [43], and z ¼ 2:290ð3Þ for the 4-state Potts model
[41].

For L ¼ 120 we have obtained z ¼ 2:296ð5Þ and for L ¼ 180 we have obtained z ¼ 2:295ð5Þ indicating that
the finite size effects are less than the statistical errors.

The second technique consists of studying the parameter

RðT ; t;LÞ ¼ sign
1

L

X
top

ðdsiðtÞ;0 � dsiðtÞ;1Þ

 !
sign

1

L

X
bottom

ðdsiðtÞ;0 � dsiðtÞ;1Þ

 !* +
(18)

introduced by de Oliveira [44]. In this case, the scaling relation for T ¼ Tc is given by [45]

RðT ¼ Tc; t;L1Þ ¼ RðT ¼ Tc; b
�zt; bL1Þ, (19)

with b ¼ L2=L1. This equation shows that the dynamical exponent z can be easily estimated by adjusting the
time rescaling factor b�z in order to obtain the best scaling collapse of the curves for two different lattice sizes.

Fig. 4 shows the parameter R as a function of the time (full lines), as well as the scaling collapse (open
circles) between different pairs of lattice for samples with ordered initial configurations ðm0 ¼ 1Þ.

The best values of z, obtained through the w2 test [46] for different scaling collapses are shown in Table 2.
Our results obtained for the collapse of RðtÞ are in good agreement with our results arising from F 2ðtÞ, as

well as the results for the 4-state Potts model [41], and the Baxter–Wu model which belongs to the same
universality class [5].

3.4. The static critical exponents n and b

With the value of the exponent z in hand, we can estimate the static exponent n taking the derivative of the
logarithm of the order parameter

Mðt; tÞ ¼ t�b=nzMð1; t1=nztÞ (20)
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Fig. 4. RðtÞ vs t with ordered initial configurations m0 ¼ 1. The full lines show the behavior of RðtÞ for lattices L ¼ 20, 30, 40, 50, 60 and 90

(from the bottom to the top) and the corresponding time rescaled curves for lattices L ¼ 30, 40, 50, 60, and 90 (open circles). The exponent

z obtained for each collapse is shown in Table 2. The error bars, calculated over five sets of 50 000 samples, are smaller than the symbols.

Table 2

Estimates of the dynamical exponent z for the best scaling collapse of RðtÞ

L2 7�!L1 z

307�!20 2.27(5)

407�!30 2.28(4)

507�!40 2.28(5)

607�!50 2.29(3)

907�!60 2.28(3)
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with respect to t in the critical point

qt lnMðt; tÞjt¼0 ¼ t1=nzqt0 lnF ðt0Þjt0¼0. (21)

This equation follows a power law that does not depend on L and the function F ðt0Þ is a scaling function which
modifies the power law at t0a0 but still in the critical domain. In numerical simulations we approximate the
derivative by a finite difference. Our results were obtained using finite differences of Kc � d with d ¼ 0:001. In
Fig. 5 the power law increase of Eq. (21) is plotted in double-log scales for L ¼ 240.

From the slope of the curve we estimate the exponent 1=nz for the three lattice sizes. Using the exponent z

calculated previously, we obtain n ¼ 0:670ð9Þ for L ¼ 120, n ¼ 0:668ð6Þ for L ¼ 180, and n ¼ 0:669ð6Þ for
L ¼ 240.

Finally, we evaluate the static exponent b following the decay of the order parameter in initially ordered
samples (m0 ¼ 1). At the critical temperature t ¼ 0, the scaling law of Eq. (20) allows one to obtain b=nz which
in turn leads to the exponent b, using the previous result obtained for the product nz. In Fig. 6 we show the
time evolution of the magnetization in double-log scale for L ¼ 240.

A linear fit of this straight line gives the value b=nz ¼ 0:0541ð1Þ leading to b ¼ 0:0830ð6Þ. For L ¼ 120 we
obtained b ¼ 0:0834ð7Þ and for L ¼ 180 we obtained b ¼ 0:0835ð4Þ.

Our results for n and b are in good agreement with the exact results n ¼ 2
3
and b ¼ 1

12
[31,32].

3.5. Anomalous dimension x0

Finally, we calculate the value of the anomalous dimension x0 of the magnetization which is introduced
to describe the dependence of the scaling behavior of the initial conditions. It is related to the exponents y, z,
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Table 3

The exponent x0 for the 4-state Potts model

L x0

120 0:021ð21Þ
180 0:019ð20Þ
240 0:019ð23Þ

10 100
t

1e-08

1e-07

1e-06

1e-05

1e-4

∂ τ
 ln

 M
(t

)
L = 240

1  = 0.6515(33)
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Fig. 5. The time evolution of the derivative qt lnMðt; tÞjt¼0 on log–log scales in a dynamic process starting from an ordered state ðm0 ¼ 1Þ.

The error bars are smaller than the symbols. Each point represents an average over five sets of 20 000 samples.
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Fig. 6. The time evolution of the magnetization for initially ordered samples ðm0 ¼ 1Þ. The error bars calculated over five sets of 20 000

samples are smaller than the symbols.

H.A. Fernandes et al. / Physica A 366 (2006) 255–264262
and b=n by

x0 ¼ yzþ b=n. (22)

Table 3 shows the values of x0 obtained with the exponents estimated all along this paper.
Our results show that the anomalous dimension of the 4-state Potts model has a null value whose meaning is

the presence of the marginal operator, i.e., the operator which has the scaling dimension equal to
dimensionality of the system and whose effect is not modified under renormalization-group operations. An
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alike value was found recently by Arashiro et al. [26] for this model and for the Ising model with three-spin
interactions in one direction.

4. Discussion and conclusions

In this paper we revisited the 4-state Potts model in order to obtain the global persistence exponent yg using
an order parameter first proposed by Vanderzande [27] in the study of the Z(5) model. The results are in good
agreement with each other. By using this alternative order parameter, we have also estimated the dynamic
critical exponents y and z, as well as the well-known statical exponents n and b. The exponent y was estimated
using the time correlation of the magnetization, whereas to obtain the exponent z we used the function F 2ðtÞ

which combines simulations performed with different initial conditions and scaling collapse for the parameter
R introduced by de Oliveira. The statical exponents were obtained through the scaling relations for the
magnetization and its derivative with respect to the temperature at Tc. Our results, when compared with
available values in literature support the reliability of this new order parameter.
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