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Abstract This work is geared towards analysis of shadows
cast by Kerr-de Sitter (KdS) and Kerr-de Sitter Revisited
(RKdS) black holes. Considering observers in the vicinity of
the static radius, we derive the impact parameters defining
the apparent positions of the shadows. Such observers are
of interest to our work because embedding diagrams have
shown that de Sitter space-time is analogous to an asymp-
totically flat one in the vicinity of the static radius. We also
perform a comparative analysis between our result with that
in Ref. [1]. Furthermore, we numerically obtain the radii of
curvature, vertical diameters and horizontal diameters of the
shadows. We find that for � = 1.11 × 10−52 m−2, M87*
observations cannot distinguish a RKdS black hole shadow
from that of a Kerr black hole. Additionally, for the same
value of �, KdS and RKdS black hole shadows are, in prac-
tise, indistinguishable. Previously, it has also been shown
that when � = 1.11 × 10−52 m−2, KdS and Kerr black
hole shadows are indistinguishable. Utilizing the 2017 EHT
observations of M87* on the allowed range of the character-
istic radius of the shadow, we obtain constraints on both black
holes. When, a/M > 0.812311, we observe that large angles
of inclination (θ > 30.5107◦) do not pass the constraints for
both KdS and RKdS black holes.

1 Introduction

In the General Theory of Relativity, the gravitational force
is seen as the effect of the deformation of space-time. Black
holes are regions of very strong gravity that are sufficient to
warp space, bend light and give rise to space-time singular-
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ities. Since black holes results from the supernovae explo-
sions that leave behind a positive angular momentum of the
remaining matter, it is most probable that all black holes in
nature are rotating and are therefore described by the Kerr
solution [2].

In the presence of a cosmological constant � > 0, an
expected component of the universe due to the dark energy
phenomena, a generalization of the Kerr metric is given by
the KdS metric, a solution that was firstly found by Carter
[3]. The KdS metric belongs to the Plebanski–Demianski
family of solutions [4]. These solutions describe the most
general stationary, axially symmetric Petrov Type-D met-
rics of Einstein–Maxwell equations with a cosmological con-
stant. The Plebanski–Demianski solutions are characterized
by seven parameters that in certain instances are related to
acceleration, magnetic and electric charges, mass, cosmolog-
ical constant, NUT parameter and angular momentum, [5].

Recently, Ref. [1] , through gravitational decoupling for
axially symmetric systems [6–8], have proposed a revisited
solution, the RKdS metric. RKdS solution is a rotating ver-
sion of the Schwarzschild-de Sitter (SdS) solution, represent-
ing a black hole with a cosmological constant. The solution
is asymptotically de Sitter and reduces to Kerr solution as
a special case. Unlike the KdS solution, the RKdS solution
is neither a �-Vacuum solution – it does not belong to the
Plebanski–Demianski class of metrics – nor is it a constant
curvature solution (i.e it exhibits warped curvature except on
the equatorial plane where curvature remains constant).

As a consequence of the cosmological constant, there
arises a cosmological horizon behind which the geometry of
space-time is dynamic. For astrophysical processes, another
radius associated with cosmic repulsion is relevant [9], the
so-called static radius. On the static radius boundary, gravita-
tional attraction due to the central compact object and cosmic
repulsion counterbalance each other. This radius represents
a natural boundary for gravitationally bound systems in an
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expanding universe [10]. A cosmological horizon is relevant
for cosmology and not for astrophysical processes that are
limited by the static radius [10].

When a black hole is in front of a luminous background,
its unstable photon region, a region containing null geodesics
at a constant radius, will be projected on the observer’s sky to
form the so-called black hole shadow. The shadow appears as
a dark disc with a bright ring around it. Static black holes cast
circular shadows owing to their spherical symmetry. Rotating
black holes on the other hand cast elongated shadows as a
consequence of frame dragging effects. The field of studying
black hole shadows as a feasible and reliable observational
probe is still in the first days of life but the direct detection of
gravitational waves by Laser Interferometer Gravitational-
Wave Observatory (LIGO) [11] and the images of the super-
massive black hole at the centre of Messier 87 galaxy by the
Event Horizon Telescope (EHT) [12,13] have been advances
of great significance towards observation of black holes.

In this work, we investigate shadows cast by black holes
in KdS and RKdS space-times. Our aim is to promote a
comparative analysis between various results presented in
the literature. The motivation for our study is as follows. In
space-times that are non asymptotically flat, the calculation
of the angular radius of the shadow solely requires the use
of finite distance observers. For such observers, a choice of
an orthonormal tetrad is necessary, as shown by [14–16] and
[17]. In asymptotically flat space-times on the other hand,
the angular radius of the shadow can be analogous to that in
Minkowski space-time [18]. As a result, in asymptotically
flat space-times, one calculates the parameters associated to
the black hole shadows via the expressions

α = lim
ro−→∞

(
−r2

o sin θo
dφ

dr

)
, (1)

