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Abstract
The technological advances concerning drones have encouraged the market to consider
drone applications in different areas including last mile delivery. However, limitations due
to battery capacity, maximum weight, and legal regulations restrict the effective operational
range of drones in many practical applications. To overcome the battery issue, hybrid
operations involving one or more drones launching from a larger vehicle have emerged,
in which the larger vehicle operates as a mobile depot and a recharging platform. In this
dissertation, we describe a routing model that leverage the drone and truck working as a
synchronized unit. The Flying Sidekick Traveling Salesman Problem (FSTSP) considers
a delivery system composed by a truck and a drone. The drone launches from the truck
with a single package to deliver to a customer. Each drone must return to the truck to
recharge batteries, pick up another package, and launch again to a new customer location.
This work proposes two novel Mixed Integer Programming (MIP) formulations and a
heuristic approach to address the problem. The proposed MIP formulations yields better
linear relaxation bounds than previously proposed formulations for all instances, and was
capable of optimally solving several unsolved instances from the literature. We developed
a hybrid heuristic based on the General Variable Neighborhood Search metaheuristic to
tackle a generalization of the FSTSP called Multiple Traveling Salesman Problem with
Drones, in which multiple trucks and drones are considered as part of the delivery system.
The heuristic obtained high-quality solutions for large-size instances. The efficiency of the
algorithm was evaluated on 410 benchmark instances from the literature, and over 80% of
the best known solutions were improved.

Keywords: Unmanned Aerial Vehicle, Drones, Flying Sidekick Traveling Salesman Prob-
lem, Multiple Traveling Salesman Problem with Drones, Variable Neighborhood Search.



Resumo
Os avanços tecnológicos em relação a drones têm incentivado o mercado a desenvolver
novas aplicações em diferentes áreas, incluindo a entrega de última milha. No entanto,
as limitações devido à capacidade da bateria, peso máximo e regulamentos restringem a
operação dos drones em muitas aplicações práticas. Com o intuito de superar a limitação
da bateria em operações de entrega, surgiram operações híbridas envolvendo um ou mais
drones que são lançados de um veículo maior. Este veículo funciona como um depósito móvel
e uma plataforma de recarga. Nesta dissertação, descrevemos um modelo de roteamento que
aproveita o trabalho sincronizado entre drone e o caminhão. O Flying Sidekick Traveling
Salesman Problem (FSTSP) considera um sistema de entrega composto por um caminhão
e um drone. O drone é lançado do caminhão com um único pacote para realizar a entrega
ao cliente. O drone deve retornar ao caminhão para recarregar as baterias, pegar outro
pacote e ser lançado novamente de um novo local. Este trabalho propõe duas formulações
de Programação Inteira Mista (MIP) e uma abordagem heurística para tratar o problema.
Foram propostas duas formulações que produzem melhores limites de relaxação linear
do que as formulações já existentes na literatura para todas as instâncias. Além disso,
desenvolvemos uma heurística híbrida com base na meta-heurística General Variable
Neighbourhood Search para lidar com a variante FSTSP chamada Multiple Traveling
Salesman Problem with Drones, na qual vários caminhões e drones são considerados como
parte do sistema de entrega. A heurística desenvolvida obteve soluções de alta qualidade
para instâncias grandes. A eficiência do algoritmo foi avaliada em 410 instâncias de
benchmark da literatura, e mais de 80% das soluções conhecidas foram melhoradas.

Palavras-chave: Veículos Aéreos Não Tripulados, Drones, Problema do Caixeiro Viajante,
Problema do Caixeiro Viajante Múltiplo com Drones, Variable Neighborhood Search.
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1 Introduction

Over the past few years, vehicles, commonly known as drones, have been studied
to reduce logistics costs. From quick deliveries at rush hour to scanning an unreachable
military base, drones are proving to be highly beneficial in places where a man cannot
reach or cannot perform activities in a timely and efficient manner.

Some of the top uses drones offer to industries are increase work efficiency and
productivity, decrease workload and production costs, improve accuracy, refine service,
and resolve security issues on a vast scale (Battsengel et al., 2020).

The COVID-19 pandemic has been one of the most significant health crises in
modern history. As consumers pivoted and adopted new habits, business leaders wondered
whether these changes, which accelerated trends already in motion, would be fleeting or
permanent. Online shopping for personal items was already a trend in 2017, when Amazon
Prime reported shipping more than five billion items worldwide (Amazon, 2018). Since
the beginning of the pandemic, consumers have switched to be even more digital and
eco-friendly. People started buying groceries and not only meals from delivery apps. Daily
visits to a store became a message to deliver an item.

Supply chains are under pressure to become far more resilient and agile under an
operating model that is faster and more flexible and provides a dramatically shorter lead
time from order to delivery. Therefore, companies need to continually create ingenious
ways to shorten delivery times and satisfy customers’ needs. Further, the process must be
cost and resource-efficient to boost growth and support investment (Carr et al., 2021).

One way of improving the delivery experience is by using drones. Unmanned Aerial
Vehicle (UAV) can both reduce delivery time and cheapen operations and management
costs. Raffaello D’Andrea, who cofounded Kiva Systems (the warehouse robots used by
Amazon), delivers a 2-kilogram package over 9.7 kilometers with the cost of 10 cents
using a drone, while the traditional delivery truck costs between $2 to $8 per package to
Amazon.

This work aims to tackle the last mile delivery problems to make it fast and efficient
by combining truck and drone. To sum up and quickly give an outline of the problems
with whom this dissertation is concerned, it all starts with Murray and Chu and their
Flying Sidekick Traveling Salesman Problem (FSTSP). There the FSTSP is described
as a variant of the classical Traveling Salesman Problem (TSP), where a drone launches
from a truck, proceeds to deliver goods to a customer, and finally joins back to the truck
in a third location. While the drone flies in an operation, the truck can travel to other
customers.
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In addition of the FSTSP, this work address the Multiple Traveling Salesman
Problem with Drones (mTSPD). The mTSPD instead of considering a single truck and a
single drone, employs a fleet of |M | trucks and |K| drones per truck to deliver goods to
the customers. The combination of drone trips and truck deliveries makes it possible to
cover all customers reducing the overall delivery time. The objective of both FSTSP and
mTSPD is to minimize the total duration of the tour built with these vehicles.

The problems addressed in this dissertation are NP-Hard and lie in the subject of
distribution management. It is faced each day by thousands of companies and organizations
engaged in delivering and collecting goods or people. Because of the problem nature, optimal
solutions for a large set of instances cannot be obtained in deterministic polynomial time
if P 6= NP. Therefore, this dissertation provides an optimal solution to instances up to 10
customers and a heuristic to study larger instances and how multiple trucks and multiple
drones working in tandem can improve the delivery process.

1.1 Objectives

1.1.1 General Objectives

The primary objective of this work is the development of computational systems
that allow greater efficiency in the decision-making of the delivery planning. For this
purpose, we propose two mathematical formulations and an heuristic to tackle Traveling
Salesman Problem with Drones (TSP-D).

1.1.2 Specific Objectives

The specific objectives to be achieved are as follows:

• Evaluate several models of optimization proposed in the literature, bringing them
together to compare the features of each one.

• Introduce two mathematical formulations capable of finding optimal solutions to
literature instance with better lower bound.

• Apply the General Variable Neighborhood Search (GVNS) metaheuristic to tackle
the problem.

• Evaluate the heuristic proposed by testing it on available test problems and compare
its results with literature methods.
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1.2 Contributions
The contribution of this dissertation consists in developing computational methods

to tackle TSP-D. For this purpose, we define the following contribution regarding the
problems:

• We presented several models of optimization proposed in the literature, bringing
them together to compare the features of each one.

• We implemented an exact formulation with an exponential number of variables to
solve the FSTSP

• We implemented an exact compact formulation to solve the FSTSP

• We developed a heuristic employing the General Variable Neighborhood Search
(GVNS) concept to tackle the mTSPD.

• We evaluated the proposed method by testing it on publicly available test problems
and compare its results with literature methods.

The research presented in this dissertation has resulted in the following papers:

• J. C. Freitas, P. H. V. Penna, and H. Gambini. Truck and drone collaboratively
delivery for green logistics in smart city. L Brazilian Symposium on Operational
Research, 2018

• J. C. Freitas and P. H. V. Penna. A variable neighborhood search for flying sidekick
traveling salesman problem. International Transactions in Operational Research, 27
(1):267–290, 2020. doi: 10.1111/itor.12671

• J. C. Freitas, P. H. V Penna, and T. A. M. Toffolo. Exact and heuristic approaches
to drone delivery problems, 2021. Submitted to a high impact-factor journal.

1.3 Document organization
The remainder of the dissertation is organized as follows: Chapter 2 address an

analysis of previous works on drones and drone deliveries. The literature is in its early
stages, but it is growing. Chapter 3 formally describes the problem. Chapter 4 introduces
two formulations for the FSTSP. Chapter 5 discusses the methodology used to approach
the mFSTSP: Section 5.1 presents the data structures employed to represent a solution.
Section 5.2 examines how to built an initial solution, followed by the main method GVNS
in Section 5.3. The following sections discuss the implemented neighborhoods (Section
5.3.1), and finally how the solution is evaluated (Section 5.4). In Chapter 6, the reader
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first can refer to the formulations results in Section 6.1. Then, the heuristic experimental
results are presented. Section 6.2.1 covers the instance settings, Section 6.2.2 shows an
instance analysis and, finally, Section 6.2.3 compares the heuristic results to the literature.
Chapter 7 presents the conclusions and future work.



25

2 Literature Review

The literature review includes two sections: Section 2.1 concerns parcel delivery
in Operations Research, and discuss works that truck and drone operate as synchronized
units (Section 2.1.1), truck and drone performing independent tasks (Section 2.1.2), and
drones working as a single unit (Section 2.1.3). Section 2.2 presents drone applications in
different sectors such as surveillance and health care.

2.1 Delivery Applications
The Vehicle Routing Problem (VRP) definition states that M vehicles initially

located at a depot deliver discrete quantities of goods to N customers. The objective is to
minimize the overall transportation cost of serving the N customers by the M vehicles.
The classical VRP solution is a set of routes that begin and end in the depot, satisfying
the constraint that all the customers are visited only once. The transportation cost can be
improved by reducing the total traveled distance and the number of required vehicles.

The majority of real-world problems are often much more complex than the classical
VRP, the constraints are often augmented. For example, the vehicles may present capacity
(Capacitated Vehicle Routing Problem (CVRP)) or time interval, in which each customer
has to be visited (Vehicle Routing Problem with Time Windows (VRPTW)). In the last
fifty years, many real-world problems have required extended formulation that resulted
in the multiple depots VRP, periodic VRP, split delivery VRP, stochastic VRP, VRP
with backhauls, VRP with pickup and delivering, and many others. We can find extensive
research of the VRP in Toth and Vigo (2014).

Another VRP variant is the Multiple Traveling Salesman Problem (mTSP), which
defines a set of routes for M salespeople who start from and return to a depot. The reader
is referred to the work by Betkas Bektas (2006), which sums up the mTSP description and
reports distinct methods for its solution—the author details applications context for the
mTSP and its relationship with other problems. Further, exact and heuristic approaches
to the mTSP are discussed to clarify their positive aspects and point their inefficient side.

An extensive body of literature exists on the mTSP and VRP. Neither of the
problems is applied as-is to the examined problem. The mTSPD is a generalization of the
mTSP, and a relaxation of VRP, with the capacity constraints removed. Therefore, all the
formulations and solution approaches proposed for the VRP are also valid and applicable
to the mTSPD. A solution can be achieved by assigning sufficiently large capacities to
the vehicles and removing the usage of drones. The mTSPD can also be considered a
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reduction to the well-known TSP when there are only a single truck and no drones, for
which an extensive amount of research exists (e.g., Applegate et al. (2007); Bellmore and
Nemhauser (1968); Held and Karp (1970); Laporte (1992)).

In Drexl (2012), a thorough review of some possibilities for these constraints
undergoes an intensive study, as they represent a topic of growing interest in the field.
In particular, the paper involves a threefold objective of classifying the different types of
synchronization, discussing exact and heuristic solutions to the problem and identifying
promising algorithmic solution approaches. A variant of the VRP associated with this study
is Vehicle Routing Problem With Synchronization Constraints (VRPWSC). The primary
influence of this VRPWSC variant in this dissertation is the constraints applied to assure
drones launch and return to the truck/depot synchronization. According to Drexl, the
type of synchronization in the mTSPD would be classified as "operation synchronization"
since the drone launch would be the operation to facilitate the drone delivery at a different
location, and the return to the truck would facilitate the use of the drone for further
deliveries.

Hereafter, we discuss three different scenarios employing drones. Subsection 2.1.1
presents works that truck and drone delivery collaboratively and synchronized, i.e., at a
given point of the delivery, a vehicle has to wait for the other to proceed. In Subsection
2.1.2, the vehicles perform independent tasks, i.e., the vehicles do not depend on the other
to continue the delivery route. Finally, in 2.1.3, only drones are considered to perform
deliveries.

2.1.1 Truck and Drone working as synchronized units

The first work we are aware of truck and drone performing synchronized delivery
is Murray and Chu (2015). The Flying Sidekick Traveling Salesman Problem (FSTSP)
describes a single truck – single drone scenario where the total time spent on the tour
must be minimized. The drone launches the truck at a customer, then delivers a package,
and finally travels back to the truck at another customer location. Meanwhile, the truck
may visit one or more customers. The vehicles must be reunited at the return location
before the drone runs out of battery. The authors proposed a MILP and a heuristic to
tackle the FSTSP.

The thesis of Ponza (2016) is based on FSTSP formulation by Murray and Chu
within slight changes in the original model regarding waiting and setup times. The author
proposed a Simulated Annealing algorithm to find optimal or near-optimal solutions to
instances with 10 to 200 seconds within 500 seconds. Ponza (2016) optimally solved all
instances with up to 10 customers from the benchmark introduced by Murray and Chu
(2015).
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In Ha et al. (2018) they denominated the problem as Min-Cost TSP whose objective
is to minimize the total operational cost, considering truck and drone transportation costs
and waiting times. To minimize the waiting time, they employed a coefficient that multiplies
the waiting time of the vehicle. A waiting time penalty is an interesting approach, especially
for the truck, since waiting for the drone increases the total delivery time. They provided
an exact approach and two heuristics – Greedy Randomized Adaptive Search Procedure
(GRASP) and TSP-LS (Local Search). The approaches were tested in two instance sets.
The first set introduced by Murray and Chu with up to 10 customers, where GRASP
outperformed 95% of Murray and Chu results. Ha et al. (2018) introduced a new set of
instances varying the number of customers n = {10, 50, 100}. The proposed GRASP
performs better than the TSP-LS on all instances regarding solution quality. Concerning
run time, GRASP runs much faster with an average run time of 0.1 seconds. They also
compared their formulation and heuristics with both optimal TSP and FSTSP solution.
The results showed that out of 8 instances, FSTSP outperformed their TSP-D 6 times
with an average gap of 30%.

The Vehicle Routing Problem with Drones (VRPD) discussed in Schermer et al.
(2018) considered a set of customers location and a fleet of homogeneous vehicles, each
carrying the same amount of identical drones. In the VRPD, the objective is to minimize
the time required to serve all customers using trucks and drones such that, by the end of
the mission, all vehicles must be at the depot. A Variable Neighborhood Search (VNS)
heuristic was developed and tested in the instances proposed by the authors based on
TSPLIB. After a series of computational experiments, it is possible to notice that the
relative improvement in the objective value becomes increasingly smaller after a particular
number of drones.

A different formulation to the FSTSP is the Traveling Salesman Problem with
Drones (TSP-D) introduced by Agatz et al. (2018). The major difference is that the
authors assumed that the truck and the drone travel on the same road network, which has
multiple advantages and drawbacks. The main advantages are that they develop heuristics
with approximation guarantees and provide a bound on the maximum possible gains of
the truck and drone coupling over a traditional truck-only system. With the ability to get
a lower bound on the optimal solution, there is the double edge of tying the drone to the
road network without taking full advantage of its speed and ability to take shortcuts via
Euclidean distances. Moreover, another difference between the FSTSP and the TSP-D is
that the latter allows the drone’s launch and return to be the same point, whereas the
FSTSP forced to be different customers.

In Marinelli et al. (2018) a drone can launch while en route, i.e., the truck may
not be in a customer node at the moment of the drone take-off but traveling from one
customer to another. The en-route operational is beneficial as it may reduce the drone
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traveling time of a given trip. Consequently, drone coverage increases within a reduction
in total traveling costs. Unfortunately, it is impossible to numerically argue the advantage
of using en route operations as the work did not compare directly with instances from the
literature.

In the work by Dayarian et al. (2020), they considered a dynamic scenario where
new orders arrive all day long. While trucks perform deliveries, drones are dispatched from
the depot to transfer a set of orders to a truck at a pre-determined meeting location and
time. While receiving the orders, the truck route is re-optimized. Therefore the service
time guaranteed of the orders on-board the truck is satisfied. The goal is to deliver as
many orders as possible, respecting the guaranteed service time at a minimum cost.

Wang et al. (2017) introduced the VRPD as a generalization of the VRP. In the
VRPD a fleet of vehicles, each vehicle equipped with a given number of drones, is tasked
with delivering parcels to customers. The drones may launch from the depot or the truck
at any customer location. Moreover, the drone must join the truck at a different customer
location it was launched (or at the depot, concluding its tour). When a drone launches,
it can visit precisely one customer before returning to the vehicle (or to the depot).
The objective is to minimize mission time, i.e., the time required to visit all customers
guaranteeing that the fleet has returned to the depot at the end of the mission. Wang et al.
introduced several upper bounds on the amount of time that can be saved by employing
drones compared to the classic VRP. The upper bounds are obtained by investigating the
structure of optimal solutions and examining the relative velocity of drones compared to
the vehicles as the number of drones per vehicle.

Poikonen et al. (2017) inspired by the work by Wang et al. studied the impact when
integrating limited battery life, different distance metrics, and operational expenditures
of deploying drones and vehicles in the objective function. They presented different
perspectives of the problem, i.e., different distance metric for each vehicle has a significant
impact on the solution cost, since the drone may be faster than the truck. They questioned
which is the better resource to invest: more drones per truck or faster drones. Different
points of view arise from this comparison. On the one hand, a substantial number of
drones can serve more customers in parallel, while a higher drone speed has the advantage
of serving more customers in sequence. On the other hand, if drone range or capacity
is severely limited, a larger number of drones may be preferred. It is a complicated
question that requires further study and depends on the necessities of each problem.
Furthermore, Poikonen et al. proposed extending the VRPD model similar to the Close-
Enough Traveling Salesman Problem (CETSP). The authors suggested the possibility of
launching and recovering the drones from arbitrary locations instead of being restricted to
customer locations.

A different formulation for the VRPD is the one introduced by Daknama and Kraus
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(2017) where the drone can be launched and collected by a different truck. Therefore, each
truck may carry many drones, including all drones at a unique truck. Although increasing
the number of drones generally improves the solution, a decrease occurs in the marginal
benefit of each additional drone. The employment of drones reduced by 10% the time
required to deliver all packages.

Pugliese and Guerriero (2017) formulated a variant of the VRPTW where each
vehicle is equipped with drones called Vehicle Routing Problem with Time Windows with
Drones (VRPTW). In this formulation, a limited number of drones is preassigned to each
truck, and the drones must return to the same truck after each delivery. The drone has a
maximum waiting time to be retrieved by the truck. Also, the authors considered time
window constraints. The objective function is to minimize the total cost deriving from the
employment of trucks and drones. The work shows that drones are not a viable alternative
for the delivery process compared to traditional trucks. However, aerial vehicles working
as a complementary feature is a great strategy.

