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Abstract: Prevention of cervical cancer could be performed using Pap smear image analysis. This test
screens pre-neoplastic changes in the cervical epithelial cells; accurate screening can reduce deaths
caused by the disease. Pap smear test analysis is exhaustive and repetitive work performed visu-
ally by a cytopathologist. This article proposes a workload-reducing algorithm for cervical cancer
detection based on analysis of cell nuclei features within Pap smear images. We investigate eight tra-
ditional machine learning methods to perform a hierarchical classification. We propose a hierarchical
classification methodology for computer-aided screening of cell lesions, which can recommend fields
of view from the microscopy image based on the nuclei detection of cervical cells. We evaluate the
performance of several algorithms against the Herlev and CRIC databases, using a varying number
of classes during image classification. Results indicate that the hierarchical classification performed
best when using Random Forest as the key classifier, particularly when compared with decision trees,
k-NN, and the Ridge methods.

Keywords: image classification; learning algorithm; Random Forest classifier; hierarchical model;
cervical lesions; cancer classification; feature extraction; Pap smear

1. Introduction

The World Health Organization recently estimated 605,000 new cases and 342,000
deaths from cervical cancer worldwide [1]. Over the years, the use of the Pap smear test for
population-based cervical cytological screening has shown remarkable success in the early
detection of such cancers; despite this, there is much to improve within this program [2,3].

The Papanicolaou exam, commonly known as the Pap smear, identifies pre-neoplastic
changes in the cervix’s desquamated cells based on several cytomorphological and clinical
criteria. The main criteria are based on nuclear characteristics, such as nuclear augmenta-
tion, irregularity of the nuclear membrane, nuclear hyperchromasia, and relation of the
nucleus and cytoplasm sizes [4].

In the laboratory routine, a cytopathologist evaluates up to 300,000 cervical cells
in a single smear [4]; also, the workload can reach 100 smears per day. The recom-
mendation worldwide of the daily hours worked varies depending on the country: in
Canada, it is 80 smears/day; in Brazil, it is 70 smears/day, and in the United States, it is
100 smears/day [5,6]. This scenario encompasses tiring and repetitive work that leads to
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errors inherent in human visual interpretation. Investigations conducted since before the
1990s show rates of 2% to 62% false-negatives in Pap test results [7–11].

To solve the limitations and improve the screening exams’ quality, computer vision
and computer-aided systems are used to analyze Pap smear images, making the process
more accurate and reliable [12]. One of the great difficulties in proposing such systems
is the need for robust data from several real images of cervical cells, properly labeled
by cytopathologists, using the widespread Bethesda System nomenclature. However, it
comes up against the limitations of the existing Papanicolaou examination image datasets;
these issues include synthetic images, images without classes images with pre-neoplastic or
incomplete alteration, images with single cells, and liquid-based cytology images. The most
widely used base, Herlev [13], has images with a single cell and a division into seven pre-
neoplastic classes that do not follow the most-used nomenclature; the ISBI database [14]
has simulated images and those without pre-neoplastic changes; SIPaKMeD [15] divides
its images into five categories that differ from the Bethesda System.

Many authors have proposed solutions to this problem of detecting cervical cells,
using synthetic databases or working with databases that do not represent the reality of
conventional Pap smear images, in which there are many cells, often overlapping, in a
single image [16–24]. Therefore, the investigation of methodologies capable of being
applied in the real context of cervical cancer screening is still a great challenge.

Performing cell classification is one step in constructing a decision-aid tool for ana-
lyzing the Pap smear test. Some authors perform the cell classification with traditional
machine learning [25–27], and others employ convolutional neural networks [17,23,28,29].

Diniz et al. [30] proposed a methodology using Simple Linear Iterative Clustering
(SLIC), Density-Based Spatial Clustering of Applications with Noise (DBSCAN), and Iter-
ated Local Search (ILS) algorithms to segment nuclei in synthetic images based on their
morphologic features. Using the irace package, López-Ibáñez et al. [31] and Diniz et al. [16]
concluded that the important features for the methodology were minimum circularity,
maximum intensity, and minimum area.

Ghoneim et al. [17] proposed a methodology based on the Shallow, VGG-16, and Caf-
feNet architectures to extract cervical cell characteristics. They also used the Extreme
Learning Machine and Autoencoder to classify the cells into two or seven classes.

Lin et al. [18] presented a CNN-based method to classify cells based on their appear-
ance and morphology. They analyzed different input images for the proposed method.
They considered a 2-channel image, the nucleus and the cytoplasm masks, a 3-channel
image, the RGB image, and the 5-channel image, which joins the 2-channel and 3-channel
images. The authors showed with experiments that 5-channel input images improve
the classification.

Di Ruberto et al. [32] analyzed different descriptors used to extract image features
from seven databases representing different computer vision problems. They used a k-NN
model to evaluate Hu, Legendre, and Zernike moments, Local Binary Patterns (LBP),
and co-occurrence matrix features. The authors concluded that extracting the invariant
moments from the Gray Level Co-occurrence Matrices (GLCM) improves their overall
accuracy. They also observed that extracting the descriptors from RGB images is better
than grayscale ones.

