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Abstract

Herein, we have analyzed major biological properties following dual-clone Trypanosoma cruzi infections in BALB/c mice. Eight T.
cruzi clonal stocks, two of each principal genotype, including genotype 19 and 20 (T. cruzi I), hybrid genotype 39 (T. cruzi) and 32 (T.
cruzi II) were combined into 24 diVerent dual-clone infections. Special attention was given to characterize biological parameters assayed
including: prepatent period, patent period, maximum of parasitemia, day of maximum parasitemia, area under the parasitemia curve,
infectivity, mortality, and hemoculture positivity. Our Wndings clearly demonstrated that features resultant of dual-clone infections of T.
cruzi clonal stocks did not display either the characteristics of the corresponding monoclonal infections or the theoretical mixture based
on the respective monoclonal infections. SigniWcant changes in the expected values were observed in 4.2–79.2% of the mixtures consider-
ing the eight biological parameters studied. A lower frequency of signiWcant diVerences was found for mixtures composed by phylogenet-
ically distant clonal stocks. Altogether, our data support our hypothesis that mixed T. cruzi infections have a great impact on the
biological properties of the parasite in the host and re-emphasizes the importance of considering the possible occurrence of natural mixed
infections in humans and their consequences on the biological aspects of ongoing Chagas’ disease.
© 2005 Elsevier Inc. All rights reserved.

Index Descriptors and Abbreviations: Trypanosoma cruzi; Dual-clone infection; Clonal genotypes; Biological properties; PPP, prepatent period; PP, patent
period; MP, maximum parasitemia; DMP, day of maximum parasitemia; PAR, area under the parasitemia curve; INF, infectivity; MORT, mortality;
+HEM, hemoculture positivity; MW, Mann–Whitney test; KS, Kolmogorov–Smirnov test; �2, chi-square test; SD, number of signiWcant diVerences; S, sig-
niWcant diVerence at P < 0.05; NS, nonsigniWcant diVerence at P > 0.05; NR, not recorded due to subpatent parasitemia; I, increased parasitemia; D,
decreased parasitemia; n, numbers of animals
1. Introduction

Trypanosoma cruzi, the etiological agent of Chagas’ dis-
ease, is a protozoan parasite that displays extremely hetero-
geneous biological properties (Andrade, 1976; Toledo et al.,
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2002), including growth kinetics in cellular and acellular
cultures (Dvorak et al., 1980; Laurent et al., 1997; Revollo
et al., 1998), tissue tropism (Diego et al., 1998; Melo and
Brener, 1978), pathogenicity (Andrade and Magalhães,
1997), ability to multiply and diVerentiate in the insect vec-
tors (Garcia and Dvorack, 1982; Lana et al., 1998), and sus-
ceptibility to chemotherapy (Andrade et al., 1992; Revollo
et al., 1998; Toledo et al., 2003; reviewed by Toledo et al.,
2004). Recently, its has been considered that the diverse
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spectrum of clinical manifestations of chronic Chagas’ dis-
ease (Dias, 1992; Rassi and Luquetti, 1992) may be due, at
least in part, to genetic diversity of the infecting parasites
(reviewed by Macedo et al., 2004).

Tibayrenc and Ayala (1988) have demonstrated that T.
cruzi organisms undergo predominantly clonal evolution,
which should render the parasite genotype relatively stable
in space and time. Using this hypothesis, they have identi-
Wed 43 distinct T. cruzi genotypes with some of them named
“principal genotypes” including genotypes 19, 20, 39, and
32, which are ubiquitous and very well studied (Tibayrenc
and Brenière, 1988). The working hypothesis underlying the
T. cruzi clonal theory is that the variation of biological and
medical properties of this parasite is proportional to their
phylogenetic divergence. Recently, several authors have
corroborated this hypothesis when working with this set of
clonal genotypes (Lana et al., 1998; Laurent et al., 1997;
Revollo et al., 1998; Toledo et al., 2002, 2003).

The coexistence of mixed infections in vertebrate and
invertebrate hosts had already been demonstrated in both
experimental (Deane et al., 1984; Lana et al., 2000; Pinto
et al., 1998, 2000) and natural situations (Brenière et al.,
1985; Tibayrenc et al., 1985) and this certainly plays an
important role in the determining the clinical picture of the
disease. Therefore, the principal goal of the present investi-
gation was to analyze the impact of dual-clone T. cruzi
infections in BALB/c mice. For this purpose, we have ana-
lyzed the biological properties of 24 distinct combinations
of T. cruzi clonal stocks (19, 20, 39, and 32) compared with
both the correspondent monoclonal infections and the pre-
dicted theoretical patterns of dual-clone infections.