While in Dayarian et al. trucks performed the deliveries and drones worked as a
mobile depot to the truck, Poikonen and Golden (2020) described the opposite behavior.
The problem considered is the Multi-Visit Drone Routing Problem (MVDRP) where a
single truck acts as a mobile depot and recharging station for a single drone. The drone
may launch from the truck with one or more packages, deliver them to their respective
locations, and return to the truck for recharging and additional pickup packages. Another
problem approached by Poikonen and Golden was the k-MVDRP, in which a truck can
carry d homogeneous drones at a time. The truck must travel immediately towards the
retrieve location and does not stop in between nodes. Since a mechanical or other problem
can occur to the drone, the truck must be available for any surprise.

Dell’Amico et al. (2020) approached the Parallel Drone Scheduling Traveling
Salesman Problem (PDSTSP) proposing a MILP model and several matheuristics. The
authors experimented with the algorithms on the benchmark instances introduced by
Saleu et al. (2018) and Murray and Chu (2015). The computational study validates that
the proposed algorithms produce competitive results in both efficiency and effectiveness,
mainly on small and medium-size instances.

The FSTSP proposed by Gonzalez-R et al. (2020) allows the truck to wait for the
drone where it was launched. The drone also can perform multiple visits per launch. The
authors considered drone energy, i.e., the battery is changed between drone trips and is
considered fully charged after the swap. An iterative greedy search heuristic combined
with simulated annealing was proposed.

Freitas and Penna (2020) introduces new instances based on the TSPLIB and
compares the HGVNS (General Variable Neighborhood Search) result with instances
found in the literature (Agatz et al., 2018; Ponza, 2016). In this work, we complement the
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heuristics by using a list based on the Tabu Search to avoid cycling in the neighborhoods.
Here, we also propose a MILP to solve the FSTSP in the instances proposed in (Murray
and Chu, 2015; Ponza, 2016).

The Multiple Flying Sidekicks Traveling Salesman Problem (mFSTSP) introduced
by Chase and Ritwik (2020) considers a delivery truck operating in coordination with a
fleet of drones. A drone is launched from the truck, travels to deliver a single package, then
returns to the truck to be loaded again. They employed a three-phased (I. initial truck
assignments, II.create drone routes, III.combining phase I and II) heuristic solution to
approach the problem. The heuristic result analysis revealed that drones with high-speed
and long-range offer more significant benefits in larger geographic regions, where customers
are distributed over a larger area.

Table 1 – Labels employed in the Tables 2, 3, and 4 to describe the articles’ characteristics.

L Indicates the location a drone launches from a truck.
R Indicates the location a drone rendezvous to a truck.
E Indicates whether or not the work considers drone endurance.
ST Indicates whether or not the work considers drone setup time in the launch

and/or rendezvous.
RN Road Network.
DT Minimize Delivery Time.
C Minimize Cost.

CnE Minimize Cost and Energy.
DD Minimize Delivery Distance.

AvgDTP Minimize Average Delivery Time per package.
AvgLT Minimize Average Lead Time.

Table 2 presents an overview of all the formulations with drones and trucks working
as synchronized units in the literature. The column ‘Problem’ highlights the one or two
models proposed in the respective paper or the type they belong to if no name is provided.
The third and fourth columns regard the number of vehicles of each type allowed by that
formulation, while the ‘L 6= R’ column specifies if the formulation allows a sortie to have
launch and return in the same node. ‘Drone RN 6= Truck RN’ column describes whether
the vehicles travel in the same road network. Columns ‘E’ and ‘ST’ respectively concern if
the formulation considers drone endurance and setup time. The column ‘Objective’ states
the objective function of each formulation. Since all analyzed works are minimization
problems, we omit the word ‘minimize’ in the acronyms DT, C, CnE, and DD described
in Table 1. Finally, column ‘Others’ sums up characteristics considered by the author that
we found interesting in being reported.
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Table 2 – Overview of previous strategies employing drone and truck as synchronized units in the literature.

Truck and Drone as synchronized working units

Author Year Problem
# #

L 6= R
Drone RN 6=

E ST Objective Others
Truck Drone Truck RN

Murray and Chu 2015 FSTSP 1 1 X X X X DT

Ponza 2016 FSTSP 1 1 X X X X DT

Ha et al. 2016
min-cost TSP-D

1 1 X X X X
C

TSP-D DT

Agatz et al. 2015 TSP-D 1 1 X DT

Bouman et al. 2017 TSP-D 1 1 X DT

Marinelli et al. 2018 TSP-D 1 1 X X X X DC

Dayarian et al. 2017 VRPDR m d X X X DC
� drone carries
mult. parcels

Wang et al. 2017 VRPD m d X X X X DT

Poikonen et al. 2017 VRPD m d X X X X DT

Daknama and Kraus 2017 VRPDR m d X X X X AvgDTP

Poikonen and Golden 2018
MVDRP 1 1

X X X X DT
� drone carries

k-MVDRP 1 d mult. parcels

Schermer et al. 2018 VRPD m d X X X X DT

Pugliese and Guerriero 2017 VDRPTW m d X X X DC
� time-window
� max. drone wait
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2.1.2 Truck and Drone performing independent tasks

The work by Boysen et al. (2018) introduced the Truck-Based Robot Delivery
(TBRD) problem. The TBRD considers a set of robots that must deliver parcels to a set
of customers. A single truck loaded with drones and parcels travels to a drop-off point,
launching the set of drones to accomplish delivery. After delivery, the drone proceeds
to a depot, where the truck can pick it up and relaunch. The problem also considers
time windows to attend to all customer’s locations. The authors proposed two sets of
instances, a small one that can be optimally solved by the exact approach proposed and
the multi-start local search heuristic. For the large dataset, the gap to the bound is nearly
90% for the heuristic procedure, and when applied to the small dataset, the gap to the
best-found solution, of which 80% are optimal, is about 11%. The exact approach had a
time limit of 1800 seconds, while the heuristic’s average CPU time was 48 seconds.

Liu et al. (2018) described the Drone Traveling Salesman Problem (DTSP) where
a truck works as a hub to recharge and reload the drone. While the drone is delivering
orders, the truck is waiting for the drone to return. The objective of the DTSP is to
find the solution that saves energy and time with the shorter truck route. Computational
experiments showed that the usage of more drones could reduce costs up to 29.75% when
compared to TSP, while only one drone was delivering the parcels, the result was worse
than TSP.

Murray and Chu (2015) introduced the Parallel Drone Scheduling Traveling Sales-
man Problem (PDSTSP) a merge of two classical operational research problems. The TSP
sequences the customers assigned to the truck. The other problem is of scheduling the
remaining customers to the fleet of drones, which is equivalent to the Parallel Machine
Scheduling Problem (PMS) with minimum makespan objective. In the PDSTSP drone and
trucks serve customers in parallel. While the truck visits customers along a TSP route, the
drone flies back and forth to the depot to be recharged and reloaded. The PDSTSP arises
from practical constraints, such as the limited payload or the flying range of drones. A
heuristic and a MILP formulation were provided to solve the PDSTSP, and test problems
were generated with either 10 or 20 customers. The MILP was able to find the optimal
solutions for all of the 10-customer problems. However, 24% of the 20-customer instances
terminated at the time limit.

In Saleu et al. (2018) multiple drones are available to perform deliveries. They
provided a MILP formulation for the PDSTSP and an iterative two-step heuristic. The
heuristic first step is to partition the customers between the vehicle and the fleet of drones.
The second step manages to solve a TSP for the vehicle and a PMS problem for drones.
In the PDSTSP single-drone version Saleu et al. found the best-known solutions obtained
by Murray and Chu (2015). When the number of drones is greater than one, the heuristic
could not obtain the optimal solutions. However, the gap was only up to 0.18%.
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The Parallel Drone Scheduling Traveling Salesman Problem Drop-Pickup
(PDSTSP+DP ) by Ham (2018) described drone and truck performing independent tasks.
The vehicles execute drops (delivery packages) and pickups (collect packages in customer’s
location). The drone has a limited battery and capacity. Further, it launches and returns
directly to the depot for each trip. During a trip, the drone can perform multiples drops
and pickups respecting its battery. Since the vehicles are not synchronized, the truck
leaves the depot and returns after delivering all packages. Furthermore, the PDSTSP+DP

considers time-windows, multi-depots, and multi-visits, i.e., a customer can be visited
more than once (for example, for a drop and pick up).

Ulmer and Thomas (2018) assumed a dynamic scenario, in which new requests arrive
along the day, resulting in the Same Day Delivery Routing Problem with Heterogeneous
Fleets (SDDPHF). In the SDDPHF, the provider decides whether a customer can be
served on the same day and which vehicle (truck or drone) performs the delivery. When
the Same Day Delivery (SDD) is available, either a drone is loaded, or a truck picks up
the package in the depot to deliver it within the delivery deadline. The SDDPHF seeks to
maximize the expected number of customers served on the same day. The fleet of vehicles
is composed of m trucks and d drones. For each delivery, it is required a service and loading
time for both truck and drone. Further, the drone needs a setup and recharging time. They
proposed a parametric policy function approximation approach to tackling the problem.
The parameterized policy is a threshold of travel distance from the depot, which splits the
service into two areas. Customers in the threshold range are served by truck, and the ones
located further are served by drone. The two areas were decided by considering that trucks
may be suitable in areas close to the depot because of the high customer density, while
drones may benefit more remote areas with widely dispersed customers. The extensive
computational experiment concluded that geographical districting is highly effective in
increasing the expected number of same-day deliveries, and a combination of drone and
vehicle fleets may significantly reduce routing.

The work by Fikar et al. (2016) has a different approach. While the papers mentioned
before focus on delivering products brought by consumers, Fikar, Gronalt, and Hirsch
described a Decision Support System (DSS) disaster relief distribution scenario, in which
potentially roads or bridges are not traversable without special equipment or permissions
and road inundations resulting from floods or road blockades as a result of earthquakes
or mudslides. The DSS developed provides decision-makers with a tool to test different
strategies during professional training in a risk-free environment, enabling what-if studies
to be performed and to analyze worst-case scenarios to foster decision-making skills and
to gain a better understanding of disaster relief distribution.

Table 3 – Overview of previous strategies employing drone and truck as independent units
in the literature.
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Truck and Drone performing independent tasks

Author Year Problem
# #

L 6= R
Drone RD 6=

E ST Objective
Truck Drone Truck RD

Boysen et al. 2018 TBRD 1 d X X DT

Liu et al. 2018 DTSP m d X DT

Ham 2018 PDSTSP+DP m d X X DT

Murray and Chu 2015 PDSTSP 1 1 X X X X DT

Fikar et al. 2016 DSS m d X AvgLT

2.1.3 Single drone operations

Dorling et al. (2017) approach a drone problem from the energy consumption point
of view. The authors elaborated an energy consumption model to balance the drone weight
and the energy stored in its battery since these two factors limit the vehicle flight time.
Therefore, such a model helps optimize deliveries to compare the energy consumed by
alternative routes. They proposed two approaches considering a multi-trip vehicle routing
problem for drone delivery. The one called Minimum-Time Drone Delivery Problem (MT-
DDP) seeks to minimize the delivery time to deliver all packages. The other minimizes
the cost of making deliveries and is referred to as the Minimum Cost Drone Delivery
Problem (MC-DDP). Both problems consider battery weight, payload weight, and energy
consumption to implement a MILP and a string-based Simulated Annealing algorithm for
solving the DDPs. The DDPs allow a drone to be reused, i.e., the aerial vehicles can return
to the depot and be relaunched. By reusing drones, the cost of $112.7 per 60 minutes
delivery time drops to $11.7. Note that reusing drones increases the maintenance, however
as new drones are generally expensive, a reduced number of drones is more likely the less
expensive option.

Cheng et al. (2018) defined the Multi-Trip Drone Routing Problem (MTDRP). The
problem objective is to minimize transportation costs by considering a fleet of homogeneous
drones with a maximum capacity to deliver parcels to the customers. Each customer is
associated with a non-negative demand and a hard time window. The drones can perform
several trips as long as they return to the ending depot before the time window.

Song et al. (2018) considered the Multiple-Depot VRP With Time Window (MD-
VRPTW). The MDVRPTW goal is to maximize the weighted sum of two objectives, the
total number of covered tasks, and the total traveling distance during delivery service.
In the problem, depots are called stations where the drones start their service. After
serving customers, the drone returns to a service station for recharging and reloading to
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serve additional customers. Moreover, the formulation considers the time window and load
capacity of the drones. The flight time of a drone critically depends on the number of
loaded products. Therefore, they developed and applied a weight function to the drone
flight time based on the number of loaded products to derive practical drone schedules that
can be applied in real-world service situations. They developed a MILP and a Receding
Horizon Task Assignment (RHTA) heuristic to test the instances, which are based on an
island area. The RHTA derives optimal or near-optimal solutions for large-scale problems
in a short time.

Sundar and Rathinam (2014) studied the Fuel Constrained UAV Routing Problem
(FCURP) that given a set of targets and depots, a drone, initially stationed at one of the
depots, must visit each target at least once. The objective is to minimize the drone travel
cost, the total fuel consumed by the vehicle along the path.

Boone et al. (2015) considered a mTSP replacing the traditional delivery trucks
for drones. None of the drone’s restrictions are considered, such as battery and payload
capacity. The objective is to minimize the longest route of a drone to find a solution to the
mTSP, the set of cities are divided into clusters based on their location in space, typically
using K-means clustering, and each drone is assigned to a cluster. Next, the TSP is solved
for each cluster using the constructive heuristic 2-Opt to determine the shortest route
through the set of cities.

Table 4 – Overview of previous strategies employing single drones operations in the litera-
ture.

Single drone operations

Author Year Problem # L R # visits E ST Objective
Drone per trip

Dorling et al. 2016 MC-DDP d W W multiple X X DC
MT-DDP

Cheng et al. 2018 MTDRP d W W multiple X X DCnE

Song et al. 2018 UAVRP d W W multiple X X DD

Sundar and Rathinam 2014 FCURP 1 W W 1 X DT

Boone et al. 2015 mTSP d W W 1 AvgLT

2.2 Drone Applications
Although most drone applications involving health care are directly related to

delivery, in this section, we approach the importance of drone delivery to health insurance,
law enforcement, and agriculture instead of the logistic aspect. Drones offer various exciting
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possibilities to the health care industry, possibilities that help save money and lives. As
previously reported, drones can make it possible to deliver blood, vaccines, snakebite
serum, and other medical supplies to rural areas and have the ability to reach victims who
require immediate medical attention within minutes. They can transport medicine within
hospital walls, courier blood between hospital buildings, and give elderly patients tools to
support them as they age in place.

A partnership between Zipline, a Silicon Valley robotics company, and Rwanda’s
health ministry has delivered more than 5,500 units of blood over 2017, often in life-
saving situations. Never before have patients in the country received blood so quickly and
efficiently. When a doctor or medical staff at one of the clinics needs blood, they send
a message or log on to Zipline’s order site. Then, they are sent a confirmation message
saying a Zip drone is on its way. The drone flies to the clinic at up to 60 mph. When it is
within a minute of the destination, the doctor receives a text. The drone then drops the
package, attached to a parachute, into a particular zone near the clinic before returning to
base (McVeigh, 2018; Scott and Scott, 2017; Glauser, 2018).

The use of a drone in law enforcement is a vast area of research and technology
development. Drones can help monitor perimeters, parking lots, prisons, college campuses,
stadiums, and other outdoor venues. Employing a thermal imaging camera makes this
possible at night as well. Security teams can inspect and monitor roofs and other high
places from the ground with drones. Drones also can analyze images and use audio and
video sensors to listen for gunfire and explosions. Dozens of drones were authorized by the
Federal Aviation Administration (FAA) to respond to hurricanes Harvey, Maria, and Irma,
to monitor levees and measure damage, allowing them to get an aerial view of the disaster
and determine which areas to prioritize for assistance.

In agriculture, drone images are employed to estimate the degree and extent of
plant utilization, monitor nutrients, moisture levels, and measure crop issues like disease,
pest problems, weeds, and water-stress (Quilter and Anderson, 2001; Zhang and Kovacs,
2012). While the potential for drone employment in agriculture is significant, there are still
several notable drawbacks to their progression beyond the niche market they occupy today.
There are well-known technical problems for small drones such as engine power, short flight
duration, difficulties in maintaining flight altitude, aircraft stability, and maneuverability
in winds and turbulence. Most applications of drone technology rely on its ability to
generate and deliver precise and accurate information to inform complementary activities
like crop analysis and monitoring. Consequently, data quality is crucial and should be
a core priority of drone use decisions. However, there are several known problems with
these cameras, including limited optical quality, zoom lenses, fully automatic focusing,
and, most notably for vegetation surveys, a lack of a near-infrared band (Probst et al.,
2018).
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These potential benefits and advantages do not come without their percentage of
risks and challenges, particularly when it comes to the complexities of enterprise security.
Some of these difficulties include: data crime, drones are just as exposed to hackers,
and security vulnerabilities as any other Internet of Things (IoT) device. Another issue
concerning drones is legislation. Global regulations are still in their infancy and have a
long process to fit the companies’ continuous desire to expand their applications. Drones
are susceptible to loss of control and collisions, and this can happen from a system failure
or frequency interference (Ludwig, 2018).

There are several new potential uses of drones, as we have seen in the previous
sections, in public and private sectors, and agriculture, commerce, environment, and health.
Given the growing interest and the ability for drones to be easily adapted for new areas
of application, as the technology advances, these robots may become more robust, with
the ability to accommodate heavier payloads and longer flight times. However, countries
have to establish robust and stable regulations concerning drones to provide safety to
the population. The work by Vacca and Onishi (2017) provides an excellent overview of
implications and consequences for an ever-expanding application and misuse of drones.
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3 Problem Definition

This chapter provides a definition of the Flying Sidekick Traveling Salesman
Problem (FSTSP) and Multiple Traveling Salesman Problem with Drones (mTSPD), along
with examples of solution to the problems.

3.1 Flying Sidekick Traveling Salesman Problem
The Flying Sidekick Traveling Salesman Problem (FSTSP) introduced by Murray

and Chu (2015) can be described as follows. Let C represent the set of all customer parcels,
such that C = {1, 2, . . . , c}. Let G = (V,A) be an undirected graph with |V | = c + 1
nodes. Each customer must receive exactly one delivery by either the delivery truck or the
drone. Nodes 0 and c+ 1 represent the depot, from which all vehicles must originate and
complete the service. This convention accommodates the case in which the origin depot
(0) and destination depot (c+ 1) have different physical locations.

For the FSTSP we consider a single drone and a single truck to perform all the
deliveries. The two vehicles (drone and truck) may depart and return from the depot either
in tandem or independently. While traveling in tandem, the drone is transported by the
truck to conserve battery.

The truck acts as a mobile depot and recharging platform for the drone. A drone
is capable of carrying one parcel at a time. The drone may be launched from the depot
(node 0) or from the truck at any customer location. While the drone can be launched
multiple times, it cannot be launched from the same location more than once. A drone
can be retrieved at the depot or by the truck at a customer location, but it cannot be
retrieved at the same customer location from which it was launched. The truck can visit
multiple customers between the launch and retrieval of the drone. The truck must depart
from node 0, and return to node c+ 1. The set of nodes from which a vehicle may depart
is represented by N0 = {0, 1, ..., c}, while N+ = {1, 2, ..., c+ 1} describes the set of nodes
a vehicle may retrieve.

An important definition for the problem is operation. An operation consists of
combined nodes, a launch node (i ∈ N0), return node (j ∈ N+), at most one node served
by drone (k ∈ C), and potentially several nodes served by truck ({vi, . . . , vj} ∈ C). In an
operation, a drone departs from a truck at customer i, serves customer k, and meets up
with the truck at the return node j (i 6= j 6= k). We assume that when a drone launches,
the delivery is successful. Before launch, a setup time sL is required to change the drone’s
battery and loads the vehicle with a parcel. An additional setup time sR is needed in
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Figure 1 – Spacial FSTSP representation.

node j (return node) to recover the drone. The time to traverse edge (i, j) is defined as tCij
and tDij for truck and drone, respectively. The truck can travel directly from the launch
node i to the return node j or can visit any number of nodes in between, as long as the

time travel does not exceeds the drone maximum flight range
(

j∑
l=i
tCl,l+1 ≤ e

)
. The vehicle

which arrives first at the return node must wait for the other. Further, the drone must not
run out of energy before returning to the truck. The drone can carry and deliver only one
parcel per operation, while no limit is imposed on the truck’s capacity.

