
Branch-and-Cut and GRASP with Hybrid Local Search for
the Multi-Level Capacitated Minimum Spanning Tree Problem

Eduardo Uchoa∗ Túlio A.M. Toffolo⋆ Mauricio C. de Souza⋄ Alexandre X. Martins+

∗Departamento de Engenharia de Produção, Universidade Federal Fluminense

Niterói, Brasil. e-mail : uchoa@producao.uff.br

⋆Departamento de Ciência da Computação, Universidade Federal de Minas Gerais

Belo Horizonte, Brasil. e-mail : tulio@toffolo.com.br

⋄Departamento de Engenharia de Produção, Universidade Federal de Minas Gerais

Belo Horizonte, Brasil. e-mail : mauricio.souza@pq.cnpq.br

+Departamento de Ciências Exatas e Aplicadas, Universidade Federal de Ouro Preto

João Monlevade, Brasil. e-mail : xmartins@decea.ufop.br

Abstract

We propose efficient algorithms to compute tight lower bounds and high quality upper bounds

for the Multi-Level Capacitated Minimum Spanning Tree problem. We first develop a branch-and-

cut algorithm for the problem. This algorithm is able to solve instances of medium size and to

provide tight lower bounds for larger ones. We then use the branch-and-cut within GRASP to

evaluate subproblems during the search. The computational experiments conducted have improved

best known lower and upper bounds on benchmark instances.

Keywords: Capacitated spanning tree, Branch-and-cut, GRASP, Subproblem optimization.

1 Introduction

The Multi-Level Capacitated Minimum Spanning Tree (MLCMST) problem is an extension of the well-
known Capacitated Minimum Spanning Tree (CMST) problem (for a comprehensive survey on the CMST
probem, see Voss [6]). In the MLCMST, a feasible set of capacities is available to be installed between
each pair of nodes. Thus, decisions on installing an arc to provide connection between terminal nodes
and a central node can be made among different values of capacities and respective costs. Let G = (V,E)
be a connected undirected graph, where V denotes the set of nodes and E denotes the set of edges. Let
us consider L different capacities of value zl, l = 1, . . . , L, such that 0 < z1 < z2 < · · · < zL = C, which
are available to be installed on each edge {i, j} ∈ E with a cost cl

ij . Given a spanning tree T = (V, Ê)

of G, z l̂
{i,j} denotes the capacity installed on edge {i, j} ∈ Ê. The cost of T is given by

∑
{i,j}∈Ê cl̂

ij .
A non-negative integral weight bi is associated to each node i ∈ V . Let us designate by r the node in
V which is the central node. The predecessor p(i) of a node i ∈ V − {r} is the first node in the path
from i to r in T . We denote by Ti the connected component containing node i in the forest obtained by
removing edge {p(i), i} of T . The MLCMST problem consists of finding a minimum cost spanning tree T

of G such that the sum of the node weights in each Ti, i ∈ V − {r}, is less than or equal to the capacity

z l̂
{p(i),i} installed on edge {p(i), i}.

1



The MLCMST problem has been treated by Gamvros et al. [1]. The authors proposed two flow-based
mixed integer programming formulations and several heuristic procedures for the problem, including ex-
ponential size neighborhoods and a hybrid genetic algorithm. Recently, Martins et al. [3] proposed a
GRASP using an hybrid heuristic-subproblem optimization approach for the MLCMST problem. Heuris-
tic rules were used to define subproblems which were in turn solved exactly by employing a commercial
optimization package with an integer programming model. The proposed GRASP have improved best
known upper bounds for a subset of benchmark instances.

The purpose of this work is to present efficient algorithms to compute tight lower bounds and high
quality upper bounds for the MLCMST problem. We propose a branch-and-cut algorithm capable to
solve instances with 50 nodes, considering different locations for the central node, in a reasonable amount
of time. The algorithm provides tight lower bounds for larger instances by solving relaxations on the root
node. We also use the branch-and-cut within GRASP to evaluate subproblems during the construction
and local search phases. This leads to a competitive algorithm to find high quality feasible solutions for
the MLCMST problem.