2. Materials and methods

2.1. Parasites

We have included for monoclonal and dual-clone infec-
tions eight standard T. cruzi clonal stock representatives of
the four major clonal genotypes (Tibayrenc, 1998): 19
(Gamba cl1 and OPS21 cl1) and 20 (Cuica cl1 and P209
cl1) both from T. cruzi I; the hybrid genotype 39 (Bug2148
cl1 and SO3 cl5) and the genotype 32 (IVV cl4 and MAS
cl1) from T. cruzi II. These stocks were previously typed
with 22 enzyme loci and RAPD (Tibayrenc et al., 1993) and
were chosen based on their biological properties (more and
less virulent) previously observed in BALB/c mice (Toledo
et al., 2002).

2.2. Experimental infections

For monoclonal infections, groups of six female BALB/c
mice, 28–30 days old, were intraperitoneally inoculated
with 10,000 blood trypomastigotes of a given T. cruzi clonal
stock. Dual-clone infection was also carried out using
groups of six female BALB/c mice, 28–30 days old, intra-
peritoneally inoculated with two diVerent clones, using
5000 blood trypomastigotes of each clone. The inocula
were counted according to Brener (1962). Twenty-four
diVerent parasite combinations were analyzed (Table 1).

2.3. Parameters evaluated

Eight biological parameters were considered and
included: prepatent period (PPP), patent period (PP), maxi-
mum parasitemia (MP), day of maximum parasitemia
(DMP), area under the parasitemia curve (PAR), infectivity
(INF), mortality (MORT), and hemoculture positivity
(+HEM). The reproducibility of the diVerent parameters
for monoclonal infections was previously assayed in similar
experiments with 5000 and 10,000 parasites.

Parasitemia was daily examined according to Brener
(1962), starting at day 4 after inoculation. PPP and DMP
for animals with subpatent parasitemia were not recorded.
Infectivity (INF) was evaluated by fresh blood examination
and/or hemoculture during the Wrst month of infection and
expressed as percentage of infected animals. Animals with
negative results were eliminated from further analyses.
Mortality (MORT) was expressed in cumulative percentage
observed during 90 days following infection. Hemoculture
was carried out according to the Filardi and Brener (1987),
60 days after inoculation and expressed in percentage of
positive hemoculture for each group of animals.

2.4. Statistical analysis

The null hypothesis tested here was that “there was no
interference by one clone on the major biological properties
of the other one included in the mixture.” The data analysis
Table 1
Combinations of representative clones of genotypes 19, 20, 39, and 32 of T. cruzi used in BALB/c mice dual-clone infections

a + virulent, clone more virulent; ¡ virulent, clone less virulent. These clones were chosen among 20 representative clones of the four major clonal geno-
types.

Mixture of genotypes Mixture of clonesa

+ Virulent + Virulent ¡ Virulent ¡ Virulent + Virulent ¡ Virulent ¡ Virulent + Virulent

19 + 20 Gamba cl1 + P209 cl1 OPS21 cl11 + Cuica cl1 Gamba cl1 + Cuica cl1 OPS21 cl11 + P209 cl1
19 + 39 Gamba cl1 + Bug2148 cl1 OPS21 cl11 + SO3 cl5 Gamba cl1 + SO3 cl5 OPS21 cl11 + Bug2148 cl1
19 + 32 Gamba cl1 + IVV cl4 OPS21 cl11 + MAS cl1 Gamba cl1 + MAS cl1 OPS21 cl11 + IVV cl4
20 + 32 P209 cl1 + IVV cl4 Cuica cl1 + MAS cl1 P209 cl1 + MAS cl1 Cuica cl1 + IVV cl4
20 + 39 P209 cl1 + Bug2148 cl1 Cuica cl1 + SO3 cl5 P209 cl1 + SO3 cl5 Cuica cl1 + Bug2148 cl1
39 + 32 Bug2148 cl1 + IVV cl4 SO3 cl5 + MAS cl1 Bug2148 cl1 + MAS SO3 cl5 + IVV cl4 cl1
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was performed comparing the observed or experimental
values with the expected or theoretical values based on
their respective monoclonal infections.