The parameters dC
ij and dD

ij define the distance required to travel from node i ∈ N0

to node j ∈ N+ by truck and drone, respectively. The vehicles do not necessarily follow
the same distance metric. The truck is limited to the road network, while the drone
can use a different network to travel between customers. Hence we may consider that
dD

ij ≥ dC
ij : ∀i, j ∈ N , without loss of generality.

Parameter α is the ratio of drone speed to truck speed, the truck velocity is 1
(vT = 1) and the drone is α times the velocity of the truck (vD = α × vT ). We assume
the vehicles travel at constant speed, thus the time required to travel from customer i to
customer j is tCij = dC

ij

vT to the truck and tDij = dD
ij

vd to the drone. Since we assume that α ≥ 1
and dC

ij ≥ dD
ij : ∀i, j ∈ N , we may conclude that tCij ≥ tDij : ∀i, j ∈ N .

The FSTSP objective is to minimize the time required to complete all deliveries
and return both vehicles to the depot.

In Figure 1, the gray nodes are the customers served by the drone. The continuous
lines describe the truck route, while the dashed lines are the drone path. We can observe
three different operations in Figure 1. Operations (1,5,7) and (9,4,10) in which the truck
visits only one customer after launching the drone. Operation (10, 14, 11) that the truck
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visits multiple customers during the drone delivery. Finally, in operation (11,2,0), the
drone and the truck return to the depot independently.

3.2 Multiple Traveling Salesman Problem with Drones
The Multiple Traveling Salesman Problem with Drones (mTSPD) is a generalization

of the FSTSP. While the FSTSP considers a single drone and truck, the mTSPD considers
a fleet of trucks and drones to deliver goods to a predefined number of customers.

Let consider M a homogeneous fleet of trucks with infinite capacity and D a fleet
of drones with a maximum flight range of e distance units per operation and a payload
capacity of one unit. Each vehicle m ∈M is assigned with an equal number of D′ drones.
Each customer must receive exactly one delivery by either one of the delivery trucks from
set M or by one of the drones denoted by the set D. Each truck m ∈M carries D′ drones
from set D. Drones must return to the same truck it was launched. Exchange of drones
between trucks are not allowed.

All constrains approached in Section 3.1 to the FSTSP are valid for the mTSPD.
Figure 2 illustrates a solution to the mTSPD. In this example, M = M1,M2,M3,M4,
D = 1, 2, 3, 4, 5, 6, 7, 8, and D′ = 2, i.e., we have a set of four trucks and two drones per
truck performing the deliveries. The goal of mTSPD is to minimize completion time, i.e.,
the elapsed time from the first departure of a vehicle from the depot until the return of
the last vehicle to the depot.

Figure 2 – Spacial mTSPD representation.
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4 Mathematical formulations

In this chapter we present two mathematical formulations for the Flying Sidekick
Traveling Salesman Problem (FSTSP). A compact model is presented in Section 4.1 while
a model with an exponential number of variables is presented in Section 4.2. Table 5
presents the notation employed in the presentation of both formulations.

Table 5 – Sets and input data utilized within the formulation

V vertex set including the depot and the n customers, V = {v0, . . . , vn}
V ′ vertex set excluding the depot, V ′ = V \{v0}
A arc set
D set of possible drone paths (i, k, j) formed by two arcs, (i, k) and (k, j)

that respects the drone’s maximum endurance
L set of possible position for truck visits, L = {0, . . . , n}
e drone flight endurance time
sL setup time for launching the drone
sR setup time for returning the drone
τi,j time required by the truck to traverse arc (i, j)
τD

i,k,j time required by the drone to traverse arcs (i, k) and (k, j)
M upper bound for the time required by the truck to visit all customers

4.1 Compact model
This section proposes a compact Mixed Integer Programming (MIP) formulation

for the FSTSP. A paper is in processing to be published, this is a fragment of the text
that can be found in Freitas et al. (2021).

As with the problem description in Chapter 3, a graph G = (V,A) is considered
to represent the problem. Note in Table 5 that L is the set of possible position for the
truck to visit a customer. It is defined such that L = {0, . . . , n}, where n is the number of
customers. This set contains indices used to select the order in which the customers are
visited. The customers’ visiting order is crucial to synchronize the truck and the drone.

The formulation considers three variable sets:

t` : variable that defines the total travel time until position `;

x`
i,j : binary variable equal to 1 if the truck traverses arc (i, j) at position `, and 0

otherwise;
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y`,`′

i,k,j : binary variable equal to 1 if the drone traverses arcs (i, k) and (k, j), launching
from vertex i at position ` and returning to the truck in vertex j at position `′ > `,
and 0 otherwise.

At first sight, the number of variables may seem prohibitively significant. However,
in practice, this number can be considerably reduced by filtering variable sets x and y
to consider only feasible connections, meaning only (i, j) ∈ A and (i, k, j) ∈ D should be
considered. Moreover, despite requiring more variables, the formulation here proposed
yields much better linear relaxation lower bounds than the formulations proposed by
Murray and Chu (2015) and Ponza (2016) for all instances considered (computational
results are presented in Section 6.1).

The formulation is presented by Equations (4.1)–(4.15). To simplify the notation
and reduce the constraints length, we assume x`

i,j = 0 for all (i, j) /∈ A and, analogously,
y`,`′

i,k,j = 0 for all (i, k, j) /∈ D and all nonexistent positions pairs (`, `′) with ` ≥ `′. Note
that our implementation does not generate such variables.

min. tn+1 (4.1)

s.t.
∑
j∈V

x0
v0,j =

∑
j∈V

∑
`∈L\{0}

x`
j,v0 = 1 (4.2)

∑
j∈V

∑
`∈L

x`
i,j =

∑
j∈V

∑
`∈L

x`
j,i ≤ 1 ∀i ∈ V (4.3)

∑
j∈V

x`−1
j,k =

∑
j∈V

x`
k,j ∀k ∈ V ′, ` ∈ L\{0} (4.4)

∑
(i,j)∈A

x`
i,j ≤ 1 ∀` ∈ L (4.5)

∑
(i,k,j)∈D

∑̀
l=0

n∑
l′=`+1

yl,l′

i,k,j ≤ 1 ∀` ∈ L (4.6)

∑
j∈V

∑
`∈L

x`
k,j +

∑
i∈V

∑
j∈V

∑
`∈L

∑
`′∈L

y`,`′

i,k,j = 1 ∀k ∈ V ′ (4.7)

∑
k∈V ′

∑
j∈V

∑
`′∈L

y`,`′

i,k,j ≤
∑
j∈V

x`
i,j ∀i ∈ V, ` ∈ L (4.8)

∑
i∈V

∑
k∈V ′

∑
`∈L

y`,`′

i,k,j ≤
∑
i∈V

x`′−1
i,j ∀j ∈ V, `′ ∈ L (4.9)

t`
′ − t` ≤ e+M

1−
∑

(i,k,j)∈D

y`,`′

i,k,j

 ∀` ∈ L\{0}, `′ ∈ L : `′ > ` (4.10)

t` ≥ t`−1 +
∑

(i,j)∈A

τi,jx
`′−1
i,j +

∑
(i,k,j)∈D,

`>1

n∑
l′=`

sLy`−1,l′

i,k,j +
∑

(i,k,j)∈D

`−1∑
l=1

sRyl,`
i,k,j

∀` ∈ L\{0} ∪ {n+ 1} (4.11)
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t`
′ ≥ t` +

∑
(i,k,j)∈D

(
sL + τD

i,k,j + sR
)
y`,`′

i,k,j ∀`′ ∈ L\{0}, ` ∈ L : ` < `′ (4.12)

t0 = 0 (4.13)

x`
i,j ∈ {0, 1} ∀(i, j) ∈ A, ` ∈ L (4.14)

y`,`′

i,k,j ∈ {0, 1} ∀(i, j, k) ∈ D, ` ∈ L, `′ ∈ L : `′ > `

(4.15)

The objective function presented by Equation (4.1) minimizes the total time to visit
all customers, given by the sum of the truck’s traveling time and all required setup times
to launch and collect the drone. Constraints (4.2) ensure the truck leaves the depot at the
position zero and returns to it at the tour’s end. Constraints (4.3) limit the number of
truck visits to any customer to one. Constraints (4.4) are flow preservation constraints that
force the truck to leave a customer at the next position of its visit. Constraints (4.5) limit
the number of arcs traversed at each position to at most one. Constraints (4.6) prohibit
launching the drone more than once in overlapping time windows (given by l and l′) and
therefore assert the drone is not launched when it is not with the truck. Note that l and l′

cover all time windows, including position `. Constraints (4.7) guarantee every customer is
visited exactly once, either by truck or by drone. Constraints (4.8) and (4.9) synchronize
the truck’s position with the drone’s launch and return, respectively. Constraints (4.10)
certify that the drone’s endurance is respected. Note that these constraints employ a ‘Big
M ’, which disables the constraint whenever the drone is not launched. The value of M
is set to an upper bound1 on the time at which both the drone and the truck return to
the depot. Also, the truck’s travel time is not considered for endurance when the drone
launches from the depot (when ` = 0). Constraints (4.11) update the travel time until
position ` considering the truck’s route. Eventual setup times sL and sR of launching and
returning the drone, respectively, are considered. Similarly, Constraints (4.12) ensure the
travel time until position ` includes the time traveled by the drone and eventual setup
times sL and sR. Therefore, time t` of any position ` > 0 considers the travel time of both
truck and drone, whichever is larger. Constraint (4.13) sets the total travel time at the
first position to zero and, finally, Constraints (4.14) and (4.15) declare the binary nature
of variables x and y.

4.2 Model with an exponential number of variables
In this section, we propose an alternative formulation for the FSTSP which considers

all possible paths P that the truck can travel without the drone. For simplicity, let βp

be the truck travel time to traverse path p, and let Pi,j ⊆ P be the subset of paths in
1 The upper bound was obtained by a simple Nearest Neighbor constructive heuristic, and its value is

available as part of Ponza (2016) instances.
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P which starts at vertex i and ends at vertex j. In total, the formulation considers four
variable sets:

xi,j : binary variable equal to 1 if the truck travels from vertex i to vertex j using
some path p ∈ Pi,j, and 0 otherwise;

yi,k,j : binary variable equal to 1 if the drone traverses arcs (i, k) and (k, j), launching
from vertex i and returning to the truck in vertex j, and 0 otherwise;

ti,j : variable that defines the total travel time from vertex i to j, considering the
service time;

λp : binary variable equal to 1 if the truck traverses path p ∈ P , and 0 otherwise;

Figures 3 and 4 show two examples of λ variables. In Figure 3 one can see the
meaning of λp with p = (3, 1, 2, 4), while Figure 4 shows the meaning of variable λp when
p represents the path (3, 4).

Figure 3 – Representation of variable λ(3,1,2,4).

Figure 4 – Representation of variable λ(3,4).

Note that there may be a prohibitively large number of λ variables, since there
may be too many paths the truck can perform to visit the customers without carrying the
drone. To circumvent this issue, initially only paths consisting of one edge (or two vertices)
are created. Paths containing additional vertices are created on demand by solving a
pricing problem in a column generation scheme that will be discussed in Section 4.2.1.

Formulation (4.16)–(4.27) presents a mathematical model for the FSTSP which
uses an exponential number of variables λ.

min.
∑

(i,j)∈A

ti,j +
∑

(i,k,j)∈D

(sL + sR)yi,k,j (4.16)

s.t.
∑
j∈V

x0,j =
∑
j∈V

xj,0 = 1 (4.17)

∑
j∈V

xi,j =
∑
j∈V

xj,i ∀i ∈ V (4.18)

∑
k∈V ′

yi,k,j ≤ xi,j ∀(i, j) ∈ A (4.19)
∑
i∈S

∑
j∈S

xi,j ≤ |S| − 1 ∀S ⊆ V ′, |S| ≥ 2 (4.20)
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∑
k∈CD

tDi,k,jyi,k,j ≤ ti,j ∀(i, j) ∈ A (4.21)

∑
p∈Pi,j

βpλp ≤ ti,j ∀(i, j) ∈ A (4.22)

∑
i∈V

∑
j∈V

∑
p∈Pi,j |k∈p

λp +
∑
i∈V

∑
j∈V

yi,k,j = 1 ∀k ∈ V ′ (4.23)

∑
p∈Pi,j

λp = xi,j ∀(i, j) ∈ A (4.24)

xi,j ∈ {0, 1} ∀(i, j) ∈ A (4.25)

yi,k,j ∈ {0, 1} ∀(i, k, j) ∈ D (4.26)

λp ∈ {0, 1} ∀p ∈ P (4.27)

The objective function presented by Equation (4.16) minimizes the total time to
visit all customers, given by the sum of the truck’s travel time and the setup times sL and
sR of launching and returning the drone. Constraint (4.17) ensures that the truck leaves
the depot and returns only once. Constraints (4.18) are flow preservation constraints that
force the truck to leave a customer right after of its visit. Constraints (4.19) synchronize
the truck’s position with the drone’s launch and return, i.e., the drone only launches and
returns to vertices visited by the truck. Constraints (4.20) ensure the non existence of
sub-routes. Constraints (4.22) and (4.21) update route time based on the truck and the
drone travel time, respectively. Constraints (4.23) guarantee every customer is visited
exactly once, either by truck or drone. Constraints (4.24) set λp the values of xi,j and,
finally, Constraints (4.14) to (4.27) declare the binary nature of variables.

4.2.1 Solving the formulation

Hereafter, we present the column generation scheme employed to solve the linear
relaxation of formulation (4.16)–(4.27).

First the integrality constraints (4.25), (4.26) and (4.27) are relaxed, and only λ
variables which consider paths p ∈ P containing exactly two vertices are generated. This
results in a feasible restricted master problem. Afterwards, a classic column generation
algorithm is executed (Leventhal et al., 1973). The restricted master problem is solved
and, next, one or more paths p ∈ P which result in variables λ with negative reduced
costs are generated. These variables are then added to the restricted master problem.
The procedure repeats until no variable with negative reduced cost can be obtained.
Once the linear relaxation is solved, the resulting solution may be fractional. In this case,
a branch-and-price algorithm is employed which branches on variables x and y. Note
that branching on these variables considerably simplify the branch-and-price algorithm
(Savelsbergh, 1997), as it only requires removing certain paths from the problem.
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The pricing problem

The pricing problem consists in obtaining a path p ∈ P which yields a variable
λ with negative reduced cost considering the current solution of the restricted master
problem. To formally present the pricing problem as an integer programming formulation,
the following notation will be used:

zi,j : binary variable equal to 1 if the truck traverses arc (i, j), and 0 otherwise;

wi,j : binary variable equal to 1 if the truck path starts at vertex i and ends at vertex
j, and 0 otherwise;

βi,j : variable that defines the truck travel time to go from vertex i to vertex j,
considering the service time;

δi,j : shadow price associated with Constraint (4.22) for pair (i, j), which computes
the truck travel time between vertices i and j;

γk : shadow price associated with Constraints (4.23) for customer k, which is re-
sponsible for selecting either truck or drone to perform the delivery for the
customer;

µi,j : shadow price associated with Constraint (4.24) for pair (i, j).

Formulation (4.28)–(4.38) presents the pricing problem.

min. −
∑

(i,j)∈A

δi,jβi,j −
∑
i∈V ′

∑
j∈V

γizi,j −
∑

(i,j)∈A

µi,jwi,j (4.28)

s.t.
∑

(i,j)∈A

tCi,jzi,j ≤ e+ sL + sR (4.29)

∑
(i,j)∈A

wi,j = 1 (4.30)

∑
i∈V

zi,j −
∑
i∈V

zj,i =
∑
i∈V

wi,j −
∑
i∈V

wj,i ∀j ∈ V (4.31)

βi,j ≥
∑

(k,l)∈A

tCk,lzk,l −M(1− wi,j) ∀(i, j) ∈ A (4.32)

βi,j ≤Mwi,j ∀(i, j) ∈ A (4.33)∑
j∈V

z0,j ≤
∑
j∈V

w0,j (4.34)

∑
j∈V

zj,0 ≤
∑
j∈V

wj,0 (4.35)

∑
i∈S

∑
j∈S

zi,j ≤ |S| − 1 ∀S ⊆ V ′, |S| ≥ 2 (4.36)

zi,j ∈ {0, 1} ∀(i, j) ∈ A (4.37)
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wi,j,∈ {0, 1} ∀(i, j) ∈ A (4.38)

The objective function (4.1) minimizes the travel time of the truck considering
the shadow prices δi,j, γi and µi,j. Constraint (4.29) guarantees the drone’s endurance is
respected. Constraint (4.30) ensures creation of only one truck path starting at vertex i
and ending at vertex j. Constraints (4.31) are flow preservation constraints. Constraints
(4.32) and (4.33) set βi,j the truck path time. Note that these constraints employ a ‘Big
M’, which disables the constraint whenever the truck does not start its path at vertex
i and ends at j. Constraints (4.34) and (4.35) ensure that the deposit (vertex 0) only
appears as the first or last vertex of a path. Constraints (4.36) assure that there is no
sub-route in the generated path. Finally, Constraints (4.37) and (4.38) state the binary
nature of z and w variables, respectively.

We employ a simple heuristic to quickly obtain solutions for the pricing problem,
and formulation (4.28)–(4.38) is used only when the heuristic cannot find feasible columns
with negative reduced cost. This heuristic considers a weighted graph G = (V,A), and
aims at finding a path starting at a vertex k ∈ V and ending at a vertex ` ∈ V which
results in a column with negative reduced cost. To be feasible, such a path must not
exceed the drone endurance. Moreover, note that a pair of source and sink vertices (k, `)
must be selected. Therefore, the heuristic iterates over all pairs (k, `) ∈ A, beginning by
those with largest µk,` values. At each iteration, the weight of edges (i, j) ∈ A are updated
to ωi,j = −γi − tCi,jδk,` and a shortest path problem is solved considering vertex k as the
source and vertex ` as the sink. If a feasible solution with cost smaller than µk,` is obtained,
it is returned. The loop is performed until such a solution is obtained or all vertex pairs
(k, `) ∈ A are evaluated.

Restricted master problem solution construction

To demonstrate the solution construction, we present an example. Let’s assume
that Formulation (4.28)–(4.38) resulted in the creation of variable λ(4,3,1), illustrated by
Figure 5a. The restricted master problem is then updated with the addition of this new
variable. After solving the problem, a new solution to the FSTSP considering variables x
is obtained, shown by Figure 5b. Note that vertex 3 is missing from the solution. That is
expected since vertex 3 is not considered by variables x, being instead part of the path of
variable λ(4,3,1). Therefore, the paths given by variables λ must be considered to create the
complete solution, given by Figure 5c.
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(a) Generated λ(4,3,1) (b) Solution considering only variables x and y

(c) Solution considering variables λ and y

Figure 5 – FSTSP problem solution
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5 Heuristic Method

We start this chapter by explaining the data structures adopted in the heuristic
implementation (Section 5.1). In Section 5.2 the initial solution is fully detailed. The
implementation of the General Variable Neighborhood Search is reported in Section 5.3
along with the description of the neighborhoods. Finally, in Section 5.4 the solution
evaluation process is outlined in the possible ways it can be performed.

5.1 Data Structure
Employing the correct data structure is crucial to have a fast and efficient algorithm

that can run a significant number of iterations in a reasonable amount of time. Being
able to have efficient processing is related to the algorithm time complexity, and the
employment of the most appropriate representation may impact saving time in the long
run.