2 Branch-and-Cut

Gouveia [2] proposed a formulation for the CMST that can be directly adapted for the MLCMST. This
formulation works over a directed graph GD = (V,A), where A has a pair of opposite arcs (i, j) and (j, i)
for each edge e = {i, j} ∈ E, excepting edges {r, i}, which are transformed into a single arc (r, i). The
solution must be an arborescence having directed paths from node r to all the remaining nodes. The
formulation requires the following assumptions: (i) z1 = 1 and (ii) capacities increase from 1 to zL by
unitary increments. The cases in which conditions (i) and (ii) do not hold can be handled by introducing
artificial capacities. The cost associated to an artificial capacity is the same of the first available capacity
greater than the artificial one. Let binary variables xd

a indicate that arc a = (i, j) belongs to the optimal
arborescence and that the total weight of the nodes in the sub-arborescence rooted in j is exactly d. Let
l(d) denote the smaller l such that zl ≥ d, and let δ−(i) ⊆ A (resp. δ+(i) ⊆ A) the set of incoming (resp.
outgoing) arcs of node i ∈ V .

Minimize
∑

a∈A

C∑

d=1

c
l(d)
a xd

a (1a)

S.t.
∑

a∈δ−(i)

C∑

d=1

xd
a = 1 (∀ i ∈ V \ {r}), (1b)

∑

a∈δ−(i)

C∑

d=1

dxd
a −

∑

a∈δ+(i)

C∑

d=1

dxd
a = bi (∀ i ∈ V \ {r}), (1c)

xd
a ∈ {0, 1} (∀ a ∈ A; d = 1, . . . , C). (1d)

This formulation was already used in [3] in order to solve (using only standard CPLEX routines) small-
sized MLCMST that were generated as subproblems in the GRASP heuristic. This paper proposes
enhancing this formulation with powerful cuts, so the resulting branch-and-cut algorithm can solve larger
instances or at least provide significantly better lower bounds in its root node.

2.1 Extended Capacity Cuts

For any set S ⊆ V \ {r}, define b(S) =
∑

i∈S b(i). Summing equations (1c) over S, one gets:

∑

ad∈δ−(S)

dxd
a −

∑

ad∈δ+(S)

dxd
a = b(S). (2)

An Extended Capacity Cut over S is any inequality valid for the polyhedron given by the convex hull of
the 0-1 solutions of (2) (i.e., the solutions of a quite particular equality-constrained knapsack problem).

2



In practice, such inequalities can be separated in a fast way by multiplying equations (2) by suitable
multipliers and applying integer rounding. This separation procedure is described in Uchoa et al. [5],
where the same inequalities were used in a branch-cut-and-price algorithm.

2.2 Fenchel Cuts over Sets of Size 2

Let S = {u, v} ⊂ V \ {r} be a set of size 2. Define the arc-set A(S) as δ−(S) ∪ δ+(S) ∪ {(u, v), (v, u)}.
Let x(S) the subset of the variables xd

a where a ∈ AS . Let P (S) be the set composed by the 0-1 incidence
vectors that correspond to the possible integral values for the variables in x(S). Let x̄ be the current
fractional solution in the branch-and-cut and x̄(S) its restriction to A(S). In a similar way, let α be a
vector of coefficients associated to the x variables and α(S) its restriction to A(S). If the solution of the
following linear program over variables α(S) yields z∗ > 1, then α.x ≤ 1 (the positions of α not in α(S)
are completed with zero) is a valid cut.

Maximize z = x̄(S).α (3a)

S.t.

p.α ≤ 1 (∀ p ∈ P (S)), (3b)

α ≥ 0. (3c)

The separation of such kind of Fenchel cuts is quite practical because one can further restrict A(S) to
the arcs with positive value in the current fractional solution. In this way, the size of the sets P (S) is not

too large. Moreover, only sets S where
∑C

d=1(x̄
d
uv + x̄d

vu) > 0 need to be considered. As far as we know,
those cuts were never used before for capacitated spanning tree problems.

3 GRASP

Our GRASP employs the heuristic rules proposed by Martins et al. [3] to generate smaller-sized MLCMST
subproblems. These subproblems are independently solved during the search by the proposed branch-
and-cut algorithm, c.f. Section 2.