Ensemble methods are a process of consulting several classifiers before making a final
decision and also have been used by many researchers in bioinformatics. Bora et al. [24]
introduced an ensemble method that uses Least Squares Support Vector Machine (LSSVM),
Multilayer Perceptron (MLP), and Random Forest (RF) to construct a decision model based
on shape, texture, and color features.

Gómez et al. [19] made a comparison of several algorithms to classify cervical cancer
cells into two classes: normal and abnormal. They used 20 morphologic features and found
that the combinations of algorithms Bagging + MultilayerPerceptron and AdaBoostM1 +
LMT were the best scenarios analyzed by them.
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Lakshmi and Krishnaveni [20] presented a method to extract nuclei and cytoplasm
features of Pap smear images. Attributes such as center, perimeter, area, and average
intensity were considered. The method uses the expectation–maximization (EM) algorithm
and a Gaussian mixture model (GMM). Finally, the authors state that the method can be
used to determine the cancer stage and be efficient for classifying cervical cells that present
low-grade squamous intraepithelial lesion (LSIL) and high-grade squamous intraepithelial
lesion (HSIL).

Win et al. [21] applied a median filter to the images to remove noise and used Contrast
Limited Adaptive Histogram Equalization (CLAHE) to enhance the contrast. The k-Means
algorithm was implemented to segment the nucleus and cytoplasm regions of cervical
cells. From these regions, 38 characteristics of texture, shape, and color were extracted.
Attributes were selected using the Random Forest method. Next, the cells were classified
into two and seven classes using the ensemble bagging method. The authors compared
the approach with five classifiers (LD, SVM, k-NN, boosted trees, and bagged trees) and
showed that their method performed better.

Hussain et al. [22] explore AlexNet, VGG-16, VGG-19, ResNet-50, ResNet-101, and
GoogLeNet for the classification of cervical lesions. The authors also proposed an ensem-
ble method of the three best models. They found GoogLeNet to be the best individual
architecture, and they showed that the ensemble improved by using the AUC-ROC curve.

This article proposes the classification of pre-neoplastic cervical lesions based on
features extracted from nuclei. The main contributions of this work can be summarized as:

• investigation of handcrafted and biological features of nuclei images;
• proposal and analysis of a hierarchical classification with Random Forest to perform

state-of-the-art cell nuclei classification;
• decision aid resource to decrease professionals’ workload and increase the Pap smear

result’s reliability;
• comparison of oversampling techniques to balance data;
• introduction of the segmentation cervix collection of the CRIC Searchable Image database;
• statistical comparison of different hierarchical classifiers.

The outline of the paper is as follows. Section 2 exhibits the materials and meth-
ods considered. Section 3 displays the computational experiments and their results and
discussion. Finally, Section 4 presents the conclusions of this work.

2. Materials and Methods

This section presents the materials and methods considered. Section 2.1 presents the
cervical cell databases, Herlev and CRIC, used for lesion classification. Section 2.2 exhibits
how the features were extracted and analyzes the correlation between the handcrafted and
biological nuclei features. Section 2.3 presents the classification groups of each database
used in the experiments. Section 2.4 shows the oversampling techniques analyzed in the
experiments. Section 2.5 points out the classifier methods used. Finally, Section 2.6 shows
the hierarchical classification structure proposed for nuclei classification.

2.1. Database

This work deals with two databases of cervical cells: (i) Herlev, well known and used
in the literature, and (ii) CRIC, a new database with nucleus and cell segmentation results
in smear images.

The Herlev database [13] (http://mde-lab.aegean.gr/index.php/downloads (accessed
on 24 January 2021)) is collected at the Department of Pathology of Herlev University Hos-
pital and the Department of Automation at the Technical University of Denmark. It consists
of 917 single cervical cell images, divided into seven classes: superficial squamous epithe-
lial; intermediate squamous epithelial; columnar epithelial; mild, moderate, and severe
squamous non-keratinizing dysplasia; and squamous cell carcinoma in situ intermediate.
All images also have a label of their regions, nuclei, and cytoplasm. Figure 1 shows a
Herlev example image (a) and its label (b).

http://mde-lab.aegean.gr/index.php/downloads
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(a) Cell image (b) Label image

Figure 1. Image example of the Herlev database.

The CRIC Searchable Image Database (https://database.cric.com.br/ (accessed on
24 March 2021)) comprises cervical cell images and it is being developed by the Center for
Recognition and Inspection of Cells (CRIC) and aims to support the Pap smear analysis.
It covers cervical cells of conventional cytology, based on the standardized and most-used
worldwide nomenclature in the diagnosis area, the Bethesda System nomenclature.

Currently, the CRIC database is divided into two collections: one containing only the
marking of the cell’s center (classification) and another containing the segmentation of the
cell’s nucleus and cytoplasm. In both cases, each cell also has its classification. Only the
segmentation collection will be used in this work since the nucleus region’s delimitation
will be important for the methodology used. There are 400 images obtained from Pap
smears, with 3233 segmentations. Figure 2 presents an example of a segmentation image.

Figure 2. Segmentation example image of CRIC Searchable Image Database.

Table 1 shows each database division, indicating the nuclei’s categories and classifica-
tions. The number of nuclei in each class is also shown.