At first, the evident approach is an array representing the truck tour and a triple
of values representing the drone trip (launch, visit, return). However, the launch value
would constitute redundant information already stored in the truck solution. Therefore,
inspired in the data structure employed by Ponza (2016), the truck’s route is represented
by array t and the drone’s by dV , dR, dI . All arrays have the same size. Array dV stores
the customer visited only by the drone. Array dR indicates the returning position of the
drone. Finally, array dI represents the truck customers between the launch and return of a
drone.

To better understand the solution representation, observe Figure 6 that illustrates
the mTSPD. Figure 6a represents the delivery route and Figure 6b is the delivery route
represented as the arrays solution. There are two operations in the route. We will analyze
the second operation, which is composed of customers 〈7, 4, 2, 6〉.
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(a) Route representation of single truck carrying single drone.
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(b) Data structure employed to represent the mTSPD.

Figure 6 – mTSPD solution representation.

• Customer 7 - index 3: Location where a drone is launched from a truck.

• Customer 4 - index 4: Only customer between a drone launch and return

• Customer 2 - index 5: Location where a drone return to a truck.

• Customer 6: Customer visited by drone.

The drone was launched from customer 7, which can be represented in array t by
index = 3. Array dV position 3 is then filled with the correspondent customer visited by
the drone, in this case, customer 6. In the same position (index = 3), dR stores index 5,
indicating the drone return index, i.e, the drone operation ends at node 2 index = 5. Finally,
array dI describes the nodes visited by the truck alone. For every position 3 < index < 5,
array dI is filled with index 3, to indicate the nodes visited by the truck while the drone
was on a trip. The values in the array indicate where the operation began, i.e., where the
drone was launched.

5.2 Initial Solution
The initial solution to the mTSPD is obtained with a multi-start procedure that

executes two different approaches, the Route First Cluster Second (RFCS) (Beasley, 1983)
and the Cluster First Route Second (CFRS) (Garside and Laili, 2019), and returns the
best solution. The CFRS heuristic is an approach to vehicle routing problems in which
problem decomposition is used to tackle the fact that the VRP is NP-Hard. The problem
is decomposed into subproblems where each is a TSP. The challenge is to build groups
such that the route distances sum is minimized in each cluster (Fisher and Jaikumar,
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1981). The RFCS approach is ideally applied to problems with an unrestricted number of
vehicles with capacity constraint (Beasley, 1983), as new trucks only will be allocated if
there is no space left in the trucks already in use. However, even with a fixed number of
vehicles is simple to partition a tour into a set of vehicle routes near-optimally.

The multi-start reported in Algorithm 1 requires two arguments: maxIter and δ.
Parameter maxIter indicates the maximum number of iterations the method can perform.
In the classical VRP, the vehicles can visit a restricted number of customers per tour
because of their limited capacity. Capacity constraints can be combined with well-known
shortest path algorithms as Bellman (1958) and Dijkstra (1959). The mTSPD addressed
in this work neglect the trucks’ capacity, making the split algorithm not straightforward to
apply in the mTSPD. Therefore, to balance the number of customers per vehicle, the truck
with the highest number of customers and the smallest may have a maximum difference δ.

The algorithm begins with a loop (line 2) that selects the method to be performed
(line 3). Followed by a switch statement that checks which approach was chosen, executes
it, and the solution is saved in S (lines 5 – 10). If the best solution S∗ is improved, it is
updated (lines 11 and 12). Finally, the best solution obtained is returned once the main
loop finishes (line 14).

Algorithm 1: Multi-Start Initial Solution
1 initialSolution (maxIter, δ)
2 for i ← 0 to maxIter do
3 approach ← randomly choose between RFCS and CFRS;
4 nCustomerPerTruck ← divideCustomers(δ);
5 switch approach do
6 case RFCS do
7 S ← RFCS(nCustomerPerTruck);
8 case CFRS do
9 S ← CFRS(nCustomerPerTruck);

10 end
11 if f(S) < f(S∗) then
12 S∗ ← S;
13 end
14 return S∗;

In what follows, we detail how the Route First Cluster Second and Cluster First
Route Second algorithms were implemented. Beasley (1983) proposed the Route First
Cluster Second approach. The method first creates a giant tour from the depot visiting
all customers and back to the depot, i.e., a TSP tour around all customers, including the
depot. Then, the tour is portioned into several routes, one for each truck. Algorithm 2
describes the Route First Cluster Second method. The first step of the algorithm is to
calculate the TSP tour (line 2). Afterward, a loop starts at line 5 to fulfill the trucks with
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the number of customers stored in parameter nCustomerPerTruck. In each iteration,
a customer tourc is added to vehicle t and index c is incremented in one unit to go to
the next customer in the tour (lines 7 and 8). At the end of the algorithm, the route is
returned (line 11).

Algorithm 2: Route First Cluster Second
1 RFCS (nCustomerPerTruck)
2 tour ← calcTSP();
3 c ← 0;
4 s ← ∅;
5 foreach t ∈ nTruck do
6 while c ≤ nCustomerPerTruckt do
7 st ← st ∪ tourc ;
8 c ← c + 1;
9 end

10 end
11 return s;

When applying the Cluster First Route Second approach, the original problem
is decomposed into smaller subproblems by first building groups with the customers.
The customers in each group are routed. The routing is the well-known TSP. In general,
petal-shaped routes are a common geometric feature in VRP solutions (Ryan et al., 1993).
Optimal solutions exhibit a geometric structure for many problems, although finding the
optimal solution is still NP-hard. Clustering methods that encourage such features can
be useful to find good solutions for practical-sized problems. In this work, we applied the
Sweep Algorithm introduced by Gillett and Miller (1974).

The Sweep algorithm employs polar coordinates and consists of two stages. The
first stage is called split, where clusters are built by rotating a ray centered at the depot,
as shown in Figure 7. The circles represent the customers, and the straight lines are the
sweep hand that moves anti-clockwise. Each group joins the closest nodes to the depot,
i.e., the nodes with the smallest angle until it satisfies a certain number of customers per
cluster. The process finishes when all nodes are included in a cluster.
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Figure 7 – Clustering Process.

The second stage of the Sweep Algorithm is to generate the routes, i.e., link all
nodes in every cluster, starting and ending at the depot. The result of this process is a
cycle connecting all nodes in the cluster. At this stage, we need an algorithm to tackle
the TSP to build the route. We applied the Nearest Neighborhood (NN) algorithm in
each cluster to create the route, which is later described in this section. The Nearest
NeighborhoodNN is possibly the most straightforward TSP heuristic; it can be coded to
have time complexity O(n2) and generates solutions often 25% from optimality (Nilsson,
2003).

Algorithm 3 illustrates the process. The function receives as a parameter a single
array, nCustomerPerTruck, that indicates the number of customers in the clusters. As
a result, the algorithm returns the customers of each cluster (line 18). In line 2 variable
t indicates which truck is being processed. In line 4, one calculates the angle of each
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customer concerning the depot and then sorted in increasing order.

Algorithm 3: Cluster First Route Second
1 CFRS (nCustomerPerTruck)
2 t ← 0;
3 i ← 0;
4 customers ← sort(calcAngles());
5 while i < n and t < nTrucks do
6 loadCustomers ← 0;
7 cluster ← ∅;
8 while loadCustomers ≤ nCustomerPerTruckt do
9 clusters ← cluster ∪ customersi;

10 loadCustomers ← loadCustomers+1;
11 i ← i+1;
12 end
13 if (ConcordeSolution(clustert)) then
14 NearestNeighbor(clustert);
15 end
16 t ← t+1;
17 end
18 return clusters;

The main loop is executed until all customers are explored (line 5 – 17). The
variable loadCustomer, initialized in line 6, indicates how many customers are in cluster t
at each point of the algorithm. In each iteration of the inner loop (line 8 – 12) a customer
from customers is added to the current cluster (line 9), until loadCustomer reaches
nCustomerPerTruckt. After a cluster is complete, the set of customers t is passed to
Concorde (Applegate et al., 1996) find a valid tour. If Concorde cannot find a solution
in 5 seconds, than, the Nearest Neighborhood algorithm is performed to built the route
(line 15).

In what follows, we give a thorough description of obtaining the customers’ angles
and building a truck tour. Algorithm 4 shows how to calculate the angles for each customer
coordinate. First, the reference point (depot) and angle are set (lines 2 to 4). Next, a loop
(line 5) is responsible for determine the angle of each customer. Since the depot is our
reference, we need to calculate the difference between the Cartesian coordinates vi and
the depot (lines 6 and 7). The angle is determined by tan−1(y/x). Since the customers
can be in any quadrant, the angle value may be summed up with 180 or 360. If both x
and y are greater than or equal to 0, the point is in the first quadrant, and nothing has to
be done (line 8). If x is less than 0 and y is greater (less) than 0, then the point is in the
second (third) quadrant and 180 has to be added to the arctangent value (lines 10 and
12). Lastly, if x is greater than 0 and y is less than 0, the point is in the fourth quadrant.
Therefore, 360 is summed to the arctangent value (line 14). At the end of each iteration,
the tuple (angle, index) is added to the set customers.
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Algorithm 4: Calculate customers cartesian coordinates
1 calcAngles ()
2 xDepot ← v0.x;
3 yDepot ← v0.y;
4 customers ← ∅;
5 for i← 1 to n do
6 x ← vi.x - xDepot;
7 y ← vi.y - yDepot;
8 if x ≥ 0 and y ≥ 0 then
9 θ ← arctan(y/x); /* first quadrant */

10 else if x < 0 and y > 0 then
11 θ ← arctan(y/x) + 180; /* second quadrant */
12 else if x < 0 and y < 0 then
13 θ ← arctan(y/x) + 180; /* third quadrant */
14 else if x > 0 and y < 0 then
15 θ ← arctan(y/x) + 360; /* forth quadrant */
16 customers ← customers ∪ (θ, i);
17 end
18 return customers;

The route generation works as reported in Algorithm 5. For each cluster built in
the first stage, the Nearest Neighborhood algorithm is performed to find a TSP tour. The
first node selected is the depot (v0) (line 2). Afterward, a loop starts visiting all nodes
until there are no remaining ones. In each iteration, a node (lastV isited) is inserted into
the solution (line 4), then it is immediately removed from the array cluster to prevent
duplicate nodes from appearing in the solution (line 5). Later, the nearest unvisited node
from the array nearestNode is selected and added to the solution in the next iteration
(line 6).

Algorithm 5: Nearest Neighborhood
1 NearestNeighborhood (cluster)
2 nearestNode ← 0;
3 while cluster 6= empty do
4 S ← S ∪ {nearestNode};
5 cluster ← cluster \ {nearestNode};
6 nearestNode ← findNearest(cluster, nearestNode);
7 end
8 return S;

5.3 General Variable Neighborhood Search
VNS is a flexible framework for building heuristics to approximate solutions of

optimization problems. It was introduced by Mladenović and Hansen (1997), and its main
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idea is to systematically change neighborhood structures during the search for an optimal
(or near-optimal) solution. According to the authors, the foundations of VNS are based on
the following properties: (i) a local optimum relative to one neighborhood structure is not
necessarily a local optimum for another neighborhood structure; (ii) a global optimum is a
local optimum concerning all neighborhood structures; (iii) for many problems, empirical
evidence shows that all local optima are relatively close to each other.

The Variable Neighborhood Descent (VND), proposed by Mladenović and Hansen
(1997), is a local search that explores the search space through systematic changes of
neighborhood structures in a deterministic way. The process iterates over each neighborhood
while improvements are found. Only strictly better solutions are accepted after each
neighborhood search. According to Penna et al. (2013) the use of a randomized order led,
on average, to better results when compared to the deterministic method. Several papers
(Souza et al., 2010; Subramanian et al., 2010; Kramer et al., 2016; Penna et al., 2017)
are applying the randomized VND method to explore the neighborhoods instead of a
deterministic ordering. With the potential presented by Randomized Variable Neighborhood
Descent (RVND) in the previous works, we decided to employ the RVND as the local
search procedure. Algorithm 6 shows the proposed VND, which differs from the classical
one only by Line 2 that randomly sort the neighborhood list.

Algorithm 6: Randomized Variable Neighborhood Descent
1 VND (S)
2 N ← Shuffle Neighborhood List;
3 S* ← S;
4 p← 1;
5 while p ≤ | N | do
6 S′ ← Find the best neighbor s′ ∈ N(k)(s);
7 if f(S′) < f(S∗) then
8 S∗ ← S′;
9 p ← 1;

10 end
11 else
12 p← p+ 1
13 end
14 end
15 return S*;

The General Variable Neighborhood Search (GVNS) described in this work is the
VNS using VND as local search. The choice concerning the use of GVNS comes from the
recently less is more approach (LIMA) proposed in Mladenović et al. (2016). LIMA ’s
main idea is to find the minimum number of search components when solving a specific
optimization problem, i.e., the goal is to make a heuristic as simple as possible. But at
the same time, more effective and efficient than the current state-of-the-art heuristic. The
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pseudo-code of the proposed GVNS heuristic is given in Algorithm 7. The whole process
is repeated until the imposed time limit of tmax seconds is reached (the outer loop that
starts from line 3). Besides tmax, GVNS has pmax and ρ∗ parameters, which the former
defines the maximum number of iterations (see neighborhood loop that starts from line 4)
and the latter is the maximum perturbation level. The choice of tmax, pmax and ρ∗ values
will be described later in Section 6.

The GVNS is presented in Algorithm 7. It begins by setting the initial solution
(line 2), the shaking level ρ, and neighborhood count p to 1 (line 2). The main loop (line
3) first calls the shake procedure (line 5) followed by the local search VND (line 6). If
the solution produced by VND is better than the current best solution, the best solution
is updated, and the shaking level and the neighborhood count are reset to 1 (lines 7
– 11). Otherwise, the current solution is reset to the best solution (line 13). Next, the
perturbation level ρ and the neighborhood count are increased (lines 15 and 14) and the
loop repeated. Note that the given maximum perturbation level ρ∗ is never exceeded: ρ is
reset to 1 after ρ∗ is reached. Once the time limit is reached, the best solution produced is
returned (line 19).

Algorithm 7: GVNS heuristic to address the mTSPD
1 GVNS (S, tmax, pmax, ρ∗)
2 S* ← S; ρ ← 1; p ← 1;
3 repeat
4 while p < pmax do
5 S ← Shake(S, ρ);
6 S′ ← LS(S);
7 if f(S′) < S* then
8 S* ← S′;
9 p ← 1;

10 ρ ← 1;
11 end
12 else
13 S ← S*;
14 p ← p + 1;
15 ρ ← (ρ mod ρ∗) + 1;
16 end
17 end
18 until t < tmax;
19 return S*;

The shaking procedure is employed to avoid local optima traps generated by the
local search procedure. GVNS employs the Shake(S, ρ), presented in Algorithm 8. The
shaking procedure has two formal parameters: solution S, and shake intensity ρ. The
parameter ρ determines the number of iterations performed within the shaking procedure.
At each iteration a random move is selected (line 3) and applied to the current solution
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(line 4). After the moves are applied, the solution is returned inline 6.

Algorithm 8: Shake
1 Shake (S, ρ)
2 for i ← 0 to ρ do
3 N ← selected neighborhood structure;
4 S ← random neighbor N(S);
5 end
6 return S;

5.3.1 Neighborhood Structures

To explore the solution space of the mTSPD, we define seven neighborhood struc-
tures: Reinsertion, Swap, Shift(1,0), Shift(1,1), Relocate truck to drone, Swap truck drone,
Remove operation. All these structures are used in our GVNS algorithm and are described
and detailed as follows.

5.3.1.1 Reinsertion

The move is called reinsertion and is relatively complex, allowing us to explore
the neighborhood overall. There are three classifications for the customers in a generic
solution: mixed, drone-only, and truck-only. Drone-only customers are those visited only by
drones. Mixed customers are those where the drone launches or returns. Finally, truck-only
customers are customers served by the truck. The reinsertion move removes customer tai ,
i.e, the node in position i served by truck ta, and reinserts it in position j at the same
truck a If position j is under the drone operation dk, the truck path between launch and
return increases with the insertion of a new customer. Therefore the endurance constraint
may be violated as the drone could have to wait hovering for too long for the truck’s
arrival in the return node.

If customer tai launches a drone and j > i, then the drone trip may be reversed, as
shown in Figure 8. Customer 6, which was previously a launch node, becomes the return
node, and customer 3 is the new return of this operation. Therefore, the trip 〈3, 4, 6〉
becomes 〈6, 4, 3〉. Another important matter to notice in this example is that the reversed
drone trip increases the truck path and changes the intermediary customers, which implies
that the feasibility constraint may be violated and the move may not be performed.

Considering Figure 8b a different scenario emerges as position i is both return and
launch. In this situation, the move can only be performed if position j is between the
first launch (after customer 3) and the last return (before customer 8). Otherwise, the
operation is infeasible, as the reversed trip would result in a drone trip starting before the
end of a previous one.
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(a) Solution before reinsertion move.
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(b) Solution after reinsertion move.

Figure 8 – Example of the intra route neighborhood reinsertion.
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(a) Solution before relocate move.
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(b) Solution after relocate move.

Figure 9 – Possible route modifications involving mixed customers.

5.3.1.2 Swap

In the swap move (Osman, 1993) a customer tai swaps position with the customer
taj . This move can also results in reversing of a drone trip, as we can observe in Figure
10. The move is completed as long as the swap solution is feasible, i.e., the endurance
constraints were not violated, and a drone operation does not overlap an already existing
operation.

1 4 2 6
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00 5

(a) Solution before swap intra route move.

6 4 2 1

3

00 5

(b) Solution after swap intra route move.

Figure 10 – Example of swap intra route move.

5.3.1.3 Shift(1,0)

This is a inter route move, which customer tai is relocated to position j at truck
tb. The validation in the destiny truck tb is relatively simple. Since customer tai may be
relocated to a position j under an operation, we have to guarantee that the endurance
constraint is not violated with the increase of the truck delivery time. If it is the case that
the insertion of customer tai made the truck travel time longer than the endurance, then
the move is not completed.

In contrast with truck tb, when considering truck ta several scenarios arise. If tai is
not in a drone operation the move is fairly straightforward, as can be seen in Figure 11b,
where customer 9 from Truck #1 is moved to position 3 in Truck #2.

However, if tai is a launch or return node, a different situation occurs. When an
operation starts at i, a backward search (i− 1, . . . , 0) begins at node i− 1 and continues
until it finds a return node or the depot. The search stops at the first return node because
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an operation must start after the ending of a previous one. If the search does not find
a node to be the new launch, i.e., the travel time exceeds the endurance for each new
possible launch, then the move is not complete. In Figure 11a this would mean that if
customer 7 is removed from Truck #1, then a backward search would start at node 10,
and also end at node 10 since it is a return node. If the trip 〈10, 1, 3〉 was not feasible, the
move would not be completed. The same procedure is performed when tai is a return node;
however, instead of a backward search, it is a forward search (i, i+ 1, . . . , 0). Customer 10
is removed from its position, then starts a forward search at node 7 and ends at the same
node 7 as a launch node. As before, the move would be completed as long as the new trip
is feasible.
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Truck #2
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(a) Before the relocate move.
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(b) After the relocate move.

Figure 11 – Example of a solution before and after a relocate inter route move.

5.3.1.4 Swap(1,1)

In this move customer tai swaps position with customer tbj. This move is relatively
easy to implement. A node can become part of an operation or may cease being in an
operation, as shown in Figure 12, where node 4 was a return node in Truck #1, with the
swap in Truck #2 it is not part of an operation. On the other hand, customer 1 became
the return node of a drone trip.

5.3.1.5 Relocate truck to drone

The next move is an inter route move between truck and drone, meaning that
both vehicles are involved. Customer tai is relocated to drone dk

a, where dk
a is drone k

carried by truck a. This move removes customer tai and inserts it into drone dk
a, creating
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(b) Customer from Truck #1 and #2 exchange position.

