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ABSTRACT Chronic Chagas disease might have an impact on benznidazole pharmaco-
kinetics with potential alterations in the therapeutic dosing regimen. This study aims to
investigate the influence of chronic Trypanosoma cruzi infection on the pharmacokinetics
and biodistribution of benznidazole in mice. Healthy (n=40) and chronically T. cruzi
(Berenice-78 strain)-infected (n=40) Swiss female 10-month-old mice received a single
oral dose of 100mg/kg of body weight of benznidazole. Serial blood, heart, colon, and
brain samples were collected up to 12 h after benznidazole administration. The serum
and tissue samples were analyzed using a high-performance liquid chromatography
instrument coupled to a diode array detector. Chronic infection by T. cruzi increased the
values of the pharmacokinetic parameters absorption rate constant (Ka) (3.92 versus 1.82
h21), apparent volume of distribution (V/F) (0.089 versus 0.036 liters), and apparent clear-
ance (CL/F) (0.030 versus 0.011 liters/h) and reduced the values of the time to the maxi-
mum concentration of drug in serum (Tmax) (0.67 versus 1.17 h) and absorption half-life
(t1/2a) (0.18 versus 0.38 h). Tissue exposure (area under the concentration-versus-time
curve from 0 h to time t for tissue [AUC0–t,tissue]) was longer and higher in the colon
(8.15 versus 21.21mg · h/g) and heart (5.72 versus 13.58mg · h/g) of chronically
infected mice. Chronic infection also increased the benznidazole tissue penetra-
tion ratios (AUC0–t,tissue/AUC0–t,serum ratios) of brain, colon, and heart by 1.6-, 3.25-,
and 3-fold, respectively. The experimental chronic Chagas disease inflammation-
mediated changes in the regulation of membrane transporters probably influence
the benznidazole pharmacokinetics and the extent of benznidazole exposure in
tissues. These results advise for potential alterations in benznidazole pharmacoki-
netics in chronic Chagas disease patients with possibilities of changes in the
standard dosing regimen.

KEYWORDS Chagas disease, Trypanosoma cruzi, benznidazole, pharmacokinetics,
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Chagas disease is a neglected tropical infectious disease caused by the intracellular
hemoflagellate protozoan parasite Trypanosoma cruzi. Chagas disease remains

endemic in Latin America, but migration has also led to its emergence in areas where
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the disease is not endemic, including Europe, North America, Japan, and Australia.
Currently, the World Health Organization estimates that approximately 7 million peo-
ple are infected by T. cruzi worldwide and that 75 million are at risk of infection (1).

Chagas disease is characterized by acute and chronic phases of infection with differ-
ent clinical forms. While infection can remain asymptomatic for many years, approxi-
mately 30 to 40% of individuals chronically infected by T. cruzimay develop the cardiac
and/or digestive clinical forms (2, 3). During active T. cruzi infection, cytokines such as
interferon gamma (IFN-g), tumor necrosis factor alpha (TNF-a), transforming growth
factor b (TGF-b), interleukin-12 (IL-12), IL-4, IL-10, IL-17, and IL-6 are released after
macrophage and T lymphocyte activation (4–7).

Besides playing critical roles in pathogenesis and disease progression, in vitro and in
vivo studies have shown that proinflammatory cytokines may alter the expression and
activity of membrane transporters and cytochrome P450 (CYP) enzymes (8–12).
Therefore, inflammatory disease-drug interactions may have an influence on the phar-
macokinetics (PK) of drugs (8). Currently, mechanistic knowledge about the impact of
parasitic infections on CYP-mediated drug metabolism and transporter-mediated
kinetics remains limited for malaria (13, 14) and visceral leishmaniasis (15), being inexis-
tent for Chagas disease.