3.1 Construction Phase

In the construction phase, we first use a greedy randomized heuristic to do a partition of V − {r} in Rk,
k = 1, . . . ,K, subsets. The cardinality of each subset Rk is limited by a parameter w ≥ zL. Initially,
Rk = ∅ for k = 1, . . . ,K, and k is set to 1. A Restricted Candidate List (RCL) comprises nodes whose
incorporation to Rk results in the smallest incremental cost according to Prim’s algorithm to compute a
minimum spanning tree. The node to be inserted in Rk is then randomly selected from RCL. When w

nodes are inserted in Rk, we increment k and proceed until a partition of V − {r} is done. Subproblems
consist of K independent MLCMST instances defined each on a subgraph induced in G by Rk ∪ {r},
k = 1, . . . ,K. Then, we apply the proposed branch-and-cut to solve each of the K subproblems to
optimality.

3.2 Local Search Phase

In the local search phase, we try to re-arrange nodes of different components connected to r. Given a
feasible tree T , a neighbor is obtained by (i) defining a subgraph Ḡ of G, and (ii) solving a MLCMST
subproblem on Ḡ. Considering the forest composed of Q connected components when removing node r

and its adjacent edges from T , the subgraph Ḡ is induced in G by V̄ = {r}∪q∈Φ Vq where Φ ⊂ {1, . . . , Q}
and Vq is the set of nodes of component q. A neighbor solution is obtained by re-arranging the components
whose indexes belong to Φ, leaving the other components unchanged. This kind of move leads to the
need of solving a smaller-sized MLCMST instance in subgraph Ḡ in the worst-case. We use heuristic

3



rules in selecting components to form Ḡ, avoiding the need of evaluating all possible moves. To evaluate
a considered move, we apply the proposed branch-and-cut to solve to optimality the subproblem on Ḡ.

4 Computational Results

We report numerical results on a subset of benchmark instances introduced in the literature by Gamvros
et al. [1]. These are graphs with 50, 100, and 150 nodes plus the central node, divided into three groups:
central node located in the center, at the edge, or randomly. Nodes with unitary demand are randomly
distributed in a 40 × 40 square grid. Capacity values are z1 = 1, z2 = 3 and z3 = 10; the cost c1

ij ,

{i, j} ∈ E is equal to Euclidean distance (not rounded), and then c2
ij = 2c1

ij and c3
ij = 3c1

ij . We consider
the first 5 instances out of 50 generated for each group resulting in a total of 45 instances.

The procedures were coded in C++, compiler gcc 4.2.3, and CPLEX 10.2 was used. Experiments were
perfomed on a machine Intel Core 2 Duo 2.5Ghz with 4GB de RAM running LINUX. Table 1 presents
optimal values obtained with the branch-and-cut for instances with 50 nodes. Instances with central
node in the center are identified by “c”, at the edge by “e”, and randomly by “r”. Computational times
are in seconds. Tables 2 and 3 present upper (UB) and lower (LB) bounds for instances with 100 and
150 nodes respectively. First, the best known upper and lower bounds, with respective percentage gaps,
are reported. Then, upper bounds obtained by running 10 iterations of GRASP with subproblems up
to 50 nodes, and lower bounds obtained at the root node of the branch-and-cut are reported. The best
known upper bounds for instances with central node in the center were obtained by Martins et al. [3].
For instances with central node at the edge or randomly located, the best known upper bounds were
obtained by Gamvros et al. [1]. The best known lower bounds for all instances with 100 and 150 nodes
were also obtained by Gamvros et al. [1]. The upper and lower bounds obtained by Gamvros et al. [1]
were informed to us by Raghavan [4]. Computational results obtained with the approaches proposed
in this work improved the best values for both upper and lower bounds, and percentage gaps are now
significantly reduced.

inst. opt∗ time inst. opt∗ time inst. opt∗ time
50-0c 568.48 52.01 50-0e 1108.67 171.09 50-0r 591.99 74.07
50-1c 540.62 65.08 50-1e 1147.73 128.27 50-1r 737.05 109.47
50-2c 558.66 29.44 50-2e 1007.27 125.80 50-2r 701.63 67.94
50-3c 564.28 52.12 50-3e 1084.11 222.10 50-3r 676.35 32.95
50-4c 541.68 62.37 50-4e 1123.23 557.88 50-4r 859.79 67.03

Table 1: Optimal values for instances with 50 nodes.

References

[1] I. Gamvros, B.L. Golden, and S. Raghavan, The multi-level capacitated minimum spanning tree,
INFORMS Journal on Computing 18 (2006) pp. 348–365.