Figure 12 – Example of a solution before and after a swap inter route move.

a new operation. As can be seen in Figure 13a, customer 5 was served by the truck, and
after the move in Figure 13b is served by the drone, and it was removed from the truck
route. In order to create an operation, triples composed of three distinct nodes, launch,
visit and return, are investigated until the solution quality is improved and the endurance
constraints are satisfied. Considering Figure 13b the inequalities τD

1,6,4 ≤ e and
3∑

i=1
τT

i,i+1 ≤ e

must be assured to complete the move.
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(a) Solution representation before move.
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(b) Solution representation with customer 5 be-
ing attended by drone.

Figure 13 – Move where a truck customer becomes a drone customer.

5.3.1.6 Swap truck drone

This move swaps a truck customer tai with a drone customer da
kj, meaning that

the customer in position j carried by the drone dk in truck a is now served by truck a
and customer tai is served by drone da

k. The move is complete as long as the endurance
constraints are still satisfied.
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(a) Solution before swap move.

0 1 34

2

06 5

(b) Route where customers 2 and 3 exchange
positions.

Figure 14 – Swap move where truck and drone exchange customers.

5.3.1.7 Remove operation

The remove operation move is the opposite of Relocate truck to drone move. This
move removes an operation, i.e., a drone customer is relocated back to the truck route. A
random drone customer da

ki is removed from the drone route and re-inserted in a random
position j in truck a. Note that customer da

ki is re-inserted in the same truck that carries
the drone. This move is only used in the shaking procedure, as it may increase the solution
value.
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(a) Original route with one drone operation.

0 3 42 5 01

(b) Route without drone operation.

Figure 15 – Move where a drone operation is removed.

5.4 Solution evaluation
The last topic to discuss concerning the heuristics is the solution evaluation. There

are two alternatives to evaluate a solution, a complete evaluation from the starting depot
to the end depot and a delta evaluation to find the solution cost after a move is performed.

The complete evaluation method is straightforward to code and provides consistent
results. However, it is by its nature redundant since it computes components of the solution
that stay untouched after a move. This characteristic makes the evaluation presents a
complexity of O(n2) in the best and worst-case scenarios. On the other hand, the delta
evaluation is O(1) in the best case and O(n2) only in the worst-case scenario.

Figure 16 shows a segment of a vehicle route. Let assume that the number of drones
D = 0, the vehicle k arrives at the depot after finishing its tour. Since the vehicle has not
to wait at any node, the time ak

n+1 is equal to the time required by the vehicle to serve
all customers. Now, consider D = 1, and a drone operation will be placed in the route,
such that the arrival time in Figure 17 is reduced. Furthermore, assume that we know the
arrival times at each node, a1, . . . , a6, respectively.
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Figure 16 – A segment of route.

Next, consider that we want to add the drone operation 〈1, 5, 6〉. As shown in
Figure 17, the drone is launched from node 1, continues its flight to serve node 5, and then
will retrieve to the truck at node 6. Considering that at,1 and ad,1 are the earliest arrival
time of the truck and the drone, the arrival time a′6 at node 6, where both vehicles have
reached, can be calculated as follows:
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Figure 17 – A segment of route with a single drone operation 〈1, 5, 6〉.

ad,1
6 = a1 + τ ′1,5 + τ ′5,6 (5.1)

at,1
6 = a4 − τ4,5 − τ5,6 + τ4,6 (5.2)

a′6 = max{ad,1
6 , at,1

6 } (5.3)

Now, consider D = 2, i.e., we have one more drone available. Given the arrangement
of the nodes, the operation 〈2, 3, 4〉 seems a reasonable choice for new drone operation,
as shown in Figure 18. Furthermore, assume that we know the updated earliest arrival
times at each node a′1, . . . , a′6 of the graph in Figure 17. The earliest arrival time a′′6, at
which the vehicle and the drones have reached the node 6, can be calculated as follows
(where ad,1 and ad,2 are the earliest arrival time of the first and second drone and at,2 is
the earliest arrival time of the vehicle at node i : ∀i ∈ N):

ad,1
6 = a′1 + τ ′1,5 + τ ′5,6 (5.4)

at,2
4 = a′4 − τ2,3 − τ3,4 + τ2,4 (5.5)

ad,2
4 = a′2 + τ ′2,3 + τ ′3,4 (5.6)
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Figure 18 – A segment of route with two drone operations 〈1, 5, 6〉 and 〈2, 3, 4〉

a′′4 = max{ad,2
4 , at,1

4 } (5.7)

at,2
6 = a′′4 + τ4,6 (5.8)

a′′6 = max{ad,1
6 , at,2

6 } (5.9)

(5.10)

Adding the operation 〈2, 3, 4〉 will improve the objective function only if the
condition described in Eq. (5.11) holds.

a′′6 < a′6 = max{ad,1
6 , at,1

6 } ≤ max{ad,1
6 , at,1

6 , at,2
6 } (5.11)

In other words, if the sequence of vertices 1, 5, 6, visited by the first drone in
Figure 18, is the longest path through the directed graph that connects vertices 1 and 6
(i.e., ad,1

6 > at,1
6 , then the earliest arrival time to reach node 6 in Figure 18 is determined by

the drone as a′6 = ad,1
6 = max{ad,1

6 , at,1
6 }. Consequently, if a′6 = ad,1

6 = max{ad,1
6 , at,1

6 }, we
will not be able to improve the objective function by reducing the arrival time of the truck
at node 6 (i.e., find a drone operation such that at,2

6 < at,1
6 , because the earliest arrival

time a′′6 will always be determined by ad,1
6 . Further, if a′6 = at,1

6 = max{ad,1
6 , at,1

6 } then the
only way to improve the objective value is if the arrival time of the vehicle is reduced by
adding an additional drone operation.

Now, consider the relocate move where a node is removed and re-inserted in another
position in the truck’s tour. As shown in Figure 19 node 5 was under a drone operation,
and was moved to another position. Considering at,1 and ad,1 the earliest arrival time of
the truck and the drone, and we know the arrival times at each node a1, . . . , a7. The new
arrival time a′7 at node 7 can be calculated as showed in Equation (5.12).

ad,1
6 = a3 + τ ′3,4 + τ ′4,6 (5.12)

at,1
6 = a6 − τ2,3 − τ3,5 − τ5,6 + τ2,5 + τ5,3 + τ3,6 (5.13)

a′7 = a7 − a6 + max{ad,1
6 , at,1

6 } (5.14)
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(a) Segment of route in which customer 5 is about to change position.
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(b) Segment of route after relocation.

Figure 19 – Relocation of customer 5 in the truck route.

To obtain the arrival time of the truck at node 6 we need to subtract the removed
edges 〈(2, 3), (3, 5), (5, 6)〉 and sum up the newly created edges 〈(2, 5), (5, 3), (3, 6)〉. The
relocation move will be completed as long as a′7 < a7. The same procedure is done to
obtain the updated solution value to the swap move.

Figure 20a is a representation of the swap truck and drone move, where customer 6
served by the truck swaps position with customer 4 served by the drone. Equation (5.15)
describes how to evaluate the new solution of Figure 20b.

1 2 3 5 6 7

4

(a) Segment of route.
1 2 3 5 4 7

6

(b) Truck customer 6 and drone customer 4 after changing position.

Figure 20 – Representation of a swap customers between the vehicles.

ad,1
2 = a1 + τ ′1,6 + τ ′6,2 (5.15)

at,1
2 = a1 + τ1,2 (5.16)

a′2 = max{ad,1
2 , at,1

2 } (5.17)

a′6 = a7 − τ5,6 − τ6,7 + τ5,4 + τ4,7 (5.18)

a′7 = a7 − a2 + a′2 − a6 + a′6 (5.19)
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6 Computational Experiments

We implemented the GVNS approach, described in Chapter 5, in C++ (g++
5.3.1). The experiment was done by running the GVNS ten times for every instance. The
formulations were implemented using Python 3 and Python-MIP (Toffolo and Gambini,
2021). We used Gurobi Optimizer to solve the models and Pypy 3.10 to run the formulations
experiments. All experiments were executed on an Intel R©CoreTM i7 Processor 3.6 GHz
with 16 GB of RAM running Ubuntu Linux 16.04.

The remainder of this chapter is organized as follows: Section 6.1 presents the
results obtained with the exact approaches. Section 6.2 discuss the heuristic experiments.
Subsection 6.2.1 describes the instances settings. employed for the heuristic experiments.

6.1 Exact approaches
The proposed formulation models the problem addressed by Ponza (2016). This

problem considers, however, slightly different constraints than those considered by Murray
and Chu (2015). There are two points of attention:

1. in the problem described by Murray and Chu (2015), the truck’s travel time between
the drone’s launch and return can be longer than the drone endurance; the drone
can therefore run out of battery while waiting for the truck;

2. Murray and Chu (2015) do not consider the setup time for launching the drone as
part of the drone’s flying time, and it does not count for the total completion time
or the battery’s endurance, even when the drone leaves from the depot.

Both formulations can be adapted to obtain results comparable with those by Murray and
Chu (2015). In Formulation (4.1)–(4.15), it is necessary to remove Constraints (4.10) and
altering Constraints (4.11) and (4.12). In Formulation (4.16)–(4.27), we have to disconsider
the sL from setup time in the object function (4.16), and remove Constraints 4.29 from
pricing Formulation (4.28)-(4.38).

The formulation given by (4.1)–(4.15) has a total of O(|V |5) variables. However,
as aforementioned, the number of variables generated is proportional to the sizes of sets
A and D (see Section 4.1), which are generally much smaller in practice than |V |2 and
|V |3, respectively. For compactness, in all tables presented in this section we will refer to
Murray and Chu (2015) as M&C (2015), Model 1 is the compact formulation presented
in Section 4.1 and Model 2 refers to the formulation solved by branch-and-price from
Section 4.2. Table 6 presents the average number of generated variables (#Vars) and



Chapter 6. Computational Experiments 67

Table 6 – Average number of variables and constraints per instance-set and endurance
value

Instance set #nodes e
Model 1 Model 2 Ponza (2016) M&C (2015)

#Vars #Constrs #Vars #Constrs #Vars #Constrs #Vars #Constrs

Ponza (2016) 5 1440 658 158 88 105 116 68 - -
Ponza (2016) 6 1440 1023 212 126 157 144 547 - -
Ponza (2016) 7 1440 1893 274 160 252 196 790 - -
Ponza (2016) 8 1440 4411 344 284 450 281 1125 - -
Ponza (2016) 9 1440 4161 422 280 694 295 1439 - -
Ponza (2016) 10 1440 9208 508 374 1279 422 1941 - -

M&C (2015) 10 1200 31758 453 746 1377 - - 867 2840
M&C (2015) 10 2400 41273 453 974 1377 - - 867 2840

constraints (#Constrs) for the instances considered. The number of variables regarding
Model 2 is the total after the branch-and-price. Note how Model 1 dimensions depend
heavily upon the endurance of the drone (e). This is expected since a smaller endurance
enables reducing set D’s size. It is also noteworthy that even being large the number of
variables within the Model 1 is not prohibitive for small instances. When we compare
the number of variables of the two models, Model 2 results in a much smaller number of
variables in Murray and Chu (2015) instances, which demonstrates that Model 2 does not
make the use of memory a bottleneck, unlikely Model 1 as the number of variables can
easily escalate.

Model 2 spent 96% of its time solving the pricing problem which indicates that
more effort must be applied in the pricing problem resolution to achieve results faster. For
solving the shortest path problem during the pricing heuristic, we employed Bellman-Ford
algorithm (Bellman, 1958; Ford and Fulkerson, 2015) from NetworkX (2004-2021) library.
Even though the heuristic provided good results, its running time showed that it is not
competitive. Therefore, to improve the pricing time and the overall results a possibility is
to implement a heuristic instead of using one from a library.

Tables 7 and 8 present the results obtained by the modified formulation considering
the instances from Murray and Chu (2015) with e = 20 and e = 40, respectively. Column
LB0 presents the value of the linear relaxation, column Sol. presents the solution value,
rows with ~ indicates that the optimal solution was proven, and column Time reports the
total execution runtime in seconds. Note that a ~ is included next to column Sol. whenever
the solution is proven optimal using the indicated formulation. Note also that a runtime
limit of 1800 seconds was imposed and that the formulation proposed by Murray and
Chu (2015) resulted in value zero for the linear relaxation (LB0) for all instances. Model 1
resulted in proven optimal solutions for all instances addressed in Tables 7 and 8. Model 1
outperformed Model 2 regarding execution time as it presented an average runtime of 90
seconds, while Model 2 required 130 seconds on average. This results are quite remarkable
since with the formulation proposed by Murray and Chu (2015) the solver was incapable
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of providing any proven optimal solution within the runtime limit.

Table 7 – Formulation results for Murray and Chu (2015) instances with e = 20

Instance M&C (2015) Model 1 Model 2

LB0 Sol. Time LB0 Sol. Time LB0 Sol. Time

20140810T123437v1 0.00 56.47 1800.15 38.78 ~ 56.47 10.73 49.58 ~ 56.47 291.42
20140810T123437v2 0.00 53.21 1800.15 36.05 ~ 53.21 10.07 45.71 ~ 53.21 188.90
20140810T123437v3 0.00 53.69 1800.18 37.48 ~ 53.69 10.71 45.05 ~ 53.69 129.77
20140810T123437v4 0.00 67.46 1800.15 51.77 ~ 67.46 7.30 57.95 ~ 67.46 104.42
20140810T123437v5 0.00 50.55 1800.22 30.67 ~ 50.55 455.30 38.52 ~ 50.55 96.88
20140810T123437v6 0.00 47.60 1800.23 27.69 ~ 47.31 330.01 34.28 ~ 47.31 83.63
20140810T123437v7 0.00 51.89 1800.24 30.85 ~ 48.58 69.80 35.82 ~ 48.58 36.94
20140810T123437v8 0.00 64.69 1800.23 43.60 ~ 61.38 56.82 48.07 ~ 61.38 35.21
20140810T123437v9 0.00 45.98 1800.25 30.62 ~ 42.42 92.00 36.03 ~ 42.42 91.93
20140810T123437v10 0.00 43.09 1800.28 27.60 ~ 41.73 100.72 31.57 ~ 41.73 67.93
20140810T123437v11 0.00 48.21 1800.25 30.81 ~ 42.90 19.26 33.67 ~ 42.90 33.87
20140810T123437v12 0.00 61.57 1800.27 43.54 ~ 55.70 28.37 45.58 ~ 55.70 79.41
20140810T123440v1 0.00 49.43 1800.15 28.23 ~ 49.43 26.08 41.36 ~ 49.43 244.98
20140810T123440v2 0.00 50.71 1800.15 28.22 ~ 50.71 20.48 39.27 ~ 50.71 153.67
20140810T123440v3 0.00 56.10 1800.17 35.00 ~ 56.10 21.50 45.30 ~ 56.10 179.03
20140810T123440v4 0.00 69.90 1800.14 49.00 ~ 69.90 19.42 59.28 ~ 69.90 189.12
20140810T123440v5 0.00 45.36 1800.22 28.17 ~ 43.53 44.28 34.98 ~ 43.53 76.48
20140810T123440v6 0.00 44.08 1800.22 27.93 ~ 43.95 40.88 34.11 ~ 43.95 78.78
20140810T123440v7 0.00 51.92 1800.22 34.94 ~ 49.42 43.36 39.45 ~ 49.42 72.44
20140810T123440v8 0.00 65.62 1800.22 47.74 ~ 62.22 39.82 52.63 ~ 62.22 68.41
20140810T123440v9 0.00 44.25 1800.27 28.15 ~ 42.53 62.33 32.60 ~ 42.53 142.24
20140810T123440v10 0.00 43.08 1800.27 27.81 ~ 43.08 60.98 32.20 ~ 43.08 102.15
20140810T123440v11 0.00 49.20 1800.27 34.93 ~ 49.20 35.41 37.45 ~ 49.20 82.23
20140810T123440v12 0.00 62.00 1800.27 47.73 ~ 62.00 54.01 49.90 ~ 62.00 138.63
20140810T123443v1 0.00 69.59 1800.16 54.27 ~ 69.59 4.07 57.31 ~ 69.59 149.84
20140810T123443v2 0.00 72.15 1800.14 58.45 ~ 72.15 4.92 63.63 ~ 72.15 212.61
20140810T123443v3 0.00 77.34 1800.13 65.44 ~ 77.34 1.90 67.04 ~ 77.34 141.87
20140810T123443v4 0.00 90.14 1800.16 78.59 ~ 90.14 3.26 79.84 ~ 90.14 288.88
20140810T123443v5 0.00 63.25 1800.22 33.55 ~ 53.05 32.20 48.72 ~ 53.05 50.42
20140810T123443v6 0.00 64.70 1800.24 36.81 ~ 55.21 61.71 51.77 ~ 55.21 61.79
20140810T123443v7 0.00 67.77 1800.21 51.37 ~ 64.41 34.90 57.78 ~ 64.41 172.97
20140810T123443v8 0.00 83.70 1800.20 64.35 ~ 77.21 32.95 74.95 ~ 77.21 167.49
20140810T123443v9 0.00 59.32 1800.23 30.92 ~ 45.93 170.79 40.49 ~ 45.93 98.32
20140810T123443v10 0.00 61.24 1800.23 36.29 ~ 46.93 32.20 42.61 ~ 46.93 62.86
20140810T123443v11 0.00 67.43 1800.23 49.09 ~ 56.40 19.65 52.91 ~ 56.40 78.85
20140810T123443v12 0.00 83.70 1800.22 61.89 ~ 69.20 9.25 66.34 ~ 69.20 193.30
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Table 8 – Formulation results for Murray and Chu (2015) instances with e = 40