Previous experiments of monoclonal infections showed
that PPP, PP, INF, and MORT were similar for infections
with inocula of 5000 and 10,000 parasites; MP and PAR
were proportional to the inoculum. According to these
results, the expected values for dual-clone infections were
predicted for all biological parameters as follows: (a) the
PPP was that observed for the clone with lower PPP; (b) the
PP was derived from the clone with longer PP; (c1) the DMP
was that for the more virulent clone, if they displayed dis-
tinct parasitemia at monoclonal infection; (c2) the DMP of
the clone with earlier DMP if they displayed distinct DMP
at monoclonal infection but shared similar parasitemia;
(c3) the mean value of the DMP if they share similar DMP
and parasitemia; (d) the mean MP was calculated from par-
asitemia of respective monoclonal infections detected in the
DMP for theoretical mixture; (e) the mean PAR was calcu-
lated from respective PAR of monoclonal infections; and
(f) INF, MORT, and +HEM were obtained from the clone
with the greater values or the additive eVect (sum) of the
values from the monoclonal infection.

Student’s t test was used to compare the expected and
observed results of biological parameters for dual-clone
infections. One-way variance analysis (ANOVA) or Mann–
Whitney U tests were used to compare PPP, PP, MP, and
DMP between monoclonal and expected and observed
dual-clone infections as appropriate for parametric and
nonparametric data, respectively. The Kolmogorov–Smir-
nov test was used to compare PAR between monoclonal,
theoretical, and observed dual-clone infections. For data
expressed in percentage (INF, MORT, and +HEM), the
chi-square (�2) test was employed (Snedecor and Cochran,
1989). A correlation matrix between genetic distances
(Jaccard’s Index—Jaccard, 1908) and biological diVerences
identiWed between theoretical and experimental dual-clone
infections was elaborated using Statview software (SAS
Institute, USA). To determine if a correlation coeYcient
statistically diVered from zero, Fisher’s transformation
method from r to z was used. This test was also used to esti-
mate the correlation among all biological parameters under
study.

Statistically signiWcant diVerences (S) were considered at
P < 0.05.

3. Results

The overall statistical analysis of the 24 combinations of
infections with mixtures of T. cruzi clones showed scare sig-
niWcant diVerences in INF, MORT, and +HEM parameters
when compared with expected values (Fig. 1). At the con-
trary, the other parameters that deWne the proWle of the para-
sitemia were frequently diVerent from the expected ones. The
parameter PAR displayed the highest frequency of signiW-
cant diVerences between expected and observed proWles. A
decrease (D) in parasitemia was observed in 45.8% of dual-
clone infection in comparison to the expected proWles. On the
other hand, increased parasitemia (I) was observed in 37.5%
of dual-clone infections (Table 2). Examples of increased
(Figs. 2A and B), decreased (Figs. 3A and B), and nonsigniW-
cant diVerences (Figs. 4A and B) for PAR between expected
and observed values are shown in representative graphs. A
complete and reciprocal inhibition of one clone over another
was observed for the dual-clone infection with OPS21
cl11+ SO3 cl5 (Fig. 3B). In this case, parasites could not be
recovered by hemoculture as described by Filardi and Brener
(1987) and the persistence of the infection could only be con-
Wrmed after repeated fresh blood examination (up to six sam-
ples of 5�l of blood). Indeed, for the mixture OPS21
cl11+ SO3 cl5, the PPP and DPM could not be recorded
(NR) and the expected data (PPPD10.0§3.2 and
DPMD31.2§8.0) are very diVerent from the observed. Simi-
lar results were also observed for the dual-clone infection
with SO3 cl5+ MAS cl11 (expected values: PPPD8.9§1.4
and DPMD15.4§4.6).

We could not identify a very clear association between
increase or decrease in parasitemia and speciWc T. cruzi
genotype combinations. The Fisher’s test showed no
correlation between genetic distances between each clone
(Jaccard’s Index) and the diVerences between the expected
and observed values for all parameters assayed, except for
PAR where a negative weak correlation (rD¡0.454) was
observed.

NonsigniWcant diVerences were observed for INF and
MORT between the expected and observed values for dual-
clone infections (Table 3, Fig. 1). Regarding the MORT, we
only detected an increase from 15.4 to 40%, observed for
the combination OPS21 cl11 + P209 cl1 and a decrease in
the majority of the mixtures involving P209 cl1 + genotype
39 or P209 cl1 + genotype 32. However, these diVerences
were not signiWcant due to the small number of animals
used for each group.