β = lim
ro−→∞

(
r2
o
dθ

dr

)
, (2)

where α and β are the impact parameters defining apparent
positions of the image of the black hole on the celestial sphere
[19]. Actually α is the apparent displacement of the image
perpendicular to the projected axis of symmetry of the black
hole while β is the apparent displacement of the image par-
allel to the projected axis of symmetry [19]. (ro, θo) are the

positions of the observer.
dφ

dr
and

dθ

dr
are calculated from the

null geodesic equations for the respective space-time. Prop-
erties of the geometry around black holes can be visualized
by embedding their 2D sections of t =constant hypersur-
faces onto 3D Euclidean geometry. The resulting diagrams
are known as embedding diagrams. Embedding diagrams
expedite in acquiring an intuitive understanding of the gravi-
tational field rendered into curved space-time. Besides, these
diagrams aid in analyzing the effect of parameters such as

magnetic field, electric charge, black hole spin or cosmo-
logical constant [20]. By the use of embedding diagrams
of both ordinary geometry and optical reference geometry,
Refs. [21] and [22] have shown that in the vicinity of the
static radius, the geometry of de Sitter space-time is analo-
gous to an asymptotically flat space-time. Thus, Eqs. (1) and
(2) can therefore be applied in the vicinity of the static radius
where the KdS (or SdS) space-time is close enough to the
asymptotically flat space-time case. This approach has been
considered in Ref. [1], where the size of a shadow in KdS
and RKdS space-times has been compared. We however note
that there is a discrepancy on the analytical solution for the
form of α and β they use with the results we have obtained in
our work. In Ref. [1], attention was not given to the analysis
of the black hole shadows; they were proposing the RKdS
solution for the first time and basically used the shadow to
support their result that a KdS black hole has a larger event
horizon than the RKdS black hole. As a result, the error does
not affect their result. To our knowledge, there has been no
work in the literature that has given a detailed analysis of
the KdS and RKdS black hole shadows for observers in the
vicinity of the static radius. Moreover, RKdS solution has
just been recently proposed and hence has no detailed study
of it’s black hole shadows alongside a comparison with those
of KdS. For astrophysical purposes, a detailed analysis of the
black hole shadows is necessary and this is what we intend
to do in this work. In our work by considering different black
hole parameters, we have shown that the behaviour of the
black hole shadows, for observers in the vicinity of the static
radius, is consistent with the behaviour of the corresponding
spherical photon orbits in both KdS and RKdS space-time.
We hope that from this work, more aspects of research can be
considered in the vicinity of the static radius because a lot of
study in KdS space-time has only been geared towards this
space-time being asymptotically de sitter. It is worth noting
that black hole shadows can also be studied through other
techniques such as general-relativistic radiative transfer and
general-relativistic magnetohydrodynamic simulations ([23–
26]) (Fig. 1).

The work is organized as follows. In Sects. 2 and 3 we
give a summary of KdS and RKdS space-times. We provide
analytic solutions to their horizons and radii of equatorial
circular photon orbits. We further analyze the behaviour of
the radii of the equatorial circular photon orbits in each case.
In Sect. 4, we obtain the celestial coordinates for the shadow
cast by a KdS and RKdS black hole. We analyze the shadows
for different values of black hole spin – the parameter a – and
cosmological constant �. In Sect. 5, we numerically evaluate
the curvature radii of the shadows at specific characteristic
points. We further obtain numerical values for the horizontal
and vertical diameters of the shadows. In Sect. 6, we use the
radius of curvature to constrain a KdS and RKdS black hole.
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Fig. 1 Illustration of the
parameters α and β

Lastly, in Sect. 7, we give a conclusion for our results. The
metric signature in this work is − + ++ and G = c = 1.

2 Kerr-de Sitter space time

KdS metric is a limited case of the Plebanski–Demianski
solution with zero acceleration, NUT parameter, electric and
magnetic charges. In Boyer Lindquist coordinates, KdS space
time is characterized by a metric of the form [3],

ds2 =
(
a2�θ sin2(θ)

L2�
− �r

L2�

)
dt2

−2a sin2(θ)
(
�θ

(
a2 + r2

) − �r
)

L2�
dtdφ

+
sin2(θ)

(
�θ

(
a2 + r2

)2 − a2�r sin2(θ)
)

L2�
dφ2

+ �

�θ

dθ2 + �

�r
dr2, (3)

where the terms appearing in the metric coefficients are
defined as,

�θ = 1 + �a2 cos2 θ

3
, (4)

�r =
(

1 − �r2

3

)
(r2 + a2) − 2Mr, (5)

L = 1 + �a2

3
, (6)

� = r2 + a2 cos2 θ. (7)

Coordinates t and r range over all R while θ ∈ [0, π ] and
φ ∈ [0, 2π ]. M is the total mass of the system, a the angular
momentum per unit mass and � is the cosmological con-
stant. The coefficients of metric Eq. (3) are independent of

t and φ thus ∂t and ∂φ are Killing vector fields. Any linear
combination of these two Killing vector fields will also be a
Killing vector, [27].

• The region where gtt > 0 is the ergoregion. In the ergore-
gion, ∂t is space-like. The boundary of the ergoregion
occurs at gtt = 0 which is known as the static limit.
The static limit defines how close to the black hole static
observers (observers for which spatial coordinates along
their world lines do not change with time) can get. In the
ergoregion, trajectories for which the observer remains at
fixed values of Boyer-Lindquist coordinates are not pos-
sible. Observers in this region remain at fixed r and θ by
rotating in φ direction.

• For gφφ < 0, ∂φ becomes time-like. This will allow
the presence of closed time-like curves whose existence
violates causality. Observers moving on closed time-like
curves find themselves in their own past. Closed time-like
curves were first discovered by Kurt Godel [26].