Instance M&C (2015) Model 1 Model 2

LB0 Sol. Time LB0 Sol. Time LB0 Sol. Time

20140810T123437v1 0.00 52.10 1800.15 31.93 ~ 50.57 666.66 43.17 ~ 50.57 487.32
20140810T123437v2 0.00 47.31 1800.15 27.82 ~ 47.31 345.97 38.71 ~ 47.31 210.99
20140810T123437v3 0.00 53.69 1800.18 30.89 ~ 53.69 381.99 39.49 ~ 53.69 140.33
20140810T123437v4 0.00 66.49 1800.15 43.66 ~ 66.49 471.39 51.4 ~ 66.49 380.96
20140810T123437v5 0.00 45.84 1800.22 30.67 ~ 44.84 308.67 38.28 ~ 44.84 262.35
20140810T123437v6 0.00 47.60 1800.23 27.68 ~ 43.60 275.60 33.86 ~ 43.60 356.53
20140810T123437v7 0.00 46.62 1800.24 30.84 ~ 46.62 250.79 35.13 ~ 46.62 210.18
20140810T123437v8 0.00 59.78 1800.23 43.58 ~ 59.42 260.01 46.42 ~ 59.42 260.01
20140810T123437v9 0.00 42.42 1800.25 30.62 ~ 42.42 102.37 35.91 ~ 42.42 180.06
20140810T123437v10 0.00 41.73 1800.28 27.60 ~ 41.73 108.91 31.3 ~ 41.73 100.26
20140810T123437v11 0.00 42.90 1800.25 30.81 ~ 42.90 83.97 33.13 ~ 42.90 66.69
20140810T123437v12 0.00 55.70 1800.27 43.54 ~ 55.70 63.07 44.38 ~ 55.70 77.13
20140810T123440v1 0.00 48.72 1800.15 28.22 ~ 46.89 329.34 38.12 ~ 46.89 411.03
20140810T123440v2 0.00 46.42 1800.15 28.20 ~ 46.42 78.81 36.59 ~ 46.42 101.78
20140810T123440v3 0.00 53.93 1800.17 34.99 ~ 53.93 303.25 42.47 ~ 53.93 114.73
20140810T123440v4 0.00 68.40 1800.14 47.76 ~ 68.40 335.51 54.58 ~ 68.40 210.79
20140810T123440v5 0.00 46.59 1800.22 28.17 ~ 43.53 100.54 34.69 ~ 43.53 177.74
20140810T123440v6 0.00 44.08 1800.22 27.93 ~ 43.81 49.68 33.82 ~ 43.81 153.96
20140810T123440v7 0.00 49.20 1800.22 34.94 ~ 49.20 37.78 38.86 ~ 49.20 75.13
20140810T123440v8 0.00 62.27 1800.22 47.74 ~ 62.00 57.42 51.15 ~ 62.00 163.61
20140810T123440v9 0.00 44.25 1800.27 28.15 ~ 42.53 60.81 32.59 ~ 42.53 98.32
20140810T123440v10 0.00 43.08 1800.27 27.81 ~ 43.08 82.18 32.19 ~ 43.08 155.80
20140810T123440v11 0.00 49.20 1800.27 34.93 ~ 49.20 51.01 37.42 ~ 49.20 133.91
20140810T123440v12 0.00 62.00 1800.27 47.73 ~ 62.00 52.78 49.88 ~ 62.00 140.03
20140810T123443v1 0.00 57.25 1800.16 31.29 ~ 55.49 680.10 53.73 ~ 55.49 484.21
20140810T123443v2 0.00 58.05 1800.14 36.29 ~ 58.05 621.87 55.48 ~ 58.05 1800.00
20140810T123443v3 0.00 69.17 1800.13 49.20 ~ 68.43 290.85 62.01 ~ 68.43 274.07
20140810T123443v4 0.00 82.70 1800.16 62.13 ~ 82.70 324.36 74.54 ~ 82.70 210.27
20140810T123443v5 0.00 53.45 1800.22 30.92 ~ 51.93 1800.77 42.75 ~ 51.93 1216.07
20140810T123443v6 0.00 52.33 1800.24 36.29 ~ 52.33 266.32 45.24 ~ 52.33 826.26
20140810T123443v7 0.00 60.74 1800.21 49.09 ~ 60.74 59.62 55.25 ~ 60.74 155.95
20140810T123443v8 0.00 74.69 1800.20 61.89 ~ 72.97 86.36 67.26 ~ 72.97 98.11
20140810T123443v9 0.00 47.25 1800.23 30.92 ~ 45.93 201.58 39.36 ~ 45.93 127.03
20140810T123443v10 0.00 48.87 1800.23 36.29 ~ 46.93 39.26 42.15 ~ 46.93 97.68
20140810T123443v11 0.00 56.40 1800.23 49.09 ~ 56.40 10.68 52.71 ~ 56.40 99.04
20140810T123443v12 0.00 69.20 1800.22 61.89 ~ 69.20 22.40 65.15 ~ 69.20 67.33

Table 9 presents the results obtained by Model 1 and Model 2 without alterations
considering Ponza (2016)’s instances containing from 5 to 10 customers. No formulation
was capable of solving larger instances with 50, 100, 150, and 200 customers in a feasible
amount of time. For these instances, the formulations presented by Ponza (2016) did not
obtain any feasible solution, and the formulation we propose could not be executed due to
memory or time limitations. It is thus by no means a coincidence that these large instances
have only been addressed with heuristic approaches so far. Therefore, we developed a
heuristic to tackle the large instances found in the literature.
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Table 9 – Formulation results for Ponza (2016) instances

Instance Ponza (2016) Model 1 Model 2

Sol. Time LB0 Sol. Time LB0 Sol. Time

Instance_005.1 4456.83 0.13 3851.22 ~ 4456.83 0.38 3502.85 ~ 4456.83 6.13
Instance_005.2 3507.07 0.12 1984.71 ~ 3507.07 0.07 1810.48 ~ 3507.07 53.11
Instance_005.3 3275.69 0.14 2979.03 ~ 3275.69 0.12 3015.17 ~ 3275.69 61.48
Instance_005.4 5312.47 0.09 3423.66 ~ 5312.47 0.07 2835.27 ~ 5312.47 25.98
Instance_005.5 5510.17 0.10 5021.23 ~ 5510.17 0.05 5317.51 ~ 5510.17 2.53
Instance_006.1 7080.94 0.25 6064.16 ~ 7080.94 0.08 6786.80 ~ 7080.94 6.01
Instance_006.2 6147.96 0.32 5713.98 ~ 6147.96 0.23 5954.92 ~ 6147.96 14.66
Instance_006.3 6835.16 0.23 5878.56 ~ 6835.16 0.08 6786.80 ~ 6835.16 216.39
Instance_006.4 4402.08 0.32 3424.12 ~ 4402.08 0.41 3745.90 ~ 4402.08 216.69
Instance_006.5 5392.08 0.38 4031.53 ~ 5392.08 0.34 4335.11 ~ 5392.08 231.16
Instance_007.1 5533.85 3.31 3606.98 ~ 5533.85 0.48 4913.88 ~ 5533.85 9.26
Instance_007.2 5342.68 1.79 3258.57 ~ 5342.68 0.96 5138.58 ~ 5342.68 9.33
Instance_007.3 7725.89 1.07 6293.13 ~ 7725.89 0.21 7295.36 ~ 7725.89 6.50
Instance_007.4 7610.38 1.39 6284.05 ~ 7610.38 0.16 7243.10 ~ 7610.38 53.94
Instance_007.5 7010.99 2.10 6211.52 ~ 7010.99 0.27 6512.04 ~ 7010.99 6.70
Instance_008.1 6709.02 5.90 4764.75 ~ 6709.02 1.26 6093.02 ~ 6709.02 31.63
Instance_008.2 6587.18 10.08 4916.63 ~ 6587.18 2.06 5762.91 ~ 6587.18 345.31
Instance_008.3 5780.12 14.68 4133.14 ~ 5780.12 3.00 4959.20 ~ 5780.12 201.91
Instance_008.4 6505.12 8.91 3694.07 ~ 6505.12 1.76 5703.22 ~ 6505.12 341.65
Instance_008.5 5953.51 15.72 4748.36 ~ 5953.51 2.48 5467.27 ~ 5953.51 312.32
Instance_009.1 7338.77 189.38 5773.50 ~ 7338.77 2.95 6273.84 ~ 7338.77 298.98
Instance_009.2 6204.63 129.12 4073.60 ~ 6204.63 3.30 5026.09 ~ 6204.63 199.41
Instance_009.3 7698.14 87.45 3995.14 ~ 7698.14 5.16 5463.21 ~ 7698.14 176.32
Instance_009.4 6817.72 79.71 4281.48 ~ 6817.72 3.69 4430.43 ~ 6817.72 101.11
Instance_009.5 7802.67 115.02 5253.94 ~ 7802.67 4.85 6681.09 ~ 7802.67 96.32
Instance_010.1 5986.71 1800.15 4502.21 ~ 5986.71 50.82 4898.25 ~ 5986.71 297.42
Instance_010.2 6394.39 1800.15 5141.80 ~ 6394.39 15.81 5648.46 ~ 6394.39 368.12
Instance_010.3 6310.60 1800.15 3204.10 ~ 6310.60 21.94 4504.35 ~ 6310.60 243.99
Instance_010.4 8377.92 752.87 7186.84 ~ 8377.92 3.58 7362.23 ~ 8377.92 211.18
Instance_010.5 8934.41 1800.15 5662.50 ~ 8934.41 10.56 7231.74 ~ 8934.41 259.74

The formulation proposed by Ponza (2016) obtained linear relaxation lower bounds
of value zero for all instances, and so we omitted column LB0. The formulations previously
proposed in the literature are outperformed by the ones we propose, which were capable of
producing significantly better lower bounds and, by consequence, proven optimal solutions
for all small instances. The runtimes presented by Model 2 are not as competitive as the
ones obtained with Model 1. None of our models solved the problem in the root node,
however Model 2 obtained a better liner relaxation for 95% of the instances compared to
Model 1.
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6.2 Heuristic approach
This section is dedicated to our computational experiments for the heuristic

approach and their numerical results. More precisely, Section 6.2.1 discuss instance settings,
Section 6.2.2 makes an instance analysis and Section 6.2.3 presets a comparison of the
GVNS to Schermer et al. (2018) results.

6.2.1 Instance Setting

In Algorithm 2, the computation of the TSP tour can be done in two manners,
using a Mixed Integer Programing (MIP) solver or the Nearest Neighborhood heuristic.
The MIP solver chosen is the TSP Solver Concorde (Applegate et al., 1996). Concorde is a
state of art solver for the TSP; however, the time needed for it to solve a given instance can
vary considerably with the number and distribution of vertices. Considering the possible
time issue, we determined a maximum time of 5 seconds to Concorde solve the TSP for a
given instance. When the limit time is reached, Nearest Neighborhood is executed to obtain
the TSP solution. Another parameter in the initial solution is δ, which determines the
maximum difference in the number of customers between the truck with more customers
and the one with less customers. The variable δ determines where the giant tour is going
to be split. Then all configurations are tested considering ti = floor(n/2)± {0 . . . δ}. For
example, considering c = 51 and M = 2, t0 = |25± {0 . . . δ}| and t1 = |26± {δ . . . 0}|.

The Algorithms 1 and 7 need some parameters to be defined for its execution. For
the experiments presented in this chapter, these parameters were determined employing
the Irace tool (López-Ibáñez et al., 2016), a package coded in R language. Irace is an
offline method of automatic configuration of optimization algorithms. Given a set of
problem instances and possible values for the parameters, Irace determines an appropriate
combination of values for the parameters. Table 10 presents the ranges of values that Irace
considered when defining each of the parameters.

Table 10 – Algorithms’ parameters.

Parameter Value

maxIter {10, 20, 30, 40, 50}
tmax (seconds) {20, 50, 100, 300, 600, 1200, 2400}

pmax {20, 50, 100, 200, 300, 500, 800, 1000, 1300, 1500, 1800, 2000}
ρ {1, 2, 3, 4, 5}
δ {2, 5, 7, 9, 10, 15, 20, 30}

The parameters defined in the experiments and their respective values are:

• maxIter = 10
• tmax = 600
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• pmax = 1800
• ρ = 5
• δ = 9

Two of the five parameters defined by Irace, maxIter and ρ, were the limit value.
Hence, we could have rerun Irace with smaller options in maxIter case and larger values
for parameter ρ.

We used five instances from Traveling Salesman Problem Library (TSPLIB) (Reinelt,
1997), berlin52, ch150, kroA200, rd400 and att532. The instances have a range between
52 and 532 vertices, the first vertex in each instance was used as a distribution center
(depot), and the remaining ones were customers’ locations to be visited by the vehicles.
In order to test how the use of drones can impact the cost, we employed a different set
of parameters to analyze the solution behavior. The set of parameters and their values
are summarized in Table 11. In total, we evaluated the proposed GVNS in 410 literature
instances, 81 for each instance varying the aforementioned parameters.

Table 11 – Instances’ parameters.

Parameter Value
|M | {1, 2, 3}
|D| {1, 2, 3}
α {2, 3, 4}
β {0.1, 0.25, 0.5}

Parameter |M | indicates the number of vehicles, M = 1∨ 1, 2∨ 1, 2, 3, i.e., we have
either one, two or three trucks. Parameter |D| indicates the number of drones per truck
α determines the relative speed of the drones, and it can assume values {2, 3, 4}, e.g.,
α = 2 indicates that the drones are twice as fast as the truck. Parameter β is an auxiliary
variable to set drone endurance, and it can have the following values {0.1, 0.25, 0.5}. The
endurance ε is set as ε = β ·max(D(G(V,E)) where max(D(G(V,E)) is the maximum
value in the distance matrix of the graph.

6.2.2 Instance analysis

Examining Figure 21a when α is increased from 2 to 3, a noticeable improvement is
visible in most cases. However, increasing the value of α from 3 to 4 does not significantly
influence the objective value. This makes us believe that after the drone speed reaches a
certain threshold, the vehicles’ final arrival time may always be determined by the trucks,
which means that speeding up the drones will not result in any further improvements.
Different behavior is noted when fixing parameter α, and alternating the value of β. We can
observe in Figure 21b an interesting behavior. We can observe a considerable improvement
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in the objective function, e.g., berlin52 and ch150. However, in the majority of the cases,
the objective value shows little sensitivity concerning a change in β.
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(c) Fix number of drones per truck.

Figure 21 – Fixing parameters.

Now, let us observe Figure 21c that concerns the number of drones per truck. A
significant reduction in the completion time occurs, about 35% when adding a single drone
to perform the deliveries in synchronization with the truck. When adding the second and
third drone, it is possible to achieve another 10% reduction in the delivery time. However,
the relative change in the objective value becomes increasingly smaller — a scenario that
indicates that it becomes gradually challenging to employ additional drones efficiently.
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(a) Instance berlin52. (b) Instance ch150. (c) Instance kroA200.

Figure 22 – Plot of the instances coordinates.

When we put together all information about the number of drones, speed, endurance,
and geographic position (Figure 22) of the customers, we can see that when customers are
uniformly distributed, then when the endurance is already sufficiently large as in ch150
and kroA200, it may not be possible to improve the objective value by further increasing
the endurance. The customers in berlin52 are more spread in the map area, thus increasing
the endurance enables the drone to serve farther customers.

6.2.3 Comparison against the state-of-the-art

Hereafter, the results found by GVNS are compared to the solution values of
Variable Neighborhood Decomposition Search with Savings Insertion Heuristic (VNDS-
SIH) (Schermer et al., 2018). In the total 400 combinations, 80 of each instance set, varying
α, β, K, and M , were tested considering the instances berlin52, ch150, kroA200, rd400,
att532.

A summary of the average results considering ten runs of the GVNS are presented
in Table 12. The complete table with the results can be found in Appendix A. The first
column is the best solution in the literature (BKS), followed by the best solution (S∗)
found by GVNS. In the third (S) and fourth (S0) columns are the average of solutions found
considering ten executions and the average value of the initial solution. (gapS∗,S0) is the
percentage distance between S0 and S∗, and (gapS∗,BKS) is the percentage distance between
S∗ and BKS. A negative gap indicates an improvement in the solution quality. Considering
two value solutions s1 and s2, the gaps1,s2 , is calculated as reported by Equation (6.1).

gap = s1 − s2

s2 × 100 (6.1)

As we can observe in Table 12, the set of instances derived from berlin52 achieved
the best average result, improving the average solution in 3.93%. Even though the average
result of Schermer et al. in instance kroA200 was 0.1% better, GVNS had the best
performance in this set improving 71 of 80 instances, while in berlin52 56 instances were
improved. The set ch150 had the worst performance concerning average solution value,
presenting a gap of 2.53% compared to Schermer et al.’s algorithm. In terms of number of
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Table 12 – Average GVNS results.

Instance BKS S0 S∗ S gapS0,S∗ gapBKS,S∗

berlin52 4025.82 4797.04 3867.70 4018.31 -19.37 -3.93
ch100 2757.60 4285.70 2827.42 3028.47 -34.03 2.53
kroA200 13093.65 16800.59 13106.82 13336.25 -21.99 0.10
rd400 7048.70 8311.25 6937.49 7163.97 -16.53 -1.58
att532 43942.39 55490.27 44024.43 44213.18 -20.66 0.19

solutions improved, ch150 only stays behind att532. The former improved 45 instances,
and the latter 37 instances. The set rd400 improved 50 instances achieving a gap of 1.58%.

Now, to provide a statistical base to our previous analysis, we will present the
result of a few tests. First, we applied the Shapiro-Wilk Shapiro and Wilk (1965) normality
test in each set of instances to the GVNS and VNDS-SIH results. The null hypothesis
stating that the method results could be modeled according to a normal distribution was
rejected in all sets. The values of the Shapiro-Wilk test can be found in Table 13.

Table 13 – Values of Shapiro-Wilk test

VNDS-SIH GVNS
Instance W p-value W p-value
berlin52 0.89174 4.937e-06 0.89966 1.053e-05
ch150 0.86796 6.008e-07 0.88551 2.778e-06

kroA200 0.88214 2.05e-06 0.88687 3.145e-06
rd400 0.8575 2.549e-07 0.84319 2.369e-08
att532 0.8478 1.189e-07 0.86051 3.25e-07

Afterwards, we applied the Wilcoxon Signed-Rank (WSR) (Rey and Neuhäuser,
2011; Wilcoxon, 1945) test, which is a non-parametric statistical hypothesis test to compare
two paired samples. WSR was employed to verify if exits significant difference between
the results. Observing the results of berlin52, WSR test showed that there is significant
difference between the GVNS and VNDS-SIH presenting the values (V = 928, p-value =
2.84e-05). The same behavior can be observed in instance kroA200 with the results (V =
243, p-value = 1.265e-11). Therefore, we can confirm that GVNS is better than VNDS-SIH
for those instances since p-value < 0.05. However, for the other three sets there is not
significant difference between the results ch150 (V = 2282, p-value = 0.9983), rd400 (V
= 1397, p-value = 0.1078), att532 (V = 1706, p-value = 0.5857), then we cannot affirm
nothing about GVNS behavior in relation to VNDS-SIH.
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7 Conclusions and open perspectives

In this work, we have studied Traveling Salesman Problems with Drones, which
consist of a combination of a truck and drone in a last-mile delivery setting. Our main
contributions were proposing solution approaches able to improve the results of a relatively
new problem in the literature.

We introduced two exact approaches to the Flying Sidekick Traveling Salesman
Problem (FSTSP) that were capable of finding optimal solutions to all 102 instances
proposed by Ponza (2016) and Murray and Chu (2015). The compact formulation most
significant contribution is to solve the problem in an extremely low time. The runtime for
Ponza (2016)‘s instance presented an average of 5 seconds and Murray and Chu (2015)‘s
instances when e = 20, the runtime was of 57 seconds and e = 40 it was 257 seconds.
The formulation with an exponential number of variables presented a higher execution
time. On the other hand, its linear relaxation was the best one compared to the other
formulations and its total number of generated variables is considerably smaller.

We addressed another problem, the Multiple Traveling Salesman Problem with
Drones (mTSPD). We proposed a fast heuristic based on General Variable Neighborhood
Search (GVNS) and an extensive computational study that considers the influence of
employing multiple vehicles, multiple drones, and several different drone parameters such
as the relative velocity and flight endurance on the objective value in a given instance. Our
computational study shows that meaningful savings in terms of time are possible with the
combination of trucks and drones in last-mile delivery.

A new modality of parcel distribution is rising from the increasing development of
drones and the effort of companies to perform deliveries faster at a reduced cost. Thus,
this work has plenty to contribute demonstrating that collaborative work of truck and
drone can drastically decrease delivery times.

There are many possibilities for extending this work. With respect to the branch-
and-price formulation, one could investigate better ways to solve the pricing problem and
explore others branch approaches in order to address large instances of the problem. For
the mTSPD, it would be interesting to incorporate additional constraints to the problem,
such as capacity constraints and time-windows. Further, an interesting possibility it is to
study a robust approach for delivery with drones considering weather changing and others
uncertainties.
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APPENDIX A – Appendix

Table 14 presents the results obtained with GVNS. The first column, ‘Instance’,
indicates the instance name, followed by the parameters ‘#truck’, ‘# drone’, α, and β,
respectively. Succeeding is the best solution in the literature (BKS), followed by the best
solution (S∗) found by GVNS. In the third (S) and fourth (S0) columns are the average
of solutions found considering ten executions and the average value of the initial solution.
(gapS∗,S0) is the percentage distance between S0 and S∗, and (gapS∗,BKS) is the percentage
distance between S∗ and BKS. A negative gap indicates an improvement in the solution
quality. Note that when #truck = 1 and #drone = 1 we are dealing with the FSTSP.

Table 14 – Complete comparison between Schermer (2018) and GVNS.