In 1941, George N. Papanicolaou created the first classification system for normal
and abnormal cells (class I, II, III, IV, and V). The second system was created by James
Reagan in 1953, separating the abnormal cells into mild, moderate, severe dysplasias,
and carcinoma in situ. In 1967, Ralph Richart proposed the division into CIN I, CIN II,
and CIN III (Cervical Intraepithelial Neoplasia). To standardize the terminologies, in 1988,
the ”Bethesda System” was developed and approved by the National Cancer Institute in the
USA; the system underwent reviews in 1991, 2001, and 2014. With this new nomenclature
system, the current terms for the classification of abnormal squamous cells are ASC-US,
LSIL, ASC-H, HSIL, SC [33,34].

Herlev’s database uses the second classification system developed in 1953, while the
CRIC base uses the most current classification system, the Bethesda System. In this sense,
comparing the terminologies, mild dysplasia corresponds to LSIL, and moderate, severe
dysplasia and carcinoma in situ corresponds to HSIL. Therefore, Herlev does not include
the classifications of classes ASC-US, ASC-H, and SC used in the laboratory routine today.

Our proposal uses information from the segmented nucleus to perform the classifica-
tion of cells.

https://database.cric.com.br/
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Table 1. Database division.

Database Category Classification Quantity

Herlev

Normal
Superficial squamous epithelial 74

Intermediate squamous epithelial 70

Columnar epithelial 98

Abnormal

Mild squamous non-keratinizing dysplasia 182

Moderate squamous non-keratinizing dysplasia 146

Severe squamous non-keratinizing dysplasia 197

Squamous cell carcinoma in situ intermediate 150

CRIC

Normal Negative for intraepithelial lesion or malignancy (NILM) 862

Abnormal

Atypical squamous cells of undetermined significance (ASC-US) 286

Low-grade squamous intraepithelial lesion (LSIL) 598

Atypical squamous cells cannot exclude HSIL (ASC-H) 536

High-grade squamous intraepithelial lesion (HSIL) 874

Squamous carcinoma (SC) 77

2.2. Biological versus Computational Features

As mentioned before, during the screening examination in a cytology laboratory,
the cytopathologist manually analyzes optical images of cervical cells. Visual analysis is
related to human interpretation of cervical smears, and even with many detailed procedures
and routines, it is susceptible to errors of interpretation.

During the analysis, the cytopathologist assesses the variation in the smear cells’
cytomorphological features. Some examples of this variation are the increase in the nu-
cleus/cytoplasm ratio, the nuclear membrane irregularity, the nucleus hyperchromasia,
and the chromatin granularity. All of them provide guidance on reporting of cytologic
findings in cervical cytology in agreement with the Bethesda System [4,34].

Errors related to diagnostic interpretation happen when the cytopathologist either
recognizes altered cells, but wrongly classifies them, or does not recognize them at all. Both
situations may be attributed to the lack of experience of the professional, variation in the
appearance of cytomorphological features, or workload, which affects the subjectivity of
the process [35–37].

Our proposal extracts and evaluates morphological and texture characteristics related
to the cell nucleus, correlated to the Bethesda System’s visual interpretation. The computa-
tional results can guide the cell classification systems and assist the lesion diagnosis and
interpretation, diminishing error results.

The methodology starts with a feature extraction of each nucleus segmented in the
database. The following algorithms were employed: Region Props, Haralick’s features,
Local Binary Patterns (LBP), Threshold Adjacency Statistics (TAS), Zernike moments,
and Gray Level Co-occurrence Matrix (GLCM). All were implemented in Python, in which
Region Props and GLCM are from the scikit-image package [38], and the others are from
the Mahotas package [39]. Unlike Di Ruberto et al. [32], we also include morphological
and other texture features.

First, Region Props [40–43] was used to extract the values of the morphological features
of nuclei, such as (a) circularity; (b) minimum, mean, and maximum intensities; (c) area;
(d) bounding box, filled, and convex hull image areas; (e) perimeter; (f) Euler number;
(g) extent; (h) minor and major axis; (i) eccentricity; and (j) solidity.

Next, Haralick’s texture features [44] were extracted. These features are: (a) angular
second moment; (b) contrast; (c) correlation; (d) variance; (e) inverse difference moment;
(f) sum average; (g) sum entropy; (h) entropy; (i) difference variance; (j) difference entropy;
(k) measure of correlation 1; (l) measure of correlation 2.
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The Local Binary Patterns (LBP) [45], a set of texture features, were also extracted.
The advantage of these features is that they are insensitive to orientation and lighting.

The Threshold Adjancency Statistics (TAS) [46] features were also considered in the
classification. They are used to differentiate images of distinct subcellular localization
quickly and with high accuracy.

The Zernike moment [47] features were extracted and considered in the proposed
methodology because they measure how the mass is distributed in the region. Finally,
the Gray Level Co-occurrence Matrices [44] are texture features extracted that consider the
pixels’ spatial relation.

Figure 3 shows a sample image for each type of lesion present in the CRIC database,
and Table 2 presents some feature values extracted from the images in Figure 3. These
features are area, eccentricity (eccent.), circularity (circ.), maximum intensity (max. int.),
and contrast.