Moreover, the metric has coordinate singularities at �r = 0,
θ = 0, π and a curvature singularity at � = 0 (i.e r = 0
and θ = π/2). Kerr-de Sitter horizons are determined by the
roots of �r , thus,

(
1 − �r2

3

)
(r2 + a2) − 2Mr = 0. (8)

Equation (8) is a quartic polynomial hence admits four roots
r−−, rh−, rh+ and rc, with 0, 2 or 4 of the roots being real.
rh− and rh+ are the Cauchy and Event horizons respectively
while rc is the cosmological horizon and r−− is interpreted
as the dual of the cosmological horizon. Applying Ferrari’s
solution for quartic polynomials, we obtain the relations for
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the horizons as,

r−− = −z −
√

3 (1 − y)

2�
+ 3M

2�z
− z2, (9)

rh− = −z +
√

3 (1 − y)

2�
+ 3M

2�z
− z2, (10)

rh+ = z −
√

3 (1 − y)

2�
− 3M

2�z
− z2, (11)

rc = z +
√

3 (1 − y)

2�
− 3M

2�z
− z2, (12)

where we have defined,

z =
√

1

2

(
−a2

3
+ 1

�
+ x− + x+

)
, y = a2�

3
, (13)

x± =
y(y(y + 33) − 33) − 1 + 18�M2 ± 6�3

√
ω
�6

8�3 ,

(14)

ω = 9�2M4 + �M2(y − 1)(y(y + 34) + 1)

+ 3y(y + 1)4. (15)

The condition that horizons (9)–(12) have to obey to be real
is ω > 0. Thus, ω > 0 is the condition for a regular KdS
black hole.

2.1 Photon region

Due to the symmetries of KdS space-time, the trajectories
possesses the conserved quantities,

pt = −gtt p
t − gtφ p

φ =: E, pφ = gtφ p
t + gφφ p

φ =: �.

(16)

E is interpreted as the energy of the particles per unit mass
and is related to the space-time being stationary while � is
the angular momentum per unit mass in the z direction and
is related to axial symmetry. There exist a third conserved
quantity related to the hidden symmetry of KdS space-time
which is the Carter’s constant Q [28]. Q comes up as a result
of separation of variables in the Hamilton-Jacobi equation.
For photon orbits, only the sign of energy has a physical
meaning. Hence the conserved quantities can be rescaled in
terms of energy as,

η = Q

E2 , λ = �

E
. (17)

Thus the equations describing motion of photon orbits in KdS
space-times are given by the Carter’s equations [3],

�

E
pr = ±√

R(r), (18)

�

E
pθ = ±√

�(θ), (19)

�

E
pφ = aL2

�r
(a(a − λ) + r2)

− L2

�θ sin2 θ
(a sin2 θ − λ), (20)

�

E
pt = L2

�r
((r2 + a2)2 − aλ(a2 + r2))

− aL2

�θ

(a sin2 θ − λ). (21)

In the above expressions we have defined,

R(r) = L2(r2 + a2 − aλ)2 − �r (η + L2(λ − a)2), (22)

�(θ) = a2�θ L
2 + a2L2 cos2(θ) − a2L2

− 2a�θλL
2 + 2aλL2 + �θη + �θλ

2L2

− λ2L2 cot2(θ) − λ2L2, (23)

with usual definitions pμ = dxμ/dσ , where σ is the affine
parameter along the geodesic.

An important class of photon orbits pivotal to the forma-
tion of a black hole shadow are the spherical photon orbits.
For such orbits, the conditions,

R(r) = 0, R′(r) = 0, (24)

must be satisfied. Solving both conditions in Eq. (24) simul-
taneously yields,

η = − L2r3
(
6a2

(
�r2(3M + r) − 6M

) + a4�2r3 + 9r(r − 3M)2
)

a2
(
r
(
a2� + 2�r2 − 3

) + 3M
)2 ,

(25)

λ = r
(
a2

(
6 − �r2

) + 3r(r − 3M)
)

a
(
r
(
a2� + 2�r2 − 3

) + 3M
) + a. (26)

In the case a = 0, Eq. (24) reduces to SdS. Due to spherical
symmetry of SdS space-time, orbits will be planar hence we
can choose the plane θ = π/2. On this plane, η = 0. Thus
substituting for (a = 0, η = 0) in Eq. (24), we obtain the
relation for λ in SdS space-time as [29],

λSdS =
√

6r3/2

√−3M − 2�r3 + 3r
. (27)

Setting � = 0 in Eqs. (25) and (26) yields parameters
obtained in Kerr space-time [30],

η̄ = −r3
(
r(r − 3M)2 − 4a2M

)
a2(M − r)2 , (28)

λ̄ = a2(M + r) + r2(r − 3M)

a(M − r)
. (29)
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Equations (25) and (26) are the relations for the constants of
motion governing photon orbits at r = constant. The radii of
these orbits are bound by the equatorial circular photon orbits
which are obtained by the condition η = 0. We note that
solving for η = 0 is a cubic polynomial hence results in three
roots. However, we will give the two roots that are relevant
for this work (roots located outside the event horizon). By
using Cardano’s formula, the roots read,

rph+,KdS = −2M(y − 1)

(y + 1)2

+ 2

√
M2((y − 14)y + 1)

(y + 1)4 cos

(
κ

3
+ 4π

3

)
, (30)

rph−,KdS = −2M(y − 1)

(y + 1)2 + 2

√
M2((y − 14)y + 1)

(y + 1)4 cos
(κ

3

)
.

(31)

The parameter κ is defined via the following expression,

κ = arccos

⎛
⎜⎝M

(
2a2(y + 1)4 + M2(y − 1)(y(y + 34) + 1)

)
(y + 1)6

(
M2((y−14)y+1)

(y+1)4

)3/2

⎞
⎟⎠ .

(32)

Thus the photon region in KdS black hole exterior exist
in the range r ∈ [rph+,KdS, rph−,KdS]. Photon orbits at
r =constant are unstable with respect to radial perturbations
if d2R/dr2 > 0 and stable if d2R/dr2 < 0.