Decreased +HEM was observed for the mixture OPS21
cl11 + SO3 cl5 (P < 0.05) when compared with the monoclo-
nal and theoretical dual-clone infections. For the other four
mixtures (OPS21 cl11 + IVV cl4, Gamba cl1 + MAS cl1,
IVV cl4 + Bug2148 cl1, and IVVcl4 + SO3 cl5), slight but
nonsigniWcant decreases on +HEM were observed.

Fig. 1. Percentage of signiWcant diVerences between the expected and
observed data of T. cruzi dual-clone infections in BALB/c mice.
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We only observed two positive correlation (r statistically
diVerent from zero) among the biological parameters,
PAR£PM (rD0.979) and DPM£+HEM (rD 0.446).

Taken together, our Wndings demonstrated signiWcant
diVerences in 4.2–79.2% of the mixtures depending of
parameter assayed (4.2% for +HEM, 45.83% for PPP,
62.5% for PP, 66.6% for MP, and 54.1% for DMP). When
all parameters were considered together, 11 signiWcant
diVerences were detected for the genotype combination
(19 + 20), 18 for (19 + 39), 11 for (19 + 32), 11 for (20 + 39), 7
for (20 + 32), and 15 for (39 + 32) between the expected and
observed values for the dual-clone infections (Fig. 5).

4. Discussion

The natural populations of T. cruzi species display a
high genetic polymorphism, demonstrated by diVerent
molecular markers including isoenzymes (Miles et al., 1977;
Tibayrenc and Ayala, 1988), RAPD (Steindel et al., 1993;
Tibayrenc et al., 1993), RFLP of the kDNA (Morel et al.,
1980), minisatellites (Macedo et al., 1992), microsatellites
(Oliveira et al., 1997), and polymorphism of rRNA genes
and mini-exons (Souto et al., 1996).

Tibayrenc and Ayala (1988) have suggested that this
polymorphism is a consequence of long-term clonal evolu-
tion with occasional genetic exchange. The cumulative evo-
lutionary divergence among T. cruzi clones involves genes
that regulate important parasite properties relating to viru-
lence, pathogenicity, and Chagas’ disease morbidity and
epidemiology. In this context, a link between genetic diver-
gence and biological features among T. cruzi natural clones
may be predicted. This hypothesis has been supported by
several investigations demonstrating a strong linkage
between genetic distances and biological properties of T.
cruzi clonal stocks. These studies have been focused mainly
on data generated from cellular and acellular in vitro cul-
tures (Laurent et al., 1997; Revollo et al., 1998), behavior in
vectors (Lana et al., 1998), biological features in mice
(Diego et al., 1998; Laurent et al., 1997; Toledo et al., 2002)
as well as susceptibility to benznidazole, nifurtimox, and
itraconazole “in vitro” (Revollo et al., 1998) and “in vivo”
(Toledo et al., 2003, 2004).
Table 2
Parasitemic parameters obtained from monoclonal and dual-clone infection in BALB/c mice with T. cruzi clonal stocks from diVerent genotypesa

S, signiWcant diVerence at P < 0.05 in comparison to theoretical results; NS, nonsigniWcant diVerence at P > 0.05; NR, not registered; I, increased parasite-
mia; D, decreased parasitemia; SD, number of signiWcant diVerences.

a Student’s t test was used to compare PPP, PP, MP, and DMP. Kolmogorov–Sminorv test was used to compare PAR.