Figure 3. Types of CRIC lesions: (a) Normal (b) ASC-US (c) LSIL (d) ASC-H (e) HSIL (f) SC.

Table 2. Feature values extracted from images in Figure 3.

Lesion b Eccent. Circ. Max. int. Contrast

Normal (Figure 3a) 516 0.497 0.824 0.439 0.040
ASC-US (Figure 3b) 2719 0.422 0.871 0.723 0.087

LSIL (Figure 3d) 8228 0.708 0.811 0.799 0.072
ASC-H (Figure 3c) 2248 0.627 0.789 0.885 0.061
HSIL (Figure 3e) 1539 0.715 0.854 0.531 0.122

SC (Figure 3f) 823 0.952 0.462 0.354 0.075

We extracted features inspired by the ones that a cytopathologist would use to perform
the classification, manually. Morphological features such as area, perimeter, extent, and ec-
centricity are important because they are related to the nuclear size, which characterizes
one of the fundamental biological criteria for differentiating abnormal cells from normal
ones. For example, ASC-US interpretation requires that the cells in question demonstrate
nuclei approximately 2.5 to 3 times the area of the nucleus of a normal intermediate squa-
mous cell (approximately 35 µm2) or twice the size of a squamous metaplastic cell nucleus
(approximately 50 µm2). The cells interpreted as ASC-H are the size of metaplastic cells
with nuclei that are up 2.5 times larger than normal. Nuclear enlargement more than
three times the area of normal intermediate nuclei characterizes LSIL. HSIL often contains
relatively small basal-type cells with nuclear augmentation. The characteristic cells of
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carcinoma (SC) vary markedly in the area but usually show karyomegaly. Table 2 shows
that the area feature has a behavior as observed by cytopathologists, in which the normal
cell has the smallest area value and there is an increase in the value according to its lesion.

Another biologically relevant feature is the nuclear membrane shape, as abnormal
cells have different degrees of irregularity. ASC-US shows minimal variation in the nuclear
shape, while LSIL presents a contour of nuclear membrane ranging from smooth to very ir-
regular with notches. ASC-H and HSIL show irregular nuclear contour, with anisokaryosis
of HSIL being more pronounced. Carcinoma cells may show very marked nuclear pleomor-
phism (bizarre forms). As a whole, abnormal cells may have multinucleation, or variations
in the circular shape of a normal cell’s nucleus. This work considered morphological
features related to these characteristics (nuclear contour and multinucleation), such as
circularity, eccentricity, and minor and major axis. Table 2 shows eccentricity and circularity
values that provide examples of features used in this work to measure the nuclear mem-
brane’s shape as they would typically be analyzed by cytopathologists. The eccentricity
measures the nuclei irregularity, while the circularity value represents how circular the
nuclei are. Analyzing the images in Figure 3, the less circular nucleus is the SC, and it has
the smallest value for the feature (0.462). Simultaneously, the most irregular nucleus is also
the SC, and it has the biggest eccentricity value (0.952).

Nuclear hyperchromasia and irregular chromatin distribution are essential biological
characteristics for categorizing cells as abnormal. These characteristics also assist in differ-
entiation among ASC-US, LSIL, ASC-H, and HSIL. Moreover, the morphological features
directly related to these characteristics are minimum, mean, and maximum intensities,
solidity, contrast, mass distribution in the region (Zernike moments), and a set of texture
features such as Local Binary Patterns, Haralick features, and Gray Level Co-occurrence
Matrices. Table 2 shows the maximum intensity and the contrast (Haralick feature) val-
ues. With attributes of intensity (minimum, maximum, and medium) and texture, it is
possible to estimate the chromatin distribution analyzed by the cytopathologist in the
manual analysis.

A total of 232 attributes of the cervical cell nuclei were extracted and considered in
this work. A quick analysis of the attribute selection indicated that all attributes used
brought benefits to the classification task; thus, all of them were used in our proposal for
the nuclei classification.

2.3. Classification Groups

As shown in Table 1, the database images can be classified according to their category
(normal/abnormal) or their classification (7 classes in Herlev and 6 classes in CRIC).

Based on cytopathologists’ analysis of Herlev’s data, this work proposes a classification
of the data into five classes for abnormal cells. Note that once a cell is classified as normal,
it is not necessary to further distinguish its particular type. Thus, the classes superficial
squamous epithelial, intermediate squamous epithelial, and columnar epithelia can be
grouped as normal cells. Figure 4 shows the possible classification groups for the Herlev
database. Figure 4a presents the 2-class group, Figure 4b the 5-class group, and Figure 4c
the 7-class group.

Concerning CRIC, another possible classification task is grouping images into three
classes: normal, low-grade lesion (ASC-US, and LSIL), and high-grade lesion (ASC-H,
HSIL, and SC) cells. This classification is feasible due to their common disease follow-up.
Women diagnosed with low-grade cell changes should repeat the exam after a certain
period, according to her age, while the ones diagnosed with high-grade lesions should be
referred for colposcopy followed by a biopsy [48]. Figure 5 shows the CRIC classification
groups considered in this work’s computational experiments. Figure 5a exposes the 2-class
group, Figure 5b the 3-class group, and Figure 5c the 6-class group.
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Figure 4. Herlev classification groups: (a) 2-class (b) 5-class (c) 7-class.