Figure 2 illustrates the behaviour of the radius of equato-
rial circular photon orbits, Eqs. (30) and (31).

3 Kerr-de Sitter revisited space-time

The RKdS solution has been recently proposed by Ovalle,
Contreras & Stuchlik in Ref. [1] and is defined by the metric,

ds2 = −
(

�� − a2 sin2 θ

ρ2

)
dt2 + ρ2

��

dr2 + ρ2dθ2

+ �� sin2 θ

ρ2 dφ2 − 2a sin2 θ

ρ2 (r2 + a2 − ��)dtdφ,

(33)

with the following definitions,

�� = r2 − 2Mr + a2 − �r4

3
, (34)

�� = (r2 + a2)2 − ��a
2 sin2 θ, (35)

ρ2 = r2 + a2 cos2 θ. (36)

In this solution, � is interpreted as a vacuum energy that
suffers distortions in the vicinity of the black hole due to

rotation. Coordinates r , t ∈ R while θ ∈ [0, π ] and φ ∈
[0, 2π). The metric is stationary and axially symmetric (i.e ∂t
and ∂φ are Killing vector fields). The geometric interpretation
for metric components gtt and gφφ revised in Sect. 2 can be
immediately applied now. From the condition,

r2 − 2Mr + a2 − �r4

3
= 0, (37)

making use of Ferrari’s solution we obtain the horizons as of
the RKdS metric such that,

r̃−− = −
√

1
�

+ �− + �+√
2

−
√√√√√ 1

�
+ 1

2

⎛
⎝ 3

√
2M

�

√
1
�

+ �− + �+
− �− − �+

⎞
⎠,

(38)

r̃h− = −
√

1
�

+ �− + �+√
2

+
√√√√√ 1

�
+ 1

2

⎛
⎝ 3

√
2M

�

√
1
�

+ �− + �+
− �− − �+

⎞
⎠,

(39)

r̃h+ =
√

1
�

+ �− + �+√
2

−
√√√√√ 1

�
+ 1

2

⎛
⎝− 3

√
2M

�

√
1
�

+ �− + �+
− �− − �+

⎞
⎠,

(40)

r̃c =
√

1
�

+ �− + �+√
2

+
√√√√√ 1

�
+ 1

2

⎛
⎝− 3

√
2M

�

√
1
�

+ �− + �+
− �− − �+

⎞
⎠.

(41)

The above results made use of the definitions,

�± =
⎡
⎣1

2

⎛
⎝9M2

2�2 −
3a2

�
+ 1

4�2

�

⎞
⎠

±
√√√√ 1

27

(
3a2

�
− 3

4�2

)3

+ 1

4

(
3a2

�
+ 1

4�2

�
− 9M2

2�2

)2
⎤
⎥⎦

1/3

.

(42)
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Fig. 2 Behaviour of radius of the equatorial circular photon orbit,
rph−,KdS and rph+,KdS , for a ∈ [0, 1] and � ∈ [0,�Max,KdS]. As the
black hole spin increases, rph+,KdS decreases while rph−,KdS increases.

On the other hand, as � increases, rph+,K DS increases while rph−,KdS
decreases. We expect to observe this behaviour on the KdS black hole
shadows for varying values of � or a

Whereas r̃h+ and rh− are the event horizon and Cauchy hori-
zon respectively, r̃c is the cosmological horizon and r̃−− is
interpreted as the dual of the cosmological horizon. These
roots will be real provided the discriminant of Eq. (37) is
positive,

− 27

4�5
(16a6�2 + 24a4� + a2

(
9 − 108�M2

)

+ 81�M4 − 9M2) > 0. (43)

Thus Eq. (43) is the condition for the existence of a regular
RKdS black hole.

3.1 Photon region

Due to RKdS solution being stationary and axially symmet-
ric, we have the conserved quantities,

pt,� = −gtt,� pt� − gtφ,� pφ
� =: E�, pφ,�

= gtφ,� pt� + gφφ,� pφ
� =: ��. (44)

Where E� is the energy per unit mass and �� is the angular
momentum in the z direction. Despite RKdS solution being
a non-vacuum solution, we find that the Hamilton-Jacobi
equation is separable and thus this space-time possesses the
Carter’s constant Q�,

Q� = p2
θ,� − a2 p2

t,� cos2 θ + p2
φ,� cot2 θ. (45)

For photons, we can rescale the conserved quantities in terms
of energy as,

λ� = ��/E�, η� = Q�/E2
�. (46)

Using the Hamilton-Jacobi formalism and making use of
these symmetries, we obtain the equations for null geodesics
as,

ρ2

E
pr� = ±√

R�(r), (47)

ρ2

E
pθ
� = ±√

��(θ), (48)

ρ2

E
pφ
� = (ar2 + a3 − a�� − a2λ�)

��

+ λ�

sin2 θ
, (49)

ρ2

E
pt� = (r2 + a2)(r2 + a2 − aλ�)

��

+ aλ� − a2 sin2 θ,

(50)

with the following definitions,

R�(r) = (r2 + a2 − aλ�)2 − ��(η� + (λ� − a)2), (51)

��(θ) = η� + a2 cos2 θ − λ2
� cot2 θ. (52)

Also, it is worth noting that we proceed as before and by
simultaneously solving R�(r) = R′

�(r) = 0, which results
in the following relations,

η� = −3r3
(
4a2

(
�r3 − 3M

) + 3r(r − 3M)2
)

a2
(
3M + 2�r3 − 3r

)2 , (53)

λ� = 3a2M + 2a2�r3 + 3a2r − 9Mr2 + 3r3

a
(
3M + 2�r3 − 3r

) . (54)