Instance
# #

α β BKS S0 S∗ S gapS0,S∗ gapBKS,S∗
truck drone

berlin52 1 1 2 0,1 7396,45 7544,37 7126,17 7393,39 -5,54 -3,65
berlin52 1 1 2 0,25 6572,30 7544,37 6335,07 6573,98 -16,03 -3,61
berlin52 1 1 2 0,50 5329,15 7544,37 5377,57 6038,25 -28,72 0,91
berlin52 1 1 3 0,1 7354,01 7544,37 7038,29 7249,25 -6,71 -4,29
berlin52 1 1 3 0,25 6238,94 7544,37 5927,60 6182,96 -21,43 -4,99
berlin52 1 1 3 0,50 4765,06 7544,37 4769,51 5281,48 -36,78 0,09
berlin52 1 1 4 0,1 7351,69 7544,37 7126,14 7362,97 -5,54 -3,07
berlin52 1 1 4 0,25 6223,51 7544,37 6150,63 6482,78 -18,47 -1,17
berlin52 1 1 4 0,50 4716,44 7544,37 4693,38 4928,48 -37,79 -0,49
berlin52 1 2 2 0,1 7337,80 7544,37 7241,79 7393,85 -4,01 -1,31
berlin52 1 2 2 0,25 6273,67 7544,37 6157,12 6482,48 -18,39 -1,86
berlin52 1 2 2 0,50 4960,29 7544,37 4733,25 5983,89 -37,26 -4,58
berlin52 1 2 3 0,1 7335,49 7544,37 6983,41 7294,46 -7,44 -4,80
berlin52 1 2 3 0,25 5910,98 7544,37 5558,87 5982,43 -26,32 -5,96
berlin52 1 2 3 0,50 4109,14 7544,37 3952,04 4184,74 -47,62 -3,82
berlin52 1 2 4 0,1 7373,30 7544,37 6982,59 7094,27 -7,45 -5,30
berlin52 1 2 4 0,25 6569,22 7544,37 6401,72 6538,25 -15,15 -2,55
berlin52 1 2 4 0,50 4200,97 7544,37 3978,71 4284,49 -47,26 -5,29
berlin52 1 3 2 0,1 7408,02 7544,37 7208,65 7533,94 -4,45 -2,69
berlin52 1 3 2 0,25 6304,54 7544,37 6181,50 6736,49 -18,06 -1,95
berlin52 1 3 2 0,50 4730,33 7544,37 4773,26 5363,95 -36,73 0,91
berlin52 1 3 3 0,1 7323,14 7544,37 6997,85 7362,84 -7,24 -4,44
berlin52 1 3 3 0,25 6011,30 7544,37 5994,81 6937,74 -20,54 -0,27
berlin52 1 3 3 0,50 4097,56 7544,37 3867,70 4762,83 -48,73 -5,61
berlin52 1 3 4 0,1 7307,71 7544,37 7031,83 7528,28 -6,79 -3,78
berlin52 1 3 4 0,25 6127,05 7544,37 5930,75 6284,78 -21,39 -3,20
berlin52 1 3 4 0,50 3812,04 7544,37 3666,64 3935,83 -51,40 -3,81
berlin52 2 1 2 0,1 4308,49 4797,04 4614,51 4783,78 -3,81 7,10
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Table 14 – Complete comparison between Schermer (2018) and GVNS.

Instance
# #

α β BKS S0 S∗ S gapS0,S∗ gapBKS,S∗
truck drone

berlin52 2 1 2 0,25 4193,66 4797,04 4099,46 4284,98 -14,54 -2,25
berlin52 2 1 2 0,50 3417,64 4797,04 3399,99 4284,83 -29,12 -0,52
berlin52 2 1 3 0,1 4451,15 4797,04 4274,18 4762,13 -10,90 -3,98
berlin52 2 1 3 0,25 4303,63 4797,04 4486,29 4762,84 -6,48 4,24
berlin52 2 1 3 0,50 2968,02 4797,04 3093,11 3652,12 -35,52 4,21
berlin52 2 1 4 0,1 4451,15 4797,04 4236,02 4982,04 -11,70 -4,83
berlin52 2 1 4 0,25 4303,63 4797,04 4163,03 4492,14 -13,22 -3,27
berlin52 2 1 4 0,50 2968,02 4797,04 3197,66 3376,97 -33,34 7,74
berlin52 2 2 2 0,1 4407,87 4797,04 4723,32 5193,24 -1,54 7,16
berlin52 2 2 2 0,25 3507,30 4797,04 3381,85 3592,27 -29,50 -3,58
berlin52 2 2 2 0,50 3176,93 4797,04 3056,53 3282,25 -36,28 -3,79
berlin52 2 2 3 0,1 4318,65 4797,04 4156,65 4492,27 -13,35 -3,75
berlin52 2 2 3 0,25 4025,82 4797,04 3914,01 4018,31 -18,41 -2,78
berlin52 2 2 3 0,50 2855,40 4797,04 2655,42 2871,32 -44,64 -7,00
berlin52 2 2 4 0,1 4171,57 4797,04 4099,38 4482,37 -14,54 -1,73
berlin52 2 2 4 0,25 4185,26 4797,04 3993,56 4392,38 -16,75 -4,58
berlin52 2 2 4 0,50 2791,35 4797,04 2688,63 2873,14 -43,95 -3,68
berlin52 2 3 2 0,1 4425,53 4797,04 4653,29 4782,27 -3,00 5,15
berlin52 2 3 2 0,25 4173,78 4797,04 3980,93 3998,48 -17,01 -4,62
berlin52 2 3 2 0,50 2915,02 4797,04 3083,20 3183,25 -35,73 5,77
berlin52 2 3 3 0,1 4332,78 4797,04 4110,43 4284,21 -14,31 -5,13
berlin52 2 3 3 0,25 3705,61 4797,04 3674,60 3982,38 -23,40 -0,84
berlin52 2 3 3 0,50 2950,36 4797,04 3091,28 3284,28 -35,56 4,78
berlin52 2 3 4 0,1 4156,11 4797,04 4129,85 4482,48 -13,91 -0,63
berlin52 2 3 4 0,25 3811,61 4797,04 3805,04 3981,83 -20,68 -0,17
berlin52 2 3 4 0,50 2950,36 4797,04 3107,56 3284,42 -35,22 5,33
berlin52 3 1 2 0,1 3267,03 3485,87 3143,84 3478,01 -9,81 -3,77
berlin52 3 1 2 0,25 3242,72 3485,87 3210,73 3382,24 -7,89 -0,99
berlin52 3 1 2 0,50 2847,38 3485,87 2804,30 2898,14 -19,55 -1,51
berlin52 3 1 3 0,1 3120,21 3485,87 2976,05 3098,34 -14,63 -4,62
berlin52 3 1 3 0,25 3209,14 3485,87 3203,23 3374,23 -8,11 -0,18
berlin52 3 1 3 0,50 2473,46 3485,87 2423,77 2863,14 -30,47 -2,01
berlin52 3 1 4 0,1 3228,33 3485,87 3340,70 3482,24 -4,16 3,48
berlin52 3 1 4 0,25 2974,04 3485,87 2918,82 3018,32 -16,27 -1,86
berlin52 3 1 4 0,50 2142,73 3485,87 2259,89 2472,49 -35,17 5,47
berlin52 3 2 2 0,1 3311,17 3485,87 3432,54 3482,15 -1,53 3,67
berlin52 3 2 2 0,25 2883,20 3485,87 2905,09 3183,48 -16,66 0,76
berlin52 3 2 2 0,50 2284,75 3485,87 2416,42 2501,48 -30,68 5,76
berlin52 3 2 3 0,1 3109,98 3485,87 3014,73 3183,27 -13,52 -3,06
berlin52 3 2 3 0,25 3045,05 3485,87 2965,58 3087,24 -14,93 -2,61
berlin52 3 2 3 0,50 2061,48 3485,87 2092,47 2274,38 -39,97 1,50
berlin52 3 2 4 0,1 3060,72 3485,87 3181,77 3382,46 -8,72 3,95
berlin52 3 2 4 0,25 2964,76 3485,87 2994,58 3274,24 -14,09 1,01
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Table 14 – Complete comparison between Schermer (2018) and GVNS.

Instance
# #

α β BKS S0 S∗ S gapS0,S∗ gapBKS,S∗
truck drone

berlin52 3 2 4 0,50 2083,87 3485,87 2103,78 2273,21 -39,65 0,96
berlin52 3 3 2 0,1 3284,94 3485,87 3244,46 3402,27 -6,93 -1,23
berlin52 3 3 2 0,25 2984,28 3485,87 3114,94 3372,29 -10,64 4,38
berlin52 3 3 2 0,50 2258,20 3485,87 2348,70 2572,82 -32,62 4,01
berlin52 3 3 3 0,1 3166,59 3485,87 3036,33 3272,93 -12,90 -4,11
berlin52 3 3 3 0,25 2984,28 3485,87 2860,90 3019,33 -17,93 -4,13
berlin52 3 3 3 0,50 2095,07 3485,87 2142,26 2297,33 -38,54 2,25
berlin52 3 3 4 0,1 3348,91 3485,87 3234,23 3382,25 -7,22 -3,42
berlin52 3 3 4 0,25 2984,28 3485,87 2866,36 2918,33 -17,77 -3,95
berlin52 3 3 4 0,50 1957,53 3485,87 2067,82 2109,33 -40,68 5,63
ch150 1 1 2 0,1 6225,31 6532,28 5703,93 5972,27 -12,68 -8,38
ch150 1 1 2 0,25 5117,54 6532,28 5056,93 5182,25 -22,59 -1,18
ch150 1 1 2 0,50 5120,89 6532,28 5164,81 5282,24 -20,93 0,86
ch150 1 1 3 0,1 6440,97 6532,28 5909,43 6093,47 -9,53 -8,25
ch150 1 1 3 0,25 4675,51 6532,28 4693,85 4772,14 -28,14 0,39
ch150 1 1 3 0,50 4677,52 6532,28 4771,61 4872,98 -26,95 2,01
ch150 1 1 4 0,1 6105,42 6532,28 5881,30 6032,48 -9,97 -3,67
ch150 1 1 4 0,25 4575,72 6532,28 4587,25 4692,13 -29,78 0,25
ch150 1 1 4 0,50 4582,42 6532,28 4593,75 4692,13 -29,68 0,25
ch150 1 2 2 0,1 6161,01 6532,28 5808,86 5872,43 -11,07 -5,72
ch150 1 2 2 0,25 4885,81 6532,28 4816,70 5049,38 -26,26 -1,41
ch150 1 2 2 0,50 4640,68 6532,28 4517,06 4698,33 -30,85 -2,66
ch150 1 2 3 0,1 6195,17 6532,28 5650,68 5772,72 -13,50 -8,79
ch150 1 2 3 0,25 4033,22 6532,28 3958,63 4093,36 -39,40 -1,85
ch150 1 2 3 0,50 4012,46 6532,28 3995,05 4142,25 -38,84 -0,43
ch150 1 2 4 0,1 6267,50 6532,28 5715,02 5819,32 -12,51 -8,81
ch150 1 2 4 0,25 4060,68 6532,28 4065,59 4184,28 -37,76 0,12
ch150 1 2 4 0,50 3881,19 6532,28 3722,80 4091,38 -43,01 -4,08
ch150 1 3 2 0,1 6322,42 6532,28 5927,42 6293,27 -9,26 -6,25
ch150 1 3 2 0,25 4272,99 6532,28 4100,40 4282,92 -37,23 -4,04
ch150 1 3 2 0,50 4259,60 6532,28 4169,22 4283,92 -36,18 -2,12
ch150 1 3 3 0,1 6154,98 6532,28 5775,85 5928,38 -11,58 -6,16
ch150 1 3 3 0,25 4192,62 6532,28 3923,54 4293,18 -39,94 -6,42
ch150 1 3 3 0,50 4038,58 6532,28 3940,77 4172,83 -39,67 -2,42
ch150 1 3 4 0,1 6248,75 6532,28 5880,93 6082,87 -9,97 -5,89
ch150 1 3 4 0,25 3938,12 6532,28 3620,82 3883,28 -44,57 -8,06
ch150 1 3 4 0,50 3877,84 6532,28 3761,66 3928,24 -42,41 -3,00
ch150 2 1 2 0,1 3739,90 4285,70 3751,30 3982,18 -12,47 0,30
ch150 2 1 2 0,25 3171,28 4285,70 3193,97 3382,28 -25,47 0,72
ch150 2 1 2 0,50 3177,42 4285,70 3194,66 3381,98 -25,46 0,54
ch150 2 1 3 0,1 3691,59 4285,70 3719,07 3918,24 -13,22 0,74
ch150 2 1 3 0,25 2657,88 4285,70 2737,07 2915,25 -36,13 2,98
ch150 2 1 3 0,50 2672,45 4285,70 2500,88 2698,35 -41,65 -6,42
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Table 14 – Complete comparison between Schermer (2018) and GVNS.

Instance
# #

α β BKS S0 S∗ S gapS0,S∗ gapBKS,S∗
truck drone

ch150 2 1 4 0,1 3691,59 4285,70 3419,92 3672,24 -20,20 -7,36
ch150 2 1 4 0,25 2657,88 4285,70 2507,92 2872,83 -41,48 -5,64
ch150 2 1 4 0,50 2672,45 4285,70 2534,45 2872,25 -40,86 -5,16
ch150 2 2 2 0,1 3697,72 4285,70 3789,71 3972,25 -11,57 2,49
ch150 2 2 2 0,25 2693,92 4285,70 2778,61 2921,47 -35,17 3,14
ch150 2 2 2 0,50 2594,62 4285,70 2648,56 2873,70 -38,20 2,08
ch150 2 2 3 0,1 3606,47 4285,70 3427,86 3652,25 -20,02 -4,95
ch150 2 2 3 0,25 2692,77 4285,70 2725,17 3018,32 -36,41 1,20
ch150 2 2 3 0,50 2514,86 4285,70 2419,24 2651,39 -43,55 -3,80
ch150 2 2 4 0,1 3561,99 4285,70 3686,93 3872,28 -13,97 3,51
ch150 2 2 4 0,25 2629,51 4285,70 2815,98 3081,38 -34,29 7,09
ch150 2 2 4 0,50 2634,11 4285,70 2527,88 2762,18 -41,02 -4,03
ch150 2 3 2 0,1 3592,66 4285,70 3619,89 3871,01 -15,54 0,76
ch150 2 3 2 0,25 2856,49 4285,70 2944,30 3102,76 -31,30 3,07
ch150 2 3 2 0,50 2695,46 4285,70 2888,47 3028,47 -32,60 7,16
ch150 2 3 3 0,1 3703,86 4285,70 3714,30 3871,35 -13,33 0,28
ch150 2 3 3 0,25 2553,59 4285,70 2481,58 2591,37 -42,10 -2,82
ch150 2 3 3 0,50 2484,57 4285,70 2227,49 2593,81 -48,03 -10,35
ch150 2 3 4 0,1 3585,00 4285,70 3457,70 3692,25 -19,32 -3,55
ch150 2 3 4 0,25 2561,26 4285,70 2608,63 2698,10 -39,13 1,85
ch150 2 3 4 0,50 2576,60 4285,70 2506,44 2601,72 -41,52 -2,72
ch150 3 1 2 0,1 2736,90 3047,88 2827,42 2902,48 -7,23 3,31
ch150 3 1 2 0,25 2356,52 3047,88 2366,26 2514,38 -22,36 0,41
ch150 3 1 2 0,50 2254,11 3047,88 2182,68 2381,39 -28,39 -3,17
ch150 3 1 3 0,1 2559,13 3047,88 2692,13 2798,38 -11,67 5,20
ch150 3 1 3 0,25 2249,14 3047,88 2197,13 2291,47 -27,91 -2,31
ch150 3 1 3 0,50 2188,41 3047,88 2282,48 2482,47 -25,11 4,30
ch150 3 1 4 0,1 2734,69 3047,88 2825,75 3018,33 -7,29 3,33
ch150 3 1 4 0,25 2168,26 3047,88 2145,80 2282,82 -29,60 -1,04
ch150 3 1 4 0,50 2169,64 3047,88 2080,79 2301,47 -31,73 -4,10
ch150 3 2 2 0,1 2757,60 3047,88 2680,43 2718,33 -12,06 -2,80
ch150 3 2 2 0,25 2169,64 3047,88 2242,98 2391,44 -26,41 3,38
ch150 3 2 2 0,50 2042,94 3047,88 2046,09 2103,44 -32,87 0,15
ch150 3 2 3 0,1 2746,01 3047,88 2682,71 2713,85 -11,98 -2,31
ch150 3 2 3 0,25 2188,41 3047,88 2023,72 2293,15 -33,60 -7,53
ch150 3 2 3 0,50 1992,15 3047,88 2086,11 2097,64 -31,56 4,72
ch150 3 2 4 0,1 2572,93 3047,88 2594,30 2663,25 -14,88 0,83
ch150 3 2 4 0,25 2123,54 3047,88 2149,37 2291,46 -29,48 1,22
ch150 3 2 4 0,50 1997,12 3047,88 2079,94 2197,36 -31,76 4,15
ch150 3 3 2 0,1 2785,20 3047,88 2682,71 2763,37 -11,98 -3,68
ch150 3 3 2 0,25 2158,60 3047,88 2107,48 2474,43 -30,85 -2,37
ch150 3 3 2 0,50 2111,68 3047,88 2212,05 2298,44 -27,42 4,75
ch150 3 3 3 0,1 2680,31 3047,88 2582,71 2683,43 -15,26 -3,64
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Table 14 – Complete comparison between Schermer (2018) and GVNS.