Genotypes Clones PPP (days) PP (days) MP (£103) DMP (days) PAR (£103) SD

19 Gamba cl1 19.4 § 6.37 54.4 § 11.68 31.4 § 18.80 52.8 § 15.30
19 OPS21 cl11 16.4 § 4.90 23.0 § 6.40 11.0 § 8.12 31.2 § 7.99
20 Cuica cl1 20.0 § 7.07 11.2 § 12,50 9.8 § .6.34 24.00§ 5,92
20 P209 cl1 9.6 § 3.97 58.1 § 15.15 73.9 § 52.71 26.4 § 7.96
39 BUG2148 cl1 7.2 § 1.40 4.1§ 1.63 7.8 § 2.48 8.6 § 1.65
39 SO3 cl5 10.0 § 3.16 1.5§ 2.26 4.4 § 3.58 12.0 § 4.40
32 IVV cl4 14.0 § 3.70 36.4 § 21.69 23.2 § 21.63 33.7 § 5.33
32 MAS cl1 8.9 § 1.37 11.3 § 3.20 17.0 § 6.53 15.4 § 4.59
19 + 20 Gamba cl1 + Cuica cl1 20.5 § 6. 04 (NS) 79.7 § 9.29 (S) 25.2 § 8.2 3 (NS) 52.2 § 14.37 (NS) I (S) 2
19 + 20 Gamba cl1 + P209 cl1 5.6 § 1.63 (NS) 60.6 § 6.90 (NS) 170.8 § 22.87 (S) 30.2 § 4.02 (NS) I (S) 2
19 + 20 OPS21 cl11 + Cuica cl1 10.9 § 2.64 (S) 56.0 § 6.91 (S) 35.0 § 14.39 (S) 38.1 § 8.1 3(S) I (S) 5
19 + 20 OPS21 cl11 + P209 cl1 11.1 § 3.08 (NS) 41.4 § 14.62 (NS) 17.5 § 5.59 (S) 36.4 § 10.83 (NS) D (S) 2
19 + 39 Gamba cl1 + Bug2148 cl1 11.8 § 2.64 (S) 68.2 § 4.32 (S) 56.0 § 19.49 (S) 42.0 § 7.78 (S) I (S) 5
19 + 39 Gamba cl1 + SO3 cl5 11.6 § 2.43 (NS) 88.7 § 4.32 (S) 22.0 § 5.32 (S) 47.0 § 17.34 (NS) (NS) 2
19 + 39 OPS21 cl11 + Bug2148 cl1 10.6 § 2.40 (S) 60.6 § 6. 48(S) 19.4 § 7.29 (S) 23.2 § 10.86 (S) I (S) 5
19 + 39 OPS21 cl11 + SO3 cl5 NR (S) 0.1§ 0.33 (S) 0.5 § 1.67 (S) NR (S) D (S) 5
19 + 32 Gamba cl1 + IVV cl4 6.6 § 2.45 (S) 56.5 § 9.81 (NS) 29.0 § 8.29 (NS) 52.3 § 4.32 (NS) D (S) 2
19 + 32 Gambá cl1 + MAS cl1 15.4 § 6.27 (S) 54.4 § 5.94 (NS) 30.0 § 24.24 (NS) 44.6 § 13.67 (NS) (NS) 1
19 + 32 OPS21 cl11 + IVV cl4 10.3 § 4.60 (NS) 1.8§ 2.39 (S) 3.8 § 2.17 (S) 11.7 § 5.5 0 (S) D (S) 4
19 + 32 OPS21 cl11 + MAS cl1 7.2 § 3.27 (NS) 1.3§ 1.03 (S) 4.2 § 2.04 (S) 8.2 § 3.27 (S) D (S) 4
20 + 39 Cuica cl1 + Bug2148 cl1 12.7 § 5.78 (S) 48.0 § 5.29 (S) 69.2 § 26.72 (S) 40.5 § 4.89 (S) I (S) 5
20 + 39 Cuíca cl1 + SO3 cl5 11.0 § 2.93 (S) 88.9 § 9.15 (S) 35.0 § 6.64 (S) 44.3 § 11.51 (S) I (S) 5
20 + 39 P209 cl1 + Bug2148 cl1 11.1 § 3.94 (S) 48.8 § 4.97 (NS) 38.6 § 17.74 (NS) 30.8 § 8.44 (NS) (NS) 1
20 + 39 P209 cl1 + SO3 cl5 10.2 § 1.98 (NS) 72.2 § 5.19 (NS) 41.8 § 20.64 (NS) 29.2 § 11.2 7(NS) (NS) 1
20 + 32 Cuica cl1 + IVV cl4 6.3 § 1.86 (S) 70.7 § 8.60 (NS) 20.8 § 6.64 (NS) 33.3 § 16.54 (NS) (NS) 1
20 + 32 Cuica cl1 + MAS cl1 7.0 § 2.67 (NS) 49.2 § 11.99 (S) 10.8 § 3.76 (NS) 14.3 § 4.76 (NS) I (S) 2
20 + 32 P209 cl1 + IVV cl4 7.6 § 1.30 (NS) 61.8 § 14.69 (NS) 35.5 § 17.82 (NS) 36.5 § 9.71 (NS) D (S) 1
20 + 32 P209 cl1 + MAS cl1 6.9 § 2.80 (NS) 54. 3§ 8.89 (NS) 10.0 § 0.00 (S) 51.2 § 14.96 (S) D (S) 3
39 + 32 Bug2148 cl1 + MAS cl1 9.2 § 1.92 (NS) 1.8§ 1.83 (S) 4.2 § 2.04 (S) 11.8 § 1.80 (S) D (S) 4
39 + 32 SO3 cl5 + MAS cl1 NR (S) 0.33 § 0.51(S) 1.7 § 2.58(S) NR (S) D (S) 5
39 + 32 Bug2148 cl1 + IVV cl4 7.4 § 1.41 (NS) 3.2§ 2.64 (S) 6.7 § 2.58 (S) 8.3 § 1.63 (S) D (S) 4
39 + 32 SO3 cl5 + IVV cl4 8.7 § 3.15 (NS) 3.83 § 3.54 (S) 5.3 § 3.44 (S) 11.2 § 2.05 (S) D (S) 4