The RKdS space-time reduces to SdS in the limit a = 0.
Substituting for (a = 0 η� = 0) in R�(r) = R′

�(r) = 0 and
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solving for λ then gives [29],

λSdS,� =
√

6r3/2

√−3M − 2�r3 + 3r
. (55)

η� = 0 since we chose the plane θ = π/2 as a result of
SdS space-time being spherically symmetric. For � = 0,
Eqs. (53) and (54) yields equations same as those obtained
in Kerr space-time [30],

η̄� = −r3
(
r(r − 3M)2 − 4a2M

)
a2(M − r)2 , (56)

λ̄� = a2(M + r) + r2(r − 3M)

a(M − r)
. (57)

Equations (53) and (54) are the relations for constants govern-
ing motion of photon orbits at constant r in RKdS space-time.
The zeros of Eq. (53), yields the radii of equatorial circular
photon orbits,

rph+,RKdS = 6M

4a2� + 3
+6

√√√√M2
(
1 − 4a2�

)
(
4a2� + 3

)2 cos

(
κ̃

3
+ 4π

3

)
,

(58)

rph−,RKdS = 6M

4a2� + 3
+ 6

√√√√M2
(
1 − 4a2�

)
(
4a2� + 3

)2 cos

(
κ̃

3

)
. (59)

κ̃ is defined via the expression,

κ̃ = arccos

⎛
⎜⎜⎝9M2 − 2a2

(
2�

(
8a4� + 12a2 − 27M2

) + 9
)

9M
(
4a2� − 1

) (
4a2� + 3

) √
M2(1−4a2�)

(4a2�+3)
2

⎞
⎟⎟⎠ .

(60)

Thus the radii of photon orbits with r =constant is bound
by r ∈ [rph+,RKdS, rph−,RKdS]. These orbits are unstable
to radial perturbations when R′′

� > 0 and stable if R′′
� < 0.

Figure 3 illustrates the behaviour of the radius of equatorial
circular photon orbits, Eqs. (58) and (59).

Up to this point we have extensively compared the KdS
and RKdS space times from the qualitative point of view.
Henceforth we investigate quantitatively the predictions for
the black hole shadows in both space-times and compare
them.

4 Kerr-de Sitter and Kerr-de Sitter revisited black hole
shadows

Utilizing the null geodesics of KdS space-time, we obtain
the corresponding impact parameters as,

αKdS =
√

3L2 sin(θ)
(
a − λ csc2(θ)

)
�θ

√
L2

(
a2� − 2aλ� + λ2� + 3

) + η�

, (61)

βKdS =
√

3(±√
�(θ))√

L2
(
a2� − 2aλ� + λ2� + 3

) + η�

, (62)

while from the null geodesics of RKdS space-time we obtain,

αRKdS = −
√

3 csc(θ)(a cos(2θ) − a + 2λ�)

2
√
a2� − 2aλ�� + η�� + λ2

�� + 3
, (63)

βRKdS =
±√

3
√
a2 cos2(θ) + η� − λ2

� cot2(θ)√
a2� − 2aλ�� + η�� + λ2

�� + 3
. (64)

We however note that our results Eqs. (61) and (62),
Eqs. (63) and (64), are different from those used for in Ref.
[1], where in our observation, for both KdS and RKdS, they
consider impact parameters of the form [31],

α = −λ csc θ, (65)

β = ±
√

η + a2 cos2 θ − λ2 cot2 θ. (66)

Thus, for the apparent displacement of the image perpendic-
ular to the projected axis of symmetry of the black hole, we
obtain the impact parameter as in Eqs. (61) and (63) for KdS
and RKdS respectively. These equations are clearly different
from Eq. (65). Moreover, for the apparent displacement of
the image parallel to the projected axis of symmetry of the
black hole, we obtain the impact parameter as in Eqs. (62)
and (64) for KdS and RKdS respectively. These equations
are also different from Eq. (66). This difference can also be
observed as illustrated in Fig. 4. In Fig. 4, for the same val-
ues of black hole parameters, our results do not coincide with
Ref. [1] in both KdS and RKdS black holes.
The error in the impact parameters considered in Ref. [1] is
due to the fact that they directly considered the impact param-
eters of Kerr space-time for which they cited Ref. [31]. Phys-
ically, one should utilize the null geodesic equations of the
space-time under consideration in order to obtain the impact
parameters. Thus, the impact parameters in Ref. [1] have
been obtained using null geodesic equations of Kerr space-
time and this leads to inconsistent black hole shadow results
when applied to KdS and RKdS space-times. We however
note that this error is not relevant to Ref. [1] as they show a
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Fig. 3 Behaviour of radius of the equatorial circular photon orbit,
rph−,RKdS and rph+,RKdS , for a ∈ [0, 1] and � ∈ [0,�Max,RKdS].
As the black hole spin increases, rph+,RKdS decreases while rph−,RKdS

increases. On the other hand, as � increases, rph+,RKdS increases while
rph−,RKdS decreases. We expect to observe this behaviour on the shad-
ows of RKdS black hole for varying � or a

shadow to complement their work, without this being the rel-
evant part of their paper. For the purposes of our work and any
other future studies this error is relevant. Hence, our impact
parameters yield consistent black hole shadow results, as will
be seen in the next sections, because we derived them using
the null geodesic equations of KdS and RKdS space-time
respectively.

The boundary of the shadow is formed by spherical pho-
ton orbits that are unstable to radial perturbations. For a
KdS black hole we found that such orbits lie in the range
rph+,KdS ≤ r ≤ rph−,KdS while rph+,RKdS ≤ r ≤
rph−,RKdS for a RKdS black hole. As a result, the impact
parameters will be evaluated for values of r in these ranges.