During the last 50 years, benznidazole has been considered the trypanocidal drug
of choice for treating Chagas disease. Benznidazole is not an ideal drug for curing
Chagas disease because of its many limitations, including (i) variable efficacy, with ther-
apeutic failure rates of around 20% for the acute phase and 80% for the chronic phase;
(ii) varying natural susceptibility (or drug resistance) of T. cruzi strains; (iii) multiple
adverse effects; and (iv) long-term treatment regimens (16, 17). These limitations could
be related to unfavorable biopharmaceutical and pharmacokinetic properties such as
low solubility and intestinal absorption, limited tissue and parasitic penetration, and
high clearance rates (18–20). In fact, benznidazole is proposed to be a class 4 drug
according to the biopharmaceutical classification system (low permeability and solubil-
ity) (21), showing low tissue distributions in healthy mice (22). Additionally, studies in
HepG2 cells and rats have shown that benznidazole is a substrate and inducer of
CYP3A4, glutathione S-transferase, P-glycoprotein (P-gp), and multiple-resistance pro-
tein 2 (23).

In this context, understanding the impact of T. cruzi infection on drug pharmacoki-
netics is essential to bridge phase I and II studies aiming to reduce attrition rates dur-
ing clinical proof-of-concept trials designed for efficacy and safety assessments. The
current benznidazole dosing regimen is based on pharmacokinetic studies in healthy
subjects (24, 25). Nevertheless, the FDA highlights that benznidazole pharmacokinetics
could be different in chronic Chagas disease patients (24). For example, due to the lon-
ger elimination half-life (t1/2el) of benznidazole in patients with chronic Chagas disease,
Soy et al. (26) recommended a reduction of the therapeutic dose.

Although the pharmacokinetics of benznidazole have been investigated in healthy
mice, rats, rabbits, sheep, and dogs (27, 28), limited information on the preclinical phar-
macokinetics and tissue distribution of benznidazole has been published (22, 29), lead-
ing to a limited understanding of the intrinsic and extrinsic mechanisms involved in its
efficacy and toxicity. Furthermore, no standardized animal model has been reported in
order to evaluate the drug pharmacokinetics in Chagas disease drug discovery and de-
velopment. Therefore, the aim of this research was to investigate the impact of experi-
mental chronic Berenice-78 (Be-78) Trypanosoma cruzi infection on systemic and tissue
exposure of benznidazole in outbred Swiss mice.

RESULTS AND DISCUSSION

To the best of our knowledge, the Swiss mouse–Be-78 T. cruzi strain model is a
novel experimental model for assessing translational benznidazole pharmacokinetics
with available tissue distribution data in chronic Chagas disease.

Benznidazole systemic and tissue exposure profiles after the administration of a
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single oral dose of 100mg/kg of body weight in healthy and chronically T. cruzi-
infected mice are shown in Fig. 1 and 2. Chronic infection by T. cruzi increased the val-
ues of the pharmacokinetic parameters absorption rate constant (Ka) (3.92 versus 1.82
h21), apparent volume of distribution (V/F) (0.089 versus 0.036 L), and apparent clear-
ance (CL/F) (0.030 versus 0.011 liters/h) and reduced the values of the time to reach
the maximum concentration of drug in serum (Tmax) (0.67 versus 1.17 h) and absorption
half-life (t1/2a) (0.18 versus 0.38 h) compared with healthy mice (Table 1). As benznida-
zole absorption seems to be accelerated (higher Ka and lower Tmax and t1/2a values) in
infected mice, it could explain the faster elimination (higher CL/F value). Furthermore,
the unchanged elimination rate constant (Kel) (;0.33 h21) is the rational explanation
for the increased V/F. The proportional changes of 2.7-fold in V/F and CL/F values
regarding infected versus healthy mice resulted in unchanged elimination half-life (t1/
2el) values. These results suggest that chronic infection by T. cruzi alters benznidazole
pharmacokinetics, which may be due to inflammation-mediated changes in the
expression and activity of membrane transporters (8, 10, 30).