Figure 5. CRIC classification groups: (a) 2-class (b) 3-class (c) 6-class.

2.4. Oversampling

In classification problems, a database is imbalanced when the difference between
the amount of data of classes is large [49]. Classification algorithms are often sensitive to
imbalance, which means that they tend to value classes with more data and ignore classes
with fewer data [50,51]. It is possible to observe in Table 1 that the databases considered in
this work are not balanced, so balancing techniques were analyzed.

The first used technique is the Synthetic Minority Oversampling Technique (SMOTE) [52],
which creates artificial sample data based on neighboring interpolation to oversample the
minority class. This technique considers the k-nearest neighbors for each sample xi of the
minority class and creates a synthetic sample xnew as follows:

xnew = xi + (x̂i − xi)× δ. (1)

In Equation (1), x̂i corresponds to a random value of the k neighbors of xi and δ is a
random number in the interval [0,1]. The new sample datum xnew is a point on the edge
that connects xi and x̂i.

Another technique was the Borderline-SMOTE [53]. The difference between the
Borderline-SMOTE and the original SMOTE is that the Borderline-SMOTE only oversam-
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ples the borderline examples of the minority class, while SMOTE oversamples through all
the examples from the minority class.

Finally, the third technique studied is SVM SMOTE. This technique differs from the
others because it uses the support vectors to generate a Support Vector Machine (SVM)
classifier to approximate the class boundaries.

All these three techniques were implemented in Python using the imbalanced-learn
package [54], and their results were compared according to accuracy.

2.5. Methods

We implemented eight classifiers to perform the nuclei classification. The classifiers
considered were: AdaBoost [55,56], Decision Tree (DT) [57], Gaussian Naive-Bayes(GNB),
k-Nearest Neighbors (k-NN) [58], Multi-Layer Perceptron (MLP) [59], Nearest Centroid
(NC) [60], Random Forest (RF) [61], and Ridge [62]. However, only the four best classifiers
are explicitly presented in this work.

2.5.1. Decision Tree (DT)

A Decision Tree [57] is a supervised method to perform classifications supported by
data descriptions based on tree-structural patterns. For the Decision Tree, the input and
the goal variables do not need a previous relationship. Moreover, it can handle data at
different scales [63].

2.5.2. k-NN

The k-NN [58] is a supervised learning method in which, when a new instance needs
to be classified, its distance to all neighbors is calculated and given the label of the nearest
k-neighbors. In this way, the generalization and the prediction are only made when a new
instance needs to be classified (lazy). The distance used in the method is the Euclidian
distance between points p and q, given by dp,q, calculated as follows:

dp,q =

√
n

∑
i=1

(pi − qi)2. (2)

In Equation (2), n represents the number of features.

2.5.3. Random Forest (RF)

The Random Forest [61] is an ensemble learning method that uses multiple decision
trees for decision making. In classification problems, the label defined by most decision
trees is the label given to the new instance.

2.5.4. Ridge

The Ridge [62] classifier converts the label data to solve the problem with a regression
method. In prediction, the highest value is accepted as a target class. For multiclass
classification, multi-output regression is applied.

2.6. Hierarchical Classification

Some classification problems present hierarchical relations between classes, indicating
that it is possible to divide the problem into sub-problems of less complexity that, when
combined, reach the classification expected by the whole problem. These problems are
known as hierarchical classification problems.

Here, we address a hierarchical classification problem because it can be reduced into a
normal and abnormal classification followed by deeper classifications to discover the nuclei
type. Figure 6 presents the hierarchical classification proposed in this work to classify
nuclei features. Figure 6a shows the hierarchical classification of Herlev nuclei, while
Figure 6b shows the hierarchical classification of CRIC nuclei.
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Figure 6. Hierarchical classification: (a) Herlev (b) CRIC.

Considering the Herlev data (Figure 6a), the data can be classified first (with classifier
1 in blue) between normal and abnormal and, subsequently, the lesion can be classified
(with classifier 2 in orange) into four other classes (mild squamous non-keratinizing dys-
plasia, moderate squamous non-keratinizing dysplasia, severe squamous non-keratinizing
dysplasia, and squamous cell carcinoma in situ intermediate), and the normal ones can
be classified (with classifier 3 in orange) into another three classes (superficial squamous
epithelial, intermediate squamous epithelial, columnar epithelial). Therefore, the 2-class
classification requires only classifier 1. In turn, the 5-class classification requires classifiers
1 and 2, while the 7-class classification requires the three classifiers.

Considering the CRIC database data (Figure 6b), the data can be classified (with
classifier 1 in blue) into normal and abnormal. The lesion can be classified (with classifier 2
in orange) into low-grade lesion and high-grade lesion, which are then classified (with clas-
sifiers 3 and 4 in purple) according to their lesion’s type. Thereby, the 2-class classification
applies classifier 1; the 3-class, classifiers 1 and 2; and the 6-class, the four classifiers.