Figure 1b demonstrates a general contour of a black hole
shadow. The contour is a parametric curve (α, β). Every
point along this curve is associated to a particular radial
point in the photon region. When the observer is inclined
on the equatorial plane rD = rph+,KdS(rph+,RKdS) and
rR = rph−,KdS(rph−,RKdS), which are the radii of equato-
rial circular photon orbits. α increases from a negative value
at rD to a positive value at rR . β on the other hand vanishes
at D and R. Thus when an observer is inclined on the equa-
torial plane, the behaviour of the shadows at point D and R
should correspond to the behaviour of the radii of equatorial
circular photon orbits that we obtained in Figs. 2 and 3. In
other words,

• For fixed �, rph+,KdS(rph+,RKdS) both decrease with
increase in black hole spin. This implies that as black hole
spin increases, point D on the curve of the shadow will
decrease by moving to the right. rph−,KdS(rph−,RKdS)

increases with increase in black hole spin, thus point R
increases by moving further to the right. As a conse-

quence, when the black hole spin increases, the shadows
will appear to shift to the right.

• For fixed black hole spin, rph+,KdS(rph+,RKdS) increases
with increase in �. In this case, point D increases by mov-
ing further to the left. rph−,KdS(rph−,RKdS) decreases
with increasing black hole spin. Point R consequently
decreases by moving to the left. Hence, with increasing
�, the shadows undergo a shift to the left.

This behaviour maintains even when the observer is inclined
away from the equatorial plane. In the subsequent section, we
will analyze the qualitative behaviour of the shadows using
this concept so as to identify consistencies or inconsistencies.

4.1 Plots of Black Hole shadows

In Figs. 4, 5 and 7, we have plotted the shadows using a
� = 0.06 and M = 1.06 as considered in Ref. [1] (figure
2 of their work). For different values of the black hole spin,
a, we notice that our results qualitatively agree with Ref.
[1] i.e, as the black hole spin increases, the left side of the
shadows moves to the right which corresponds to the radius
of equatorial circular prograde photon orbit decreasing with
increase in black hole spin. The right side moves further to
the right which is consistent with the radius of equatorial
circular retrograde photon orbit increasing with an increase
in black hole spin. Nonetheless, it is clear that there exists
a quantitative discrepancy. The celestial coordinates used in
Ref. [1] yield shadows that appear elliptic. On the other hand,
our results yield shadows that do not deviate so much from
circularity.

From Fig. 6, we observe that for increasing�, our obtained
impact parameters yield shadows that undergo a shift to the
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Fig. 4 Illustration of the discrepancy between our result and Ref. [1]. � = 0.06 m−2, M = 1.06,θ = π/2, and a = 0.999

left. This is consistent with the discussion that we have given
in the previous section. The impact parameters used in Ref.
[1], gives rise to shadows inconsistent with the behaviour
of equatorial circular photon orbits, i.e the right side of the
shadows moves further to the right as � increases. This would
imply that rph−,KdS(rph−,RKdS) increases with increase in
� which is not the case as observed in the previous section.
In-addition, there is still a quantitative discrepancy.

Figure 7 shows that a KdS black hole will cast a larger
shadow compared to a RKdS black hole. This observation,
as in Ref. [1], has been attributed to the fact that a KdS black
hole has a larger event horizon compared to that of a RKdS.
When an observer is inclined away from the equatorial plane
as illustrated in Fig. 8, the behaviour of the shadows is still
consistent with that observed in Fig. 5. For high values of
black hole spin, the shadows will have a near circular shape
when the observer is inclined away from the equatorial plane.
However, as the angle of inclination moves towards π/2, the
left side of the shadow begin to appear more flattened as
seen in Fig. 9. Thus, a change in the angle of inclination will
change the quantitative aspect of the shadows i.e, the horizon-
tal and vertical diameters of the shadows will change with
the change in angle of inclination. The analytic behaviour
with respect to changes in a and � will remain the same.

5 Intrinsic curvature of the shadows

The black hole shadow is a one dimensional closed curve
parametrized by (α(r), β(r)). Making use of differential
geometry concepts of closed curves, the intrinsic properties

of the black hole shadow can be obtained. In this section, we
will employ differential geometry to determine the curvature
radius of the shadows. The concept of curvature radius was
introduced in Ref. [32] together with its applications in con-
straining the black hole’s parameters. Moreover, by utilizing
the symmetry of a black hole shadow, Ref. [33] have obtained
characteristic points along the one dimensional curve of the
shadow. Using the characteristic points and curvature radius,
the Kerr black hole parameters have been obtained. An illus-
tration of the characteristic points is as shown in Fig. 1b. We
will obtain the curvature radius and characteristic points of
a KdS and RKdS black hole shadow. Using these properties,
we will do a quantitative comparison of these shadows. We
will further compare this quantitative behaviour to that of a
Kerr black hole [33].

Utilizing the concept of parametric curves, the radius of
curvature can be obtained by,

Rcurvature =
∣∣∣∣ (α′(r)2 + β ′(r)2)3/2

α′(r)β ′′(r) − β ′(r)α′′(r)

∣∣∣∣ . (67)

We then compute the curvature radius at points T ,D,R and
B as shown in Fig. 1b and denote them as RT , RD , RR ,
RB respectively. To avoid writing the cumbersome equations
that we obtain, we give the general approach by which we
calculate the points,

1. To measure the curvature radius at point T and B, we
work with a value of r obtained through ∂rβ = 0.

2. In evaluating curvature radius at D and R, we use r for
which β = 0.
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Fig. 5 Comparison of the shadows for impact parameter used in Ref. [1] with those that we obtain. We fix � = 0.06 m−2, M = 1.06,θ = π/2,
and vary a

3. The vertical diameter, �β = 2βT .
4. Horizontal diameter, �α = √

(αD − αR)2.