Benznidazole is a poorly permeable compound and a substrate of P-gp-mediated
efflux (21–23, 31, 32). Therefore, it is plausible to hypothesize that the higher benznida-
zole absorption rate observed in infected mice was due to the potential downregula-
tion of P-gp expression, which has already been observed for several inflammatory/in-
fectious diseases (33, 34). Further mechanistic studies coadministering benznidazole
with P-gp inhibitors are needed to fully characterize the disease-mediated alteration in
benznidazole absorption across the enterocyte membrane.

Figure 2 shows the concentrations of benznidazole in the brain, colon, and heart
over time curves of healthy and infected mice after a single oral dose of benznidazole.
Chronic infection increased the peak concentration as well as the extent of benznida-
zole exposure in all three studied tissues compared with healthy mice (Table 2). The
magnitude of the change in benznidazole penetration under disease conditions was
higher in the colon and heart (Table 2). This might be due to the preferential tropism
of the Berenice-78 strain of T. cruzi for heart muscle and intestine, as demonstrated in
chagasic patients (35) and animal models such as the outbred Swiss mouse model (36,
37). These results suggest that a permeability-limited but not a perfusion-rate-limited
model is controlling the benznidazole tissue distribution. Disease-mediated changes in
the permeability of the barriers and/or the expression and function of transporters

FIG 1 Serum concentration-versus-time curves of benznidazole after a single oral dose of 100mg/kg
in healthy and chronically T. cruzi (Berenice-78 strain)-infected Swiss mice. Data are expressed as
medians (solid and dotted lines) and interquartile ranges (IQ25–75) (shaded area).

Benznidazole PK in Swiss Mouse–Be-78 T. cruziModel Antimicrobial Agents and Chemotherapy
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seem to lead to an altered target site distribution of total benznidazole concentrations.
Whether the T. cruzi disease model is downregulating efflux and/or upregulating
uptake transporters responsible for the benznidazole tissue distribution is still unknown
and should be the subject of further studies. Cytokines and other mediators of the cellu-
lar inflammatory response could be involved in the regulation of membrane transporters
in chronic infection of Chagas disease. Future studies should evaluate the role of inflam-
mation biomarkers in drug transporter activity in experimental and clinical infection by
T. cruzi.

Contrary to our results, the noninfluence of experimental chronic Chagas disease
on the pharmacokinetics of oral benznidazole at 100mg/kg was previously reported
for the BALB/c mouse-CL Brener T. cruzi strain model (38). A plausible explanation is
differences in the T. cruzi strains (CL Brener versus Be-78), mouse breeds (BALB/c versus
Swiss), and time of chronic infection. According to Soy et al. (26) and the FDA (24), the
benznidazole pharmacokinetics could be different between chronic Chagas disease
patients and healthy subjects; thus, a suitable animal model of choice should demon-
strate this difference in order to generate adequate data to translate to humans (39).
Furthermore, in Chagas disease drug discovery and development, benznidazole is
used as a drug reference to compare with a new drug candidate (40, 41). Our research
group has demonstrated an intensive inflammation process in several organs, includ-

FIG 2 Tissue concentration-versus-time curves of benznidazole after a single oral dose of 100mg/kg
in healthy and chronically T. cruzi (Berenice-78 strain)-infected Swiss mice. Data are expressed as
medians (solid and dotted lines) and interquartile ranges (IQ25–75) (shaded area).