3. Experiments and Results

This section discusses the experiments developed to evaluate the hierarchical classifica-
tion proposed. The experiments were performed on a computer with an Intel Core i7-8700
processor with a 3.20GHz processor, 16GB RAM, and a Windows 64-bit operating system.
The hierarchical classification proposed uses the programming language Python, ver-
sion 3.7.9. Codes are available at https://github.com/agcbianchi/AppliedScience-Feature.

Dhurandhar and Dobra [64] investigated cross-validation performance and presented
explanations concerning varying sample size, number of folds, and the correlation between
input and output attributes. They pointed out that 10- and 20-fold cross-validation worked
best for small datasets. Thus, our experiments applied the 10-fold cross-validation. All the
results correspond to the average of the 10-fold cross-validation.

https://github.com/agcbianchi/AppliedScience-Feature
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3.1. Performance Metrics

Initially, the number of true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN) was calculated. TP and TN are the numbers of positive and
negative classes correctly predicted, while FP and FN are the numbers of positive and
negative classes incorrectly predicted.

Table 3 shows the metrics used to measure performance of the hierarchical classifica-
tion proposed.

Table 3. Performance metrics.

Metric Equation Goal

Precision (Prec.) TP
TP+FP

Indicate, among the positive ratings,
the amount that is correct.

Recall (Rec.) TP
TP+FN

Indicates the correct detection of
abnormal nuclei.

F1-score (F1) 2 × precision×recall
precision+recall

Harmonic mean between precision
and recall.

Accuracy (Acc.) TP+TN
TP+FP+TN+FN

Evaluate the proportion of all the
correct tests (TP and TN), over all the

results obtained.

Specificity (Spec.) TN
TN+FP

Identifies if the method excludes
nuclei without lesions correctly.

3.2. Oversampling Results

Table 4 shows the performance results obtained using the balanced techniques and
without any oversampling applied to the CRIC data. The 6-class classification is the most
challenging; therefore, it was used in this experiment, aiming to provide greater differentia-
tion in the results. As can been seen in Table 4, any oversampling technique improves the
classification, but the best technique observed was the Borderline-SMOTE. For this reason,
the Borderline-SMOTE was used as the oversampling technique in the experiments carried
out. We only used this oversampling technique in the training data. The test set remained
unchanged, guaranteeing the classification results’ credibility. The balancing techniques
applied to the Herlev database performed similarly to the CRIC database, so these results
were not presented.

Table 4. Results for CRIC 6-class classification with/without oversampling.

Technique Prec. Rec. F1 Acc. Spec.

Without oversampling 0.58 0.53 0.53 0.90 0.94
SMOTE 0.79 0.80 0.79 0.93 0.96

Borderline-SMOTE 0.82 0.82 0.82 0.94 0.96
SVM SMOTE 0.82 0.80 0.81 0.93 0.96

Before balancing the data from the Herlev database with the Borderline-SMOTE
technique, there were in the training base: 67 superficial squamous epithelial data; 63
intermediate squamous epithelial data; 83 epithelial columnar data; 164 mild squamous
non-keratinizing dysplasia data; 132 moderate squamous non-keratinizing dysplasia data;
178 severe squamous non-keratinizing dysplasia data; and 135 squamous cell carcinoma
in situ intermediate data. The largest class size (severe squamous non-keratinizing dyspla-
sia with 178 data) was used as a reference size for balancing the data. Thus, after balancing,
each of the seven classes comprised 178 data. These results were used in the 2-class bal-
ancing to allow all classes to be represented within the groups. In the 2-class balancing,
we group the four abnormal classes, resulting in 712 (=4 × 178) abnormal cells, with data
equally distributed among the four classes. The group of normal classes resulted in 534
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(=3 × 178) data. Finally, we balanced the normal and abnormal groups so that they had
the same number of samples.

In the CRIC database, there were 776 NILM data, 258 ASC-US, 539 LSIL, 483 ASC-H,
787 HSIL, and 70 SC. Thus, analogous to Herlev data balancing, to balance the CRIC data,
we chose the reference size as 787, the most frequent class, HSIL. At the end of the balancing,
each of the six classes was left with the same number of data. The 6-class balancing was
also used for the 2- and 3-class balancing, aiming at the classes’ representativeness within
the groups. Thus, the abnormal group resulted in 3935 (=5 × 787) data, and the normal
one 787 (=1 × 787). We employed a new balancing such that the two groups (normal and
abnormal) were left with 3935 data. Finally, the high-grade lesion group resulted in 2361
(=3 × 787) data, and the low-grade group in 1574 (=2 × 787) data in the 3-class balancing.
These last two groups were again balanced, and finally, both comprised 2361 data.

3.3. Hierarchical Classification Results

Table 5 presents the results of precision, recall, F1, accuracy, and specificity for the
2-class, 5-class, and 7-class hierarchical classification of Herlev database nuclei images.
The 7-class classification without hierarchy allows us to analyze and determine if the
hierarchical classification improves the task. The best results are highlighted in bold.
It is possible to observe that the RF classifier performs better than k-NN, Ridge, and DT,
considering all metrics and number of classes. The results also reveal that the hierarchical
methodology improves the classification.