% of SD (total of SD) 45.8 (11) 62.5 (15) 66.7 (16) 54.1 (13) 79.2 (19) 61.7 (74)
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Natural populations of the T. cruzi are genetically hetero-
geneous with diVerent biological properties that could inter-
act resulting in parasites with new properties more adapted
to develop into the host (Lauria-Pires and Teixeira, 1996) or
culture conditions (Finley and Dvorak, 1987; Lauria-Pires
et al., 1997). Experimental mixed infections in vectors, mice,
Fig. 2. Parasitemia curves of monoclonal and dual-clone T. cruzi infected BALB/c mice showing signiWcant increase of parasitemia between expected and
observed proWles for dual-clone infection (A and B). Data are expressed as mean parasitemia values.
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and rats have also conWrmed this phenomenon (Franco et al., human Chagas’ disease and the therapeutic response. One

2003; Lana et al., 2000; Pinto et al., 1998). Similar Wndings
were previously obtained by Finley and Dvorak (1987) when
studying T. cruzi development in cellular and acellular cul-
tures. These authors proposed a mathematical model to rep-
resent the growth dynamic of the clones in the mixture, in
which the faster one tends to dominate, with disappearance
of the slower one. Pinto et al. (1998) have also investigated
the interactions between T. cruzi clonal stocks from diVerent
genotypes, suggestive of reciprocal stimulation or inhibition
in experimental Triatoma infestans infections. Similar results
were obtained by Lana et al. (1998) studying mixed and
monoclonal infections with some of these clonal stocks in
BALB/c mice. In addition, interactions between diVerent T.
cruzi clones with distinct behaviors have been observed in
mixed infections in mice and rats (Deane et al., 1984; Franco
et al., 2003). These authors observed that previous infection
with the less virulent population prevented the animals of
developing a severe acute phase and mortality. Franco et al.
(2003) also showed that the surviving animals displayed
diVerent tissue tropisms and lesions than those seen in single
infections.

This suggests that natural mixed infections (Bosseno
et al., 2000; Solari et al., 2001) might be an important factor
aVecting the biological properties of the parasite in infected
hosts with consequences for disease morbidity and the
dynamic of parasite transmission (Buscaglia and Di Noia,
2003; Pinto et al., 2000).

Many studies have failed to correlate the genetic vari-
ability of the parasite with the clinical manifestations of
possible explanation is the selection of sub-populations
during the parasite isolation and growth in culture before
genetic characterization (Deane et al., 1984; Lauria-Pires
et al., 1997). However, our data suggest that the interaction
between clones in mixed infections may result in signiWcant
changes in host–parasite relationship. The characterization
of T. cruzi sub-populations isolated from patients, reser-
voirs, and vectors in endemic areas may reveal diVerent pat-
terns of genetic combination in the original population.
This may permit to Wnd better correlations with the epide-
miology of the disease such as capacity for development in
the vector or vertebrate host and how they can be transmit-
ted among them; evolution of the infection, clinical mani-
festations of the disease, and susceptibility to
chemotherapy.

The goal of the present work was to deWne in BALB/c
mice the impact of dual-clone T. cruzi infections on major
biological properties when compared with the correspon-
dent theoretical mixture using distinct clonal stocks from
four major T. cruzi genotypes.