TABLE 1 Serum pharmacokinetic parameters of benznidazole after a single oral dose of
100mg/kg in healthy and chronically T. cruzi (Berenice-78 strain)-infected Swiss micea

Parameter

Median value (IQ25–75) for group

Infected mice Healthy mice
Ka (h

21) 3.92* (3.22–4.66) 1.82 (1.73–1.88)
Cmax (mg/ml) 44.24 (39.78–52.22) 41.74 (40.86–42.87)
Tmax (h) 0.67* (0.60–0.76) 1.17 (1.16–1.18)
t1/2a (h) 0.18* (0.15–0.23) 0.38 (0.37–0.40)
AUC0–1 (mg · h/ml) 158.09 (141.34–181.98) 199.67 (191.53–200.57)
t1/2el (h) 1.92 (1.79–1.99) 2.33 (2.10–2.43)
V/F (liters) 0.089* (0.07–0.10) 0.036 (0.03–0.04)
CL/F (liters/h) 0.030* (0.02–0.04) 0.011 (0.010–0.012)
Kel (h21) 0.36 (0.35–0.39) 0.30 (0.29–0.33)
aData are expressed as medians and interquartile ranges (IQ25–75). Cmax, maximum plasma concentration;
AUC0–1, area under the plasma concentration-versus-time curve from time zero to infinity; V, volume of
distribution; CL, total clearance; t1/2el, elimination half-life; Kel, elimination rate constant; Ka, absorption rate
constant; t1/2a, absorption half-life; Tmax, time to reach Cmax. *, P, 0.05 by a Mann-Whitney test.
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ing heart and intestine, mediated by inflammatory biomarkers (e.g., IFN-g, TNF-a, and
IL-10) in the chronic Swiss mouse–Be-78 T. cruzi strain model (36, 37) that can influence
drug metabolism enzyme and drug transporter activities. Based on our results, the
Swiss mouse–Be-78 T. cruzi strain model may be an appropriate experimental model to
evaluate the impact of inflammation-mediated chronic infection on translational drug
pharmacokinetics for Chagas disease.

Therefore, the results obtained in the present study indicate the impact of experi-
mental chronic Chagas disease on benznidazole pharmacokinetics in mice, advising for
a potential change in the dosing regimen in clinical pharmacotherapy. These results
support previous clinical studies that suggest that the standard dosing regimen might
be significantly different in patients (26, 42, 43). Future clinical and preclinical studies
should evaluate the role of chronic and acute Chagas disease in benznidazole pharma-
cokinetics and a possible change in the standard dosing regimen.

Conclusions. In summary, experimental chronic Chagas disease using the Swiss
mouse–Be-78 T. cruzi strain model altered the benznidazole pharmacokinetics, prob-
ably mediated by inflammatory biomarkers produced during chronic infection. Chronic
infection by the Be-78 T. cruzi strain increased benznidazole exposure in the heart and
colon. Thus, our study supports alterations in benznidazole membrane permeability
during chronic infection, which might be by downregulating efflux but also upregulat-
ing the uptake of drug transporters. These results advise for a potential change in
benznidazole pharmacokinetics in chronic Chagas disease patients.

MATERIALS ANDMETHODS
Animals and ethics. Swiss 10-month-old female mice, weighing 45 to 50 g, were housed under

proper handling conditions with access to food and water ad libitum. The Ethics Committee on Animal
Experimentation of the Federal University of Ouro Preto, Minas Gerais, Brazil, approved the protocol
(2016/58).

Treatment schedule, sample collection, and extraction. Mice were divided into two groups of 40
animals each: uninfected (healthy) and infected with an intraperitoneal inoculum of 5� 103 trypomasti-
gote forms of the Berenice-78 T. cruzi strain. Mice were infected at 30 days of age, and infection was con-
firmed by parasitemia detection in fresh blood. After 9 months of T. cruzi inoculation in the infected
mouse group, both groups received a single oral dose of 100mg/kg benznidazole in an aqueous solu-
tion of 0.5% methylcellulose administered by gavage. Serial blood samples were collected 0.16, 0.33, 0.5,

TABLE 2 Tissue pharmacokinetic parameters of benznidazole after a single oral dose of
100mg/kg in healthy and chronically T. cruzi (Berenice-78 strain)-infected Swiss micea

Parameter and tissue

Value for group

Infected mice Healthy mice
Median Cmax (mg/g) (IQ25–75)
Brain 3.53* (2.92–4.47) 2.53 (1.87–2.58)
Colon 7.56* (6.34–11.12) 3.73 (3.05–7.30)
Heart 3.93* (3.77–7.12) 3.00 (1.92–3.32)