In turn, Table 6 shows the results of 2-class, 3-class, 6-class hierarchical classification,
and 6-class classification without a hierarchy of the CRIC database nuclei images. These
results are similar to those for Herlev: our findings show that the RF is the best classifier,
and the hierarchical methodology improves the classification. In RF, an ensemble learning
technique [61], multiple decision trees are combined in a committee, known as boosting [65],
whose final performance is better than the base classifiers. Each decision tree is trained
with different features and is responsible for predicting diverse data in the classifier. Thus,
the decision boundary becomes more stable and accurate with more trees. Simultaneously,
the unpruned and diverse trees result in a high resolution in the feature space and a
smoother decision boundary between the classes. These essential characteristics of RF,
combined with the nonlinearity correlation of features, contribute to the good classification
prediction [66].

Table 5. Herlev classification results.

Prec. Rec. F1 Acc. Spec.

7-class classification
without hierarchy

RF 0.8187 0.8172 0.8139 0.9476 0.9695
k-NN 0.7031 0.7092 0.6916 0.9168 0.9515
Ridge 0.7544 0.7490 0.7406 0.9282 0.9581

DT 0.7069 0.7012 0.6981 0.9145 0.9501

2-class hierarchical
classification

RF 0.9843 0.9841 0.9842 0.9842 0.9842
k-NN 0.9437 0.9426 0.9424 0.9424 0.9424
Ridge 0.9588 0.9574 0.9576 0.9576 0.9576

DT 0.9277 0.9265 0.9265 0.9266 0.9266

5-class hierarchical
classification

RF 0.8519 0.8494 0.8506 0.9567 0.9747
k-NN 0.7660 0.7679 0.7606 0.9331 0.9610
Ridge 0.8129 0.8079 0.8065 0.9446 0.9677

DT 0.7582 0.7543 0.7526 0.9292 0.9587

7-class hierarchical
classification

RF 0.8431 0.8400 0.8400 0.9543 0.9733
k-NN 0.7509 0.7507 0.7407 0.9287 0.9584
Ridge 0.8098 0.8021 0.7993 0.9434 0.9670

DT 0.7484 0.7436 0.7424 0.9267 0.9572
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Table 6. CRIC classification results.

Prec. Rec. F1 Acc. Spec.

6-class classification
without hierarchy

RF 0.8369 0.8348 0.8351 0.9450 0.9670
k-NN 0.6985 0.7018 0.6932 0.9006 0.9404
Ridge 0.7045 0.7096 0.7035 0.9032 0.9419

DT 0.7075 0.7027 0.7036 0.9009 0.9406

2-class hierarchical
classification

RF 0.9591 0.9585 0.9585 0.9585 0.9585
k-NN 0.8749 0.8736 0.8735 0.8736 0.8736
Ridge 0.9423 0.9407 0.9406 0.9407 0.9407

DT 0.9254 0.9240 0.9239 0.9240 0.9240

3-class hierarchical
classification

RF 0.9635 0.9633 0.9633 0.9686 0.9764
k-NN 0.9341 0.9329 0.9328 0.9424 0.9569
Ridge 0.9394 0.9391 0.9390 0.9478 0.9608

DT 0.9219 0.9216 0.9216 0.9328 0.9496

6-class hierarchical
classification

RF 0.9110 0.9091 0.9097 0.9697 0.9819
k-NN 0.8155 0.8126 0.8104 0.9375 0.9625
Ridge 0.8317 0.8333 0.8316 0.9444 0.9666

DT 0.8256 0.8255 0.8250 0.9418 0.9651

3.4. Statistical Analysis

The statistical analysis aims to verify whether there is a statistically significant differ-
ence between the implemented algorithms’ results.

Initially, we used the Shapiro–Wilk test [67] with a significance level of 0.05 to ver-
ify whether the normal distribution can approximate the probability distribution of the
classifiers’ results. It was found that the results obtained in all metrics do not follow a
normal distribution.

For this reason, the Kruskal–Wallis non-parametric test [68] was chosen to determine
whether the results obtained suggest that the samples are from different populations or are
just random variations among random samples from the same population.

Thus, the best classifier found in the experiments, the RF, was compared pair-wise
with the other classifiers using the non-parametric Kruskal–Wallis test with a significance
level of 0.05 to check if there was a statistical difference between RF and the other classifiers
concerning all performance metrics.

Table 7 shows the p-value results obtained in the Kruskal–Wallis test when comparing
the RF results with those of k-NN, Ridge, and DT for 2-class, 3-class, and 7-class hierarchi-
cal classification, and 7-class classification without hierarchy using the Herlev database.
The results highlighted in bold have the same distribution as the RF results (p-value > 0.05).
Table 7 reveals that in 7-class hierarchical classification, the Ridge results of accuracy and
specificity have the same distribution of the RF results.

In turn, Table 8 presents the p-value results obtained in the Kruskal–Wallis test when
comparing the RF results with those of k-NN, Ridge, and DT for 2-class, 3-class, and 6-
class hierarchical classification and 6-class classification without hierarchy using the CRIC
database. As no p-value was higher than 0.05, it can be concluded that the RF statisti-
cally outperformed all other classifiers that classified the data from the CRIC database,
considering all metrics.
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Table 7. p-value results of the Kruskal–Wallis test in the Herlev classification.