We have numerically computed these points for a KdS and
RKdS black hole shadow. Additionally, with the aid of the
value of gravitational radius obtained from Event Horizon
Telescope (EHT) observations [33,34],

θg = GM

c2D
= 3.8μas, (68)

we model M87* to these shadows. The results are in Tables 1
and 2 for two different values of �.

In Table 1, the second column contains values that we
obtained by modelling M87* to a Kerr black hole shadow.
The values agree with those obtained by [33]. We however
note that, in [33], the values of RT and RR given in Table
2 seem to have been interchanged. In the third and fourth
column, we have the KdS and RKdS values using the celestial
coordinates obtained in our calculation, Eqs. (61)–(62) and
Eqs. (63)–(64) respectively. The fifth and sixth column has
values that we calculated using the celestial coordinates used
in Ref. [1], Eqs. (65)–(66). The value of the cosmological
constant we have used on this table (for KdS and RKdS) is
� = 1.11 × 10−52 m−2. We observe that for this value of
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Fig. 6 Comparison of the shadows for impact parameter used in Ref. [1] with those that we obtain. For fixed a = 0.999, M = 1.06, θ = π/2,
a = 0.999 and different values of �

the cosmological constant, the values of curvature radius at
points D, R and T are approximately equal, across the table.
The same applies to values of the horizontal and vertical
diameters. Thus, for � = 1.11 × 10−52 m−2, the KdS and
RKdS black hole shadow is indistinguishable from that of a
Kerr black hole shadow.

For Table 2, we have used a larger value of the cosmolog-
ical constant, � = 0.06 m−2. The second and third column
represents values calculated using the celestial coordinates
we obtained in our work, Eqs. (61)–(62) and Eqs. (63)–(64).
The fourth and fifth column on the other hand are values
we have computed using celestial coordinates in Ref. [1],
Eqs. (65)–(66). The values are no longer equal across the

table and the discrepancy is now obvious. Comparing the
second and third column with the corresponding column in
Table 1 (third and forth column), we observe that the radii of
curvature and diameters decrease when a larger value of � is
used. Thus, in both KdS and RKdS space-times the shadow
will decrease in size for a larger value of �, in accordance
with the celestial coordinates we obtained, Eqs. (61)–(62)
and Eqs. (63)–(64). By using orthonormal tetrads approach,
Ref. [14] results also show that the size of a KdS shadow
would decrease when � is increased.
However, comparing the forth and fifth column with the cor-
responding column in Table 1 (fifth and sixth column), the
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Fig. 7 Plots comparing the size of a KdS with RKdS black hole shadow for a = 0.9, M = 1.06, θ = π/2 and � = 0.06 m−2

radii of curvature and diameters increase with increase in the
value of �.
From Table 2, the values of curvature radii, horizontal and
vertical diameters of a KdS black hole shadow are larger than
those of a RKdS shadow despite the difference being small.
This is in agreement with Fig. 7 where we observed that a
KdS black hole casts a larger shadow than a RKdS black
hole. Thus, the RKdS solution shows a gravitational field
less intense than the standard KdS solution.
It is worth to note that besides the approach of intrinsic cur-
vature, there exist other alternative ways of comparing black
hole shadows as illustrated in Ref. [38] and [39].

6 Constraints on Kerr-de Sitter and Kerr-de Sitter
revisited black hole

Recently, in Ref. [40], the 2017 EHT observations of M87*
were utilized and a constraint on the characteristic radius
of the shadow was obtained at 68% confidence level. It
was shown that irrespective of the underlying solution being
spherically or axially symmetric, the radius of the shadow
ought to lie in the range,

4.31M ≈ rsh,EHT−min ≤ r̃sh, rsh,A ≤ rsh,EHT−max

≈ 6.08M, (69)

where r̃sh and rsh,A denotes radius of the shadow in spheri-
cally symmetric and axially symmetric solution respectively.

From this shadow size, highly charged dilaton black holes
were ruled out of M87* observations. Additionally, in Ref.
[41] this observation was used to constrain the tidal charge
of a Reissner–Nordstrom black hole.
In this section we will implement the concept of curvature
radius that we have discussed in the previous section to this
observation. In so doing we will constrain the parameters
of a KdS and RKdS black hole. In Ref. [42], the concept
of curvature radius has been used to constrain a Kerr and a
Kerr-Newman black hole.

While excluding Z2 symmetry, the radius of curvature
will have one maximum and one minimum [32]. Figure 10
illustrates the maximum and minimum points of the curvature
radius of a KdS and RKdS black hole shadow. From this
figure, the radius of curvature has a local maximum at r =
rA and r = rB . Furthermore, as the black hole spin and θ

increases, these two local maxima also increase. The local
maximum at r = rA is greater than that at r = rB . Hence
Rmax = R(rA). Additionally, the minimum of the radius
of curvature (Rmin) forms at the well of these curves. This
minimum point decreases with increase in spin and θ . Rmin

and Rmax then gives a lower and an upper bound on the size
of the shadow. Thus, Eq. (69) can be expressed as [42],

4.31M ≤ Rmin, Rmax ≤ 6.08M. (70)