Our Wndings failed to support the null hypothesis that
“there was no interference of one clone on the biological
properties of the other one present in the dual-clone infec-
tion.” We have clearly demonstrated that dual-clone infec-
tions with T. cruzi clonal stocks led to important eVects,
diVering from those predicted by the theoretical mixture
based on the respective monoclonal infections. SigniWcant
changes were observed in 4.2–79.2% of dual-clone infec-
tions for all biological features analyzed.
Fig. 4. Parasitemia curves of monoclonal and dual-clone T. cruzi infected BALB/c mice showing nonsigniWcant diVerences between expected and observed
proWles for dual-clone infection (A and B). Data are expressed as mean parasitemia values.
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Parasitemia displayed the highest number of signiWcant
diVerences (19/24). This happened in the majority of the
T. cruzi genotype combinations and was not related to a
particular mixture. No correlation was demonstrated

Fig. 5. Number of signiWcant diVerences (SD) between expected and
observed data for T. cruzi dual-clone infection in BALB/c mice using dis-
tinct combinations of clonal stocks from diVerent genotypes. Data are
expressed as total number of signiWcant diVerences.
between genetic distances (estimated by Jaccard’s Index)
and the diVerences observed between expected and
observed results. We only observed a tendency for
increasing parasitemia in the dual-clone infections with
clones from genotypes 19 + 20 that are genetically closely
related, suggesting the occurrence of a stimulatory eVect
between them. Another curious Wnding was obtained with
the 32 + 39 genotype combinations, also genetically
closely related, that displayed inhibitory eVects between
the clones present in the mixtures as shown by evident
decrease of parasitemia.

The majority of the clones studied here were very similar
in relation to INF, MORT, and +HEM. Thus is not sur-
prising that these parameters did not show signiWcant
diVerences such as observed for PAR, since it is more vari-
able among the clones studied. Consistent with this, Franco
et al. (2003) showed that MORT would be aVected when
studying mixed infections with T. cruzi populations with
polar behavior regarding the mortality (lethal + nonlethal
clones). Interestingly, we have observed a similar impact on
MORT only for dual-clone infections with the clone P209
cl1 (genotype 20) and clones from the genotypes 32 and 39,
Table 3
Percentages of infectivity, mortality, and positive hemoculture obtained from monoclonal and dual-clone infection in BALB/c mice with T. cruzi clonal
stocks from diVerent genotypesa

a Chi-square test was used to compare INF, MORT, and +HEM. S, signiWcant diVerence at P < 0.05 in comparison to theoretical results; NS, nonsigniW-
cant diVerence at P > 0.05.

Genotypes Clones INF (%) MORT (%) +HEM (%)

19 Gamba cl1 93.5 6.5 100.0
19 OPS21 cl11 92.3 0.0 100.0
20 Cuica cl1 100.0 0.0 80.0
20 P209 cl1 100.0 15.4 100.0
39 Bug2148 cl1 71.4 3.1 60.0
39 SO3 cl5 50.8 0.0 80.0
32 IVV cl4 100.0 3.2 100.0
32 MAS cl1 79.2 0.00 100.0
19 + 20 Gamba cl1 + Cuica cl1 100.0 (NS) 0.0 (NS) 100.0
19 + 20 Gamba cl1 + P209 cl1 100.0 (NS) 16.7 (NS) 100.0 (NS)
19 + 20 OPS21 cl11 + Cuica cl1 100.0 (NS) 12.5 (NS) 100.0 (NS)
19 + 20 OPS21 cl11 + P209 cl1 100.0 (NS) 40.0 (NS) 100.0 (NS)
19 + 39 Gamba cl1 + Bug2148 cl1 100.0 (NS) 0.0 (NS) 100.0 (NS)
19 + 39 Gamba cl1 + SO3 cl5 100.0 (NS) 0.0 (NS) 100.0 (NS)
19 + 39 OPS21 cl11 + Bug2148 cl1 100.0 (NS) 0.0 (NS) 87.5 (NS)
19 + 39 OPS21 cl11 + SO3 cl5 100.0 (NS) 000 (NS) 20.0 (S)
19 + 32 Gamba cl1 + IVV cl4 100.0 (NS) 0.0 (NS) 100.0 (NS)
19 + 32 Gamba cl1 + MAS cl1 100.0 (NS) 0.0 (NS) 66.7 (NS)
19 + 32 OPS21 cl11 + IVV cl4 100.0 (NS) 16.7 (NS) 60.0 (NS)
19 + 32 OPS21 cl11 + MAS cl1 100.0 (NS) 0.0 (NS) 83.3 (NS)
20 + 39 Cuica cl1 + Bug2148 cl1 100.0 (NS) 0.0 (NS) 100.0 (NS)
20 + 39 Cuica cl1 + SO3 cl5 100.0 (NS) 12.5 (NS) 100.0 (NS)
20 + 39 P209 cl1 + Bug2148 cl1 100.0 (NS) 16.7 (NS) 100.0 (NS)
20 + 39 P209 cl1 + SO3 cl5 100.0 (NS) 0.0 (NS) 100.0 (NS)
20 + 32 Cuica cl1 + IVV cl4 100.0 (NS) 0.0 (NS) 100.0 (NS)
20 + 32 Cuica cl1 + MAS cl1 100.0 (NS) 0.0 (NS) 100.0 (NS)
20 + 32 P209 cl1 + IVV cl4 100.0 (NS) 0.0 (NS) 100.0 (NS)
20 + 32 P209 cl1 + MAS cl1 100.0 (NS) 0.0 (NS) 100.0 (NS)
39 + 32 Bug2148 cl1 + MAS cl1 100.0 (NS) 0.0 (NS) 100.0 (NS)
39 + 32 SO3 cl5 + MAS cl1 100.0 (NS) 0.0 (NS) 100.0 (NS)
39 + 32 Bug2148 cl1 + IVV cl4 100.0 (NS) 0.0 (NS) 50.0 (NS)
39 + 32 SO3 cl5 + IVV cl4 100.0 (NS) 0.0 (NS) 60.0 (NS)