Median Tmax (h) (IQ25–75)
Brain 0.5 1.0
Colon 0.5 0.5
Heart 0.5 0.5

Median AUC0–t (mg · h/g) (IQ25–75)
Brain 7.97 (6.97–9.17) 6.23 (5.08–7.27)
Colon 21.21* (18.59–28.74) 8.15 (6.71–13.76)
Heart 13.58* (12.35–15.60) 5.72 (4.90–8.63)

AUC0–t,tissue/AUC0–t,serum ratio (%)
Brain 5 3
Colon 13 4
Heart 9 3

aData are expressed as medians and interquartile ranges (IQ25–75). Cmax, maximum plasma concentration;
AUC0–t, area under the plasma concentration-versus-time curve from 0 h to time t; Tmax, time to reach Cmax;
AUC0–t,tissue/AUC0–t,serum ratio, tissue penetration ratio. *, P, 0.05 by a Mann-Whitney test.
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1, 2, 3, 6, and 12 h after benznidazole administration (n= 5 mice/time point), and serum samples were
obtained by centrifugation. Samples were processed according to a method previously described by
Perin et al. (29). In totum heart, colon, and brain were collected from five animals at each sampling time,
weighed, processed, and stored as homogenized tissue in phosphate buffer (pH 7.4) (29).

Benznidazole analysis in serum and tissues. The samples were extracted and analyzed using a bio-
analytical method developed and validated by our research group (22, 29). A high-performance liquid
chromatography (HPLC) system (Prominence LC20AT; Shimadzu, Kyoto, Japan) was coupled to a diode
array detector (DAD) SPD-M20A model operating at 324 nm with an analytical C18 column (Gemini-
NXVR; Phenomenex, Torrance, CA, USA) (150mm by 4.6mm; 5mm) and a C18 column guard (model AJ0-
7597VR; Phenomenex, Torrance, CA, USA) (4mm by 3mm) and maintained at 40°C. The mobile phase
was composed of a mixture of water and acetonitrile (70:30, vol/vol) with a 1.0-ml/min isocratic flow
rate. The injection volume was 20ml, and the run time was 7min.

The method (29) was validated according to EMA guidelines (44), and partial validation was exe-
cuted in order to confirm reproducibility by the following assays: selectivity, linearity, precision, and ac-
curacy. The calibration curves were linear (r2 . 0.99) in the range of 0.1 to 100mg/ml. Precision varied
from 2.29 to 12.33%, and accuracy varied from 212.91 to 14.33%, confirming the reproducibility of the
method.

Systemic and tissue drug distribution analyses. Benznidazole pharmacokinetic parameters were
estimated from the serum concentration-versus-time profiles using the one-compartment model of
Phoenix 64/WinNonLin version 7.0 (Pharsight, Certara Company).

For tissue distribution studies, the amount of benznidazole was expressed in terms of micrograms
per gram of tissue and calculated using the equation Ct = (Cs � Vs)/P, where Ct represents the total tissue
concentration (micrograms per gram), Cs is the supernatant concentration, Vs is the supernatant volume,
and P is the weight of the tissue sample. The pharmacokinetic parameters from tissue concentrations
versus time were determined using a one-compartment PK model. Benznidazole tissue penetration was
determined as the ratio of the area under the concentration-versus-time curve from 0 h to time t for tis-
sue (AUC0–t,tissue) to the AUC0–t,serum.

Statistical analysis. The statistical analysis was performed using R software version 3.6.1 (R
Foundation for Statistical Computing). The data are expressed as medians and 25% to 75% interquartile
ranges (IQ25–75). A Mann-Whitney nonpaired test was employed to compare the data of healthy versus
chronically infected groups. Differences in median values were considered significant at a P value of
,0.05.
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