In other words, Rmin should not decrease below 4.31M and
Rmax should not increase beyond 6.31M . If this happens,
then such values should be excluded from observations of
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Fig. 8 Plots for different values of black hole spin when the observer’s inclination is away from the equatorial plane. M = 1.06 and � = 0.06 m−2

Table 1 Points evaluated for θ = 16◦, a = 0.5 and � = 1.11 × 10−52 m−2. We have chosen � = 1.11 × 10−52 m−2 because cosmological tests
and CMB measurements imply that this is the relevant value of the cosmological constant [35–37]

Points Kerr KdS (61, 62) RKdS (63, 64) KdS [1] (65, 66) RKdS [1] (65, 66)

�β(μas) 38.9617 38.9617 38.9617 38.9617 38.9617

�α(μas) 38.9123 38.9123 38.9123 38.9123 38.9123

RT (μas) 19.4318 19.4318 19.4318 19.4318 19.4318

RD(μas) 19.5096 19.5099 19.5099 19.5099 19.5099

RR(μas) 19.502 19.502 19.502 19.502 19.502

M87*. Using Eq. (70), we obtain regions that are excluded
from observations thus providing constraints on the black
hole parameters.

From Fig. 11, we observe that in both black holes,
excluded regions appear at high black hole spin a/M >

0.812311 and larger angles of inclination θ > 0.532512 ≈
30.5107◦. However, for small angles of inclination, no

excluded regions occur. Thus, for a KdS and RKdS black
hole, small angles of inclination pass the constraints of M87*
observations. On the other hand, when a/M > 0.812311,
large angles of inclination do not pass the constraints.

Practically, there are no sensible differences in constraints
between � = 0 and � ∼ 10−52, this section thus confirms
the findings of [37].
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Fig. 9 Plots of a KdS with RKdS black hole shadows with a = 0.999, M = 1.06 and � = 0.06 m−2 for different angles inclination

Table 2 Points evaluated for θ = 16◦, a = 0.5 and � = 0.06 m−2

Points KdS (61, 62) RKdS (63, 64) KdS [1] (65, 66) RKdS [1], (65, 66)

�β(μas) 38.6587 38.3582 55.1325 54.963

�α(μas) 38.6533 38.267 56.2004 55.0885

RT (μas) 19.2878 19.0882 28.1495 27.6076

RD(μas) 19.4078 19.2278 27.9915 27.4234

RR(μas) 19.4021 19.2221 27.9833 27.4154

7 Conclusion

We have analyzed black hole shadows in KdS and RKdS
space-times for observers located in the vicinity of the static
radius. Embedding diagrams of both ordinary geometry and
optical reference geometry have shown that the space-time
in the proximity of the static radius in de Sitter space-time is
analogous to an asymptotically flat space-time. This makes
such observers to be of great interest to our work. In view
of the fact that a black hole shadow forms as a result of the
unstable photon region being projected on the observer’s sky,
we have first investigated the behaviour of photon orbits in
the respective photon regions.

Particularly, we have investigated the behaviour of the
radius of equatorial circular photon orbits which form the
lower and upper bound of the photon region. In both space-
times, the radius of equatorial prograde (retrograde) circular
photon orbits decreases (increases) with increase in black
hole spin. For increasing value of �, the radius of equa-
torial prograde (retrograde) circular photon orbits increases
(decreases). We have done a qualitative analysis of the shad-

ows with respect to this behaviour. We find that the shadows
reflect this observed behaviour of the radius of equatorial
circular photon orbits. Besides, we have compared our result
with Ref. [1]. For varying black hole spin, our results agree
qualitatively. However, for varying �, the impact parame-
ters considered in Ref. [1] yield shadows whose behaviour
contradicts the behaviour of the radius of equatorial circular
photon orbits.

Furthermore, we have numerically computed the radii of
curvature at specific characteristic points along the curve
of a KdS and RKdS black hole shadow. We have further
obtained numerical values for the horizontal and vertical
diameters of the shadows. These values have then been mod-
elled to M87* observations. For � = 1.11 × 10−52 m−2,
we observe that KdS and RKdS black hole shadows have
radii of curvature, horizontal and vertical diameters that are
approximately equal. Further, these values are approximately
equal to those of a Kerr black hole shadow. Thus, astrophys-
ically relevant observations (observations for which � =
1.11×10−52 m−2) cannot distinguish between a RKdS, KdS
and Kerr black hole shadow. For � = 0.06 m−2, see Table 2,
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Fig. 10 Radius of curvature for Kerr-de Sitter and Kerr-de Sitter Revisited black hole shadow as a function of r . � = 1.11 × 10−52 m−2and
r ∈ [rA, rB ] is such that ∂rβ = 0

Fig. 11 Region plots for the
radius of curvature,
� = 1.11 × 10−52 m−2. The
shaded parts indicate regions
where the minimum radius of
curvature is less than 4.31M and
the maximum curvature is
greater than 6.08M . Such
regions according to Eq. (70) are
excluded from observations by
M87* hence imposing
constraints on θ and a. The
unshaded part is the allowed
region
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the quantitative discrepancy between our result and Ref. [1]
becomes obvious. But such immense value for � is not real-
istic. The values also indicate that a RKdS black hole casts
a smaller shadow than that of a KdS black hole despite the
difference being small. Generally, considering our results, an
increase in the cosmological constant decreases the size of a
KdS and RKdS black hole shadow.

Finally, utilizing the constraint on the characteristic areal
radius of the shadow obtained by the EHT collaboration,
we have constrained a KdS and RKdS black hole. We find
that, for a/M > 0.812311, large angles of inclination θ >

30.5107◦ are excluded from M87* observations in both KdS
and RKdS black holes.
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