Prec. Rec. F1 Acc. Spec.

7-class classification
without hierarchy

k-NN 0.001 0 0 0 0
Ridge 0 0 0 0 0

DT 0 0 0 0 0

2-class hierarchical
classification

k-NN 0.005 0.005 0.005 0.005 0.005
Ridge 0.017 0.017 0.026 0.015 0.015

DT 0 0 0 0 0

5-class hierarchical
classification

k-NN 0.001 0 0 0.001 0.001
Ridge 0.048 0.040 0.049 0.049 0.037

DT 0 0 0 0 0

7-class hierarchical
classification

k-NN 0.001 0.001 0.001 0.001 0.001
Ridge 0.049 0.048 0.049 0.063 0.063

DT 0.001 0.001 0.001 0.001 0.001

Table 8. p-value results of the Kruskal–Wallis test in the CRIC classification.

Prec. Rec. F1 Acc. Spec.

6-class classification
without hierarchy

k-NN 0 0 0 0 0
Ridge 0 0 0 0 0

DT 0 0 0 0 0

2-class hierarchical
classification

k-NN 0 0 0 0 0
Ridge 0.025 0.023 0.025 0.025 0.025

DT 0.005 0.005 0.005 0.005 0.005

3-class hierarchical
classification

k-NN 0 0 0 0 0
Ridge 0 0 0 0 0

DT 0 0 0 0 0

6-class hierarchical
classification

k-NN 0 0 0 0 0
Ridge 0 0 0 0 0

DT 0 0 0 0 0

3.5. Comparison with Literature

Table 9 presents the precision, recall, F1, accuracy, and specificity values obtained by
the best method found in these experiments, the RF hierarchical classification, and other
literature methods. Blank fields indicate that the literature methods did not report the
respective metrics results. The best result of each metric is highlighted in bold. As can be
seen in Table 9, the proposed RF hierarchical classifier obtained the best values of precision
and F1, as well as achieving high recall, accuracy, and specificity when compared to the
other methods in 2-class classification. In the 5-class and 7-class classification, the proposed
RF hierarchical classifier obtained the best values of all metrics considered.
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Table 9. Comparison of the Herlev results with literature methods.

Classes Method Prec. Rec. F1 Acc. Spec.

2

RF hierarchical 0.9843 0.9841 0.9842 0.9842 0.9842

CNN-ELM [17] 0.9950

Ensemble [21] 0.9787 0.9783 0.9935

GoogLeNet [18] 0.9450

GoogLeNet [22] 0.9617

Ensemble [24] 0.9688 0.9896 0.9313 0.9651 0.8967

Bayesian [24] 0.9063 0.9778 0.7250 0.8798 0.6042

SVM [24] 0.9375 0.9793 0.9052 0.9520 0.8750

k-NN [24] 0.8136 0.8049 0.9000 0.8939 0.8182

5 RF hierarchical 0.8519 0.8494 0.8506 0.9567 0.9747

Resnet-101 [23] 0.7450

7

RF hierarchical 0.8431 0.8400 0.8400 0.9543 0.9733

CNN-ELM [17] 0.9120

Ensemble [21] 0.7743 0.8154 0.9057

GoogLeNet [18] 0.6450

4. Conclusions

This work proposes a hierarchical classification methodology to classify nuclei of Pap
smear images using handcrafted features. As mentioned before, in the cytopathologist’s
routine, image analysis is entirely manual and subjective, a tiring and monotonous task.
The proposal performs a computational screening procedure capable of excluding irrelevant
nuclei images to identify possible lesions and reduce the number of images analyzed
visually by the cytopathologist. The reduction of the professional workload helps to focus
attention on the analysis of relevant images, decreasing false-negative rates.

The experiment indicates that hierarchical classification improves the results when
compared with those without hierarchy. Considering the Herlev database, the results
outperform the literature methods for 5-class and 7-class classification concerning the
precision, recall, F1, accuracy, and specificity metrics. For the 2-class classification, our RF
hierarchical method achieves the best results for two of the five metrics and had competitive
results in the other metrics. Analyzing the metrics in which our method does not present
the best result, we realize that the best result comes from a different method from the
literature. However, even the best result for the specific metric performs poorly in all other
metrics when compared to our method.

Additionally, this work introduces the CRIC segmentation cervix collection and
presents 2-class, 3-class, and 6-class classification results considering precision, recall,
F1, accuracy, and specificity metrics.

The present findings of cell nuclei classification suggest enhancing our understanding
of the handcrafted features used in the machine learning algorithm. The hypothesis that
features should be inspired in the biological criteria for differentiating abnormal cells from
normal ones proved to be a feasible solution. The feature vector included a combination
of nuclear contour shape morphologies with chromatin distribution (texture), and all
attributes were used in the classification task.

We tested eight machine learning traditional classifier methods to perform the nuclei
classification and chose the four best ones (Decision Tree, k-NN, Random Forest, and Ridge)
to report their results in this work concerning the hierarchical classification proposed.
A statistical analysis shows that the Random Forest is the best one to classify nuclei images
of the Herlev and CRIC databases regardless of the number of classes.
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