[2] L. Gouveia, A 2n formulation for the capacitated minimal spanning tree problem, Operations Re-
search 4 (1995) pp. 130–141.

[3] A.X. Martins, M.C. de Souza, M.J.F. Souza, T.A.M. Toffolo, GRASP with Hybrid Heuristic-

Subproblem Optimization for the Multi-Level Capacitated Minimum Spanning Tree Problem, Journal
of Heuristics, to appear, DOI 10.1007/s10732-008-9079-x.

[4] S. Raghavan, personal communication, 2007.

[5] E. Uchoa, R. Fukasawa, J. Lysgaard, A. Pessoa, M. Poggi de Aragão, and D. Andrade, Robust branch-

cut-and-price for the capacitated minimum spanning tree problem over a large extended formulation,
Mathematical Programming 112 (2008) pp. 443–472.

4



Best Known GRASP + B&C

inst UB LB g(%) UB time LB time g(%)
100-0c 1076.434 1024.191 5.10 1075.429 3527 1073.745 266 0.16
100-1c 1104.727 1048.661 5.35 1102.352 3760 1099.220 199 0.28
100-2c 1110.312 1051.477 5.60 1108.356 3925 1103.450 1152 0.44
100-3c 1096.077 1047.969 4.59 1096.077 3138 1093.370 201 0.25
100-4c 1074.979 1017.385 5.66 1073.830 3754 1069.510 208 0.40
100-0e 2185.180 2102.977 3.91 2168.097 6709 2158.867 533 0.43
100-1e 2015.960 1943.439 3.73 2007.625 6143 2000.413 1392 0.36
100-2e 2120.680 2054.838 3.20 2111.526 5481 2103.561 326 0.38
100-3e 1993.730 1928.662 3.37 1989.065 5963 1978.623 601 0.53
100-4e 2037.460 1966.557 3.61 2032.877 6301 2020.175 1136 0.63
100-0r 1606.570 1533.735 4.75 1594.350 6271 1588.088 438 0.39
100-1r 1893.580 1816.662 4.23 1885.063 6914 1875.209 490 0.53
100-2r 1488.340 1418.726 4.91 1476.980 5555 1473.078 277 0.26
100-3r 1175.050 1108.194 6.03 1166.972 4039 1159.709 418 0.63
100-4r 1166.970 1101.724 5.92 1155.714 3474 1149.273 188 0.56

Table 2: Upper and lower bounds for instances with 100 nodes

Best Known GRASP + B&C

inst UB LB g(%) UB time LB time g(%)
150-0c 1555.086 1483.970 4.79 1550.382 7894 1541.393 728 0.58
150-1c 1639.308 1569.578 4.44 1634.420 5855 1627.047 1004 0.45
150-2c 1624.750 1550.347 4.80 1620.860 5924 1611.212 1086 0.60
150-3c 1586.540 1509.925 5.07 1578.877 6347 1569.488 1130 0.60
150-4c 1633.248 1555.021 5.03 1626.312 5826 1617.757 977 0.53
150-0e 3043.190 2932.044 3.79 3003.718 9120 2992.415 692 0.38
150-1e 3130.600 3017.356 3.75 3099.175 10151 3082.438 762 0.54
150-2e 3074.820 2969.406 3.55 3043.186 9807 3028.971 501 0.47
150-3e 3049.500 2944.365 3.57 3025.921 9360 3008.361 743 0.58
150-4e 3057.150 2930.994 4.30 3012.149 9329 2993.525 830 0.62
150-0r 2418.800 2303.125 5.02 2374.978 10067 2363.651 353 0.48
150-1r 2122.230 2020.047 5.06 2087.433 8119 2076.390 299 0.53
150-2r 2243.700 2135.843 5.05 2216.420 8431 2201.894 323 0.66
150-3r 2180.740 2076.635 5.01 2147.615 8081 2135.203 320 0.58
150-4r 2236.040 2128.817 5.04 2206.680 8877 2195.203 367 0.52

Table 3: Upper and lower bounds for instances with 150 nodes

[6] S. Voss, Capacitated minimum spanning trees, In: C.A. Floudas and P.M. Pardalos (eds.) Encyclo-
pedia of Optimization, Vol. 1, 2nd Edition, Springer, Berlin, 2008 pp. 225–235.

5