% of SD (total of SD) 0.0 (0) 0.0 (0) 4.2 (1)
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except with Bug2148 cl1 (genotype 39), suggesting an
inhibitory eVect of genotypes 32 and 39 (lower virulence)
on mortality induced by the genotype 20 (more virulent).
The possibility that the small number of animals used in
each experiment would be insuYcient to demonstrate sig-
niWcant diVerences also needs consideration. The parameter
+HEM was the only one that showed signiWcant diVerences
in relation to the monoclonal infections. Important but
nonsigniWcant reductions of +HEM were observed in 5 out
of 24 mixtures.

Considering that the host immune system has a very
important role in parasitemia control from the start of infec-
tion (Brener and Gazzinelli, 1997) and dependent on the type
of T. cruzi strain considered (Krettli and Brener, 1982), the
immune response possibly plays an important role on the
changes detected. Thus, the immune response induced by one
clone of the mixture could interfere with the development of
the other altering the biological properties of them. More-
over, it is possible that some of the properties may be more
sensitive to this interference. We have noticed that although
all dual-clone infections led to INF of 100%, corresponding
to the expected data for dual-clone infections, no additive
eVect was observed for MORT and +HEM. It is possible
that host-related features may be involved.

Taken together, our results suggest an important inter-
action between the distinct clones for the majority of the
mixtures and not only a juxtaposition of their characteris-
tics. When all parameters studied were considered together,
11, 18, 11, 11, and 15 signiWcant diVerences between
expected and observed values were detected with the geno-
type combinations 19 + 20, 19 + 39, 19 + 32, 20 + 39, and
39 + 32, respectively. An exception was seen with the geno-
type combination 20 + 32. In this case, the number of sig-
niWcant diVerences was lower (only 7) than the mean
diVerence (13) for all other genotype combinations. Inter-
estingly, this combination includes those clones with the
greatest genetic and biological distance. This suggests that
interaction or competition did not occur between these
clones. We did not observe any statistical correlation
between the genetic distance and the diVerences between
the expected and observed values for the mixed infections
revealed by Fisher’s test. Our results also re-emphasize the
importance of considering the mixed infections, so frequent
in the nature in animals, reservoirs, and vectors (Bosseno
et al., 2000; Tibayrenc et al., 1985) as well as in humans
(Brenière et al., 1985; Solari et al., 2001; Torres et al., 2003).

The development of more sensitive molecular methods
that permit to characterization of T. cruzi populations
directly from blood and tissues of host or from vector feces,
have demonstrated the relevance of mixed infections in the
epidemiology of Chagas’ disease (Bosseno et al., 2000;
Solari et al., 2001). Individuals living in endemic area are
probably submitted to several re-infections that result in
the diVerent T. cruzi populations throughout the course of
the infection (Brenière et al., 1998). However, the real
impact of these mixed infections on the vertebrate host
needs to be determined.
In conclusion, the present work represents an important
step in knowledge of mixed infections. Interaction between
the clones of the mixtures leading to changes in their bio-
logical properties and thus the course of the infection in
mice has been clearly demonstrated. The factors involved in
this process are not understood and open new perspectives
in the knowledge of the pathogenesis and treatment of the
disease. Possibly, important mechanisms relating to the
modulation of immunological response (Brener and Gazzi-
nelli, 1997; Krettli and Brener, 1982; Palau et al., 2003)
through competition between the clones in mixture and
changes in parasite and host gene expression could be
involved (Dost et al., 2004; McDaniel and Dvorak, 1993).
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