Instance
# #

α β BKS S0 S∗ S gapS0,S∗ gapBKS,S∗
truck drone

ch150 3 3 3 0,25 2114,44 3047,88 2082,71 2193,75 -31,67 -1,50
ch150 3 3 3 0,50 1923,97 3047,88 1907,91 2018,26 -37,40 -0,83
ch150 3 3 4 0,1 2649,95 3047,88 2468,01 2582,46 -19,03 -6,87
ch150 3 3 4 0,25 2136,52 3047,88 2158,72 2284,43 -29,17 1,04
ch150 3 3 4 0,50 1965,38 3047,88 1968,56 2282,46 -35,41 0,16

kroA200 1 1 2 0.1 26232.18 29369.41 24407.30 24598.49 -16.90 -6.96
kroA200 1 1 2 0.25 24953.87 29369.41 23130.20 23915.38 -21.24 -7.31
kroA200 1 1 2 0.50 24332.64 29369.41 23523.20 23981.48 -19.91 -3.33
kroA200 1 1 3 0.1 24532.75 29369.41 22843.10 23084.97 -22.22 -6.89
kroA200 1 1 3 0.25 23762.18 29369.41 22791.50 22981.03 -22.40 -4.08
kroA200 1 1 3 0.50 23176.78 29369.41 22892.10 23284.47 -22.05 -1.23
kroA200 1 1 4 0.1 24461.06 29369.41 22359.10 23815.24 -23.87 -8.59
kroA200 1 1 4 0.25 23445.59 29369.41 23636.20 24014.84 -19.52 0.81
kroA200 1 1 4 0.50 22489.84 29369.41 22389.84 23814.43 -23.76 -0.44
kroA200 1 2 2 0.1 23317.16 29369.41 22397.80 22981.94 -23.74 -3.94
kroA200 1 2 2 0.25 21982.10 29369.41 21449.50 21983.01 -26.97 -2.42
kroA200 1 2 2 0.50 20240.86 29369.41 19990.20 20984.41 -31.94 -1.24
kroA200 1 2 3 0.1 21121.94 29369.41 20188.00 21349.28 -31.26 -4.42
kroA200 1 2 3 0.25 18547.40 29369.41 18309.30 20194.48 -37.66 -1.28
kroA200 1 2 3 0.50 18714.66 29369.41 18210.90 18472.83 -37.99 -2.69
kroA200 1 2 4 0.1 22221.04 29369.41 20019.30 2132.43 -31.84 -9.91
kroA200 1 2 4 0.25 20488.76 29369.41 19211.30 19598.27 -34.59 -6.23
kroA200 1 2 4 0.50 19353.81 29369.41 18938.10 19284.92 -35.52 -2.15
kroA200 1 3 2 0.1 23765.16 29369.41 22568.60 23841.33 -23.16 -5.03
kroA200 1 3 2 0.25 22280.77 29369.41 20738.50 21846.47 -29.39 -6.92
kroA200 1 3 2 0.50 22122.48 29369.41 21017.20 22974.43 -28.44 -5.00
kroA200 1 3 3 0.1 20700.81 29369.41 19945.50 21352.64 -32.09 -3.65
kroA200 1 3 3 0.25 20094.51 29369.41 19454.80 20184.63 -33.76 -3.18
kroA200 1 3 3 0.50 18813.22 29369.41 18214.20 19218.25 -37.98 -3.18
kroA200 1 3 4 0.1 20578.36 29369.41 20336.40 21841.43 -30.76 -1.18
kroA200 1 3 4 0.25 18726.60 29369.41 18820.00 20184.92 -35.92 0.50
kroA200 1 3 4 0.50 18278.60 29369.41 18352.30 19381.85 -37.51 0.40
kroA200 2 1 2 0.1 15135.47 16800.59 15068.80 15831.91 -10.31 -0.44
kroA200 2 1 2 0.25 12872.68 16800.59 12280.70 12415.29 -26.90 -4.60
kroA200 2 1 2 0.50 14241.32 16800.59 14162.50 14981.23 -15.70 -0.55
kroA200 2 1 3 0.1 14758.62 16800.59 13867.42 14921.49 -17.46 -6.04
kroA200 2 1 3 0.25 13093.65 16800.59 12749.84 13525.28 -24.11 -2.63
kroA200 2 1 3 0.50 13449.94 16800.59 13274.37 13982.82 -20.99 -1.31
kroA200 2 1 4 0.1 14758.62 16800.59 14364.25 14425.25 -14.50 -2.67
kroA200 2 1 4 0.25 13093.65 16800.59 13145.34 13272.43 -21.76 0.39
kroA200 2 1 4 0.50 13449.94 16800.59 13189.08 13674.28 -21.50 -1.94
kroA200 2 2 2 0.1 14578.76 16800.59 13983.33 14324.36 -16.77 -4.08
kroA200 2 2 2 0.25 13002.87 16800.59 13106.82 13336.25 -21.99 0.80
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# #

α β BKS S0 S∗ S gapS0,S∗ gapBKS,S∗
truck drone

kroA200 2 2 2 0.50 12896.67 16800.59 12132.94 12974.84 -27.78 -5.92
kroA200 2 2 3 0.1 14544.51 16800.59 13897.32 14274.87 -17.28 -4.45
kroA200 2 2 3 0.25 12161.82 16800.59 12023.32 12763.91 -28.44 -1.14
kroA200 2 2 3 0.50 12456.44 16800.59 12023.32 12574.25 -28.44 -3.48
kroA200 2 2 4 0.1 14813.44 16800.59 15257.43 15981.48 -9.19 3.00
kroA200 2 2 4 0.25 11916.87 16800.59 11532.38 12211.28 -31.36 -3.23
kroA200 2 2 4 0.50 12480.42 16800.59 12193.33 12732.35 -27.42 -2.30
kroA200 2 3 2 0.1 14645.57 16800.59 14073.39 15121.32 -16.23 -3.91
kroA200 2 3 2 0.25 12709.96 16800.59 12874.73 13382.48 -23.37 1.30
kroA200 2 3 2 0.50 12093.30 16800.59 11522.39 11739.38 -31.42 -4.72
kroA200 2 3 3 0.1 14491.40 16800.59 14764.43 14902.75 -12.12 1.88
kroA200 2 3 3 0.25 12196.08 16800.59 12083.85 12184.74 -28.07 -0.92
kroA200 2 3 3 0.50 11922.01 16800.59 12000.00 12455.12 -28.57 0.65
kroA200 2 3 4 0.1 14148.82 16800.59 13729.74 14028.36 -18.28 -2.96
kroA200 2 3 4 0.25 11887.75 16800.59 11374.25 11631.38 -32.30 -4.32
kroA200 2 3 4 0.50 10825.73 16800.59 11093.33 11873.84 -33.97 2.47
kroA200 3 1 2 0.1 11971.70 13219.04 11732.33 12024.48 -11.25 -2.00
kroA200 3 1 2 0.25 9951.45 13219.04 9834.83 10824.67 -25.60 -1.17
kroA200 3 1 2 0.50 11039.57 13219.04 10739.43 11763.24 -18.76 -2.72
kroA200 3 1 3 0.1 11207.92 13219.04 11138.33 11973.35 -15.74 -0.62
kroA200 3 1 3 0.25 10144.57 13219.04 9938.33 10872.62 -24.82 -2.03
kroA200 3 1 3 0.50 9712.54 13219.04 9658.33 10018.78 -26.94 -0.56
kroA200 3 1 4 0.1 11210.40 13219.04 10803.33 11342.02 -18.27 -3.63
kroA200 3 1 4 0.25 9615.98 13219.04 9473.83 9873.45 -28.33 -1.48
kroA200 3 1 4 0.50 10336.44 13219.04 10093.93 10134.25 -23.64 -2.35
kroA200 3 2 2 0.1 11548.34 13219.04 11183.39 11462.23 -15.40 -3.16
kroA200 3 2 2 0.25 10450.33 13219.04 9938.33 10928.14 -24.82 -4.90
kroA200 3 2 2 0.50 9831.38 13219.04 9627.33 9873.73 -27.17 -2.08
kroA200 3 2 3 0.1 11070.51 13219.04 10760.33 11083.58 -18.60 -2.80
kroA200 3 2 3 0.25 9770.72 13219.04 9387.44 9892.48 -28.99 -3.92
kroA200 3 2 3 0.50 9458.77 13219.04 9137.38 9641.63 -30.88 -3.40
kroA200 3 2 4 0.1 11439.41 13219.04 11032.49 11736.24 -16.54 -3.56
kroA200 3 2 4 0.25 9434.01 13219.04 9138.49 9573.27 -30.87 -3.13
kroA200 3 2 4 0.50 9550.38 13219.04 9232.72 9472.18 -30.16 -3.33
kroA200 3 3 2 0.1 11821.92 13219.04 11634.94 11843.25 -11.98 -1.58
kroA200 3 3 2 0.25 9556.56 13219.04 9317.33 9873.85 -29.52 -2.50
kroA200 3 3 2 0.50 9965.07 13219.04 9942.38 11024.47 -24.79 -0.23
kroA200 3 3 3 0.1 11116.32 13219.04 11538.33 12974.47 -12.71 3.80
kroA200 3 3 3 0.25 9073.79 13219.04 8793.33 9128.93 -33.48 -3.09
kroA200 3 3 3 0.50 9160.44 13219.04 9038.76 9734.92 -31.62 -1.33
kroA200 3 3 4 0.1 10881.11 13219.04 10773.84 11448.13 -18.50 -0.99
kroA200 3 3 4 0.25 8826.21 13219.04 8492.37 9003.49 -35.76 -3.78
kroA200 3 3 4 0.50 8665.28 13219.04 8379.28 8521.33 -36.61 -3.30
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truck drone

rd400 1 1 2 0.1 13718.12 15280.36 14532.97 14782.39 -4.89 5.94
rd400 1 1 2 0.25 13276.86 15280.36 14037.83 14134.84 -8.13 5.73
rd400 1 1 2 0.50 13381.07 15280.36 14283.43 14372.43 -6.52 6.74
rd400 1 1 3 0.1 13322.46 15280.36 13974.86 14082.48 -8.54 4.90
rd400 1 1 3 0.25 12684.18 15280.36 13387.78 13752.02 -12.39 5.55
rd400 1 1 3 0.50 12951.21 15280.36 13184.74 13762.76 -13.71 1.80
rd400 1 1 4 0.1 13924.91 15280.36 13903.74 14283.53 -9.01 -0.15
rd400 1 1 4 0.25 12078.46 15280.36 12345.47 12982.24 -19.21 2.21
rd400 1 1 4 0.50 12677.66 15280.36 12283.83 12381.35 -19.61 -3.11
rd400 1 2 2 0.1 13226.39 15280.36 13425.83 13941.58 -12.14 1.51
rd400 1 2 2 0.25 12042.64 15280.36 12974.37 13192.72 -15.09 7.74
rd400 1 2 2 0.50 12352.01 15280.36 12184.73 12772.58 -20.26 -1.35
rd400 1 2 3 0.1 12578.34 15280.36 12983.79 13182.45 -15.03 3.22
rd400 1 2 3 0.25 11173.15 15280.36 12038.38 12182.87 -21.22 7.74
rd400 1 2 3 0.50 11855.39 15280.36 12183.48 12742.47 -20.27 2.77
rd400 1 2 4 0.1 13714.87 15280.36 12974.87 13083.13 -15.09 -5.40
rd400 1 2 4 0.25 11060.80 15280.36 11183.48 11414.27 -26.81 1.11
rd400 1 2 4 0.50 11438.55 15280.36 10735.48 11381.45 -29.74 -6.15
rd400 1 3 2 0.1 13042.39 15280.36 12847.34 13428.83 -15.92 -1.50
rd400 1 3 2 0.25 11414.13 15280.36 11084.84 11982.31 -27.46 -2.88
rd400 1 3 2 0.50 11788.63 15280.36 12834.84 13082.92 -16.00 8.87
rd400 1 3 3 0.1 13351.76 15280.36 13984.48 14092.57 -8.48 4.74
rd400 1 3 3 0.25 10925.65 15280.36 11837.38 12081.24 -22.53 8.34
rd400 1 3 3 0.50 11414.13 15280.36 12845.47 13031.33 -15.93 12.54
rd400 1 3 4 0.1 13530.87 15280.36 12843.48 13352.33 -15.95 -5.08
rd400 1 3 4 0.25 11202.46 15280.36 10832.48 11138.32 -29.11 -3.30
rd400 1 3 4 0.50 11528.11 15280.36 11084.33 11562.47 -27.46 -3.85
rd400 2 1 2 0.1 7951.70 8311.25 7394.44 7428.67 -11.03 -7.01
rd400 2 1 2 0.25 7495.31 8311.25 7193.44 7352.83 -13.45 -4.03
rd400 2 1 2 0.50 7741.74 8311.25 7493.40 7681.37 -9.84 -3.21
rd400 2 1 3 0.1 7705.27 8311.25 7479.93 7662.73 -10.00 -2.92
rd400 2 1 3 0.25 7048.70 8311.25 7098.38 7264.27 -14.59 0.70
rd400 2 1 3 0.50 7057.60 8311.25 7164.84 7274.18 -13.79 1.52
rd400 2 1 4 0.1 7705.27 8311.25 7424.08 7524.27 -10.67 -3.65
rd400 2 1 4 0.25 7048.70 8311.25 7197.35 7318.74 -13.40 2.11
rd400 2 1 4 0.50 7057.60 8311.25 7027.44 7163.97 -15.45 -0.43
rd400 2 2 2 0.1 7728.40 8311.25 7034.82 7381.28 -15.36 -8.97
rd400 2 2 2 0.25 6627.01 8311.25 6973.89 7124.28 -16.09 5.23
rd400 2 2 2 0.50 6970.42 8311.25 6493.44 6772.23 -21.87 -6.84
rd400 2 2 3 0.1 7566.48 8311.25 7034.83 7321.85 -15.36 -7.03
rd400 2 2 3 0.25 6688.40 8311.25 6297.44 6481.37 -24.23 -5.85
rd400 2 2 3 0.50 6378.80 8311.25 6194.84 6379.34 -25.46 -2.88
rd400 2 2 4 0.1 7267.56 8311.25 6937.49 7181.47 -16.53 -4.54



APPENDIX A. Appendix 91

Table 14 – Complete comparison between Schermer (2018) and GVNS.

Instance
# #

α β BKS S0 S∗ S gapS0,S∗ gapBKS,S∗
truck drone

rd400 2 2 4 0.25 6194.64 8311.25 6398.49 6521.38 -23.01 3.29
rd400 2 2 4 0.50 6565.62 8311.25 6353.75 6523.91 -23.55 -3.23
rd400 2 3 2 0.1 7321.83 8311.25 6873.84 7018.37 -17.29 -6.12
rd400 2 3 2 0.25 6654.59 8311.25 6389.84 6572.74 -23.12 -3.98
rd400 2 3 2 0.50 6592.31 8311.25 6198.95 6883.63 -25.41 -5.97
rd400 2 3 3 0.1 7508.65 8311.25 6834.84 7572.62 -17.76 -8.97
rd400 2 3 3 0.25 6076.32 8311.25 6184.29 6821.83 -25.59 1.78
rd400 2 3 3 0.50 6547.83 8311.25 6128.84 6723.41 -26.26 -6.40
rd400 2 3 4 0.1 7330.72 8311.25 6982.84 7391.14 -15.98 -4.75
rd400 2 3 4 0.25 6280.94 8311.25 6385.25 6724.26 -23.17 1.66
rd400 2 3 4 0.50 6441.07 8311.25 6425.84 6921.03 -22.69 -0.24
rd400 3 1 2 0.1 5593.67 5703.85 5439.48 5662.13 -4.63 -2.76
rd400 3 1 2 0.25 5213.89 5703.85 5263.84 5501.28 -7.71 0.96
rd400 3 1 2 0.50 5143.77 5703.85 5284.84 5482.19 -7.35 2.74
rd400 3 1 3 0.1 5341.73 5703.85 5132.74 5381.87 -10.01 -3.91
rd400 3 1 3 0.25 4926.58 5703.85 5143.84 5312.58 -9.82 4.41
rd400 3 1 3 0.50 5113.36 5703.85 5274.89 5493.77 -7.52 3.16
rd400 3 1 4 0.1 5395.10 5703.85 5198.38 5381.36 -8.86 -3.65
rd400 3 1 4 0.25 4693.87 5703.85 4873.89 4991.48 -14.55 3.84
rd400 3 1 4 0.50 4382.97 5703.85 4598.84 4782.23 -19.37 4.93
rd400 3 2 2 0.1 5282.78 5703.85 5093.83 5482.17 -10.69 -3.58
rd400 3 2 2 0.25 4971.88 5703.85 4873.84 5193.28 -14.55 -1.97
rd400 3 2 2 0.50 4431.38 5703.85 4387.35 4581.38 -23.08 -0.99
rd400 3 2 3 0.1 5146.87 5703.85 5027.38 5291.93 -11.86 -2.32
rd400 3 2 3 0.25 4749.72 5703.85 4893.84 5019.28 -14.20 3.03
rd400 3 2 3 0.50 4785.71 5703.85 4572.84 4729.37 -19.83 -4.45
rd400 3 2 4 0.1 5293.33 5703.85 5118.24 5331.87 -10.27 -3.31
rd400 3 2 4 0.25 4500.88 5703.85 4239.48 4483.13 -25.67 -5.81
rd400 3 2 4 0.50 4393.52 5703.85 4184.84 4291.84 -26.63 -4.75
rd400 3 3 2 0.1 5454.67 5703.85 5226.43 5482.19 -8.37 -4.18
rd400 3 3 2 0.25 4623.13 5703.85 4534.91 4661.83 -20.49 -1.91
rd400 3 3 2 0.50 4592.10 5703.85 4519.23 4982.17 -20.77 -1.59
rd400 3 3 3 0.1 5299.53 5703.85 5173.37 5313.73 -9.30 -2.38
rd400 3 3 3 0.25 4399.73 5703.85 4298.42 4313.83 -24.64 -2.30
rd400 3 3 3 0.50 4474.19 5703.85 4175.74 4282.74 -26.79 -6.67
rd400 3 3 4 0.1 5287.12 5703.85 5131.98 5384.28 -10.03 -2.93
rd400 3 3 4 0.25 4120.48 5703.85 4297.24 4312.38 -24.66 4.29
rd400 3 3 4 0.50 4585.89 5703.85 4139.47 4482.10 -27.43 -9.73
att532 1 1 2 0.1 81335.90 86742.77 83292.38 83982.47 -3.98 2.41
att532 1 1 2 0.25 79694.17 86742.77 81372.89 81582.21 -6.19 2.11
att532 1 1 2 0.50 79046.86 86742.77 80982.42 81935.32 -6.64 2.45
att532 1 1 3 0.1 79947.46 86742.77 81834.37 82984.14 -5.66 2.36
att532 1 1 3 0.25 76785.97 86742.77 78732.73 80183.81 -9.23 2.54
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# #

α β BKS S0 S∗ S gapS0,S∗ gapBKS,S∗
truck drone

att532 1 1 3 0.50 77724.10 86742.77 75324.73 75982.52 -13.16 -3.09
att532 1 1 4 0.1 76448.24 86742.77 77194.87 77928.47 -11.01 0.98
att532 1 1 4 0.25 75904.12 86742.77 74239.34 75145.26 -14.41 -2.19
att532 1 1 4 0.50 79365.82 86742.77 75824.02 76018.37 -12.59 -4.46
att532 1 2 2 0.1 79816.13 86742.77 78762.43 79238.41 -9.20 -1.32
att532 1 2 2 0.25 75369.39 86742.77 72844.84 74361.74 -16.02 -3.35
att532 1 2 2 0.50 71888.92 86742.77 72274.74 73193.47 -16.68 0.54
att532 1 2 3 0.1 75885.36 86742.77 74293.69 74872.21 -14.35 -2.10
att532 1 2 3 0.25 69046.39 86742.77 71235.49 71744.56 -17.88 3.17
att532 1 2 3 0.50 70369.15 86742.77 70173.47 70827.84 -19.10 -0.28
att532 1 2 4 0.1 76101.13 86742.77 74842.17 75103.24 -13.72 -1.65
att532 1 2 4 0.25 67883.11 86742.77 68734.37 69721.37 -20.76 1.25
att532 1 2 4 0.50 68511.66 86742.77 67367.34 68018.38 -22.34 -1.67
att532 1 3 2 0.1 74956.61 86742.77 73428.43 73829.95 -15.35 -2.04
att532 1 3 2 0.25 67545.38 86742.77 66384.26 67183.40 -23.47 -1.72
att532 1 3 2 0.50 66513.44 86742.77 65372.87 69271.92 -24.64 -1.71
att532 1 3 3 0.1 74299.92 86742.77 71743.48 74714.27 -17.29 -3.44
att532 1 3 3 0.25 67170.13 86742.77 68632.44 70183.75 -20.88 2.18
att532 1 3 3 0.50 63980.49 86742.77 64833.48 67621.82 -25.26 1.33
att532 1 3 4 0.1 75613.30 86742.77 71874.37 73613.47 -17.14 -4.94
att532 1 3 4 0.25 65200.06 86742.77 66371.28 68271.74 -23.48 1.80
att532 1 3 4 0.50 65293.87 86742.77 64827.35 66173.86 -25.26 -0.71
att532 2 1 2 0.1 46808.20 55490.27 46973.37 48172.84 -15.35 0.35
att532 2 1 2 0.25 46245.65 55490.27 47382.43 49632.48 -14.61 2.46
att532 2 1 2 0.50 47078.86 55490.27 46242.48 47731.25 -16.67 -1.78
att532 2 1 3 0.1 47105.39 55490.27 47413.84 47872.71 -14.55 0.65
att532 2 1 3 0.25 44934.81 55490.27 43948.49 44213.18 -20.80 -2.20
att532 2 1 3 0.50 43623.97 55490.27 41439.48 42845.35 -25.32 -5.01
att532 2 1 4 0.1 45332.84 55490.27 46389.35 46872.42 -16.40 2.33
att532 2 1 4 0.25 44897.66 55490.27 45725.48 46029.34 -17.60 1.84
att532 2 1 4 0.50 44685.38 55490.27 44893.42 45128.65 -19.10 0.47
att532 2 2 2 0.1 47407.90 55490.27 46932.84 47238.15 -15.42 -1.00
att532 2 2 2 0.25 44749.06 55490.27 44924.84 45824.47 -19.04 0.39
att532 2 2 2 0.50 40678.55 55490.27 42948.00 43134.22 -22.60 5.58
att532 2 2 3 0.1 45025.03 55490.27 46298.89 47241.22 -16.56 2.83
att532 2 2 3 0.25 40200.92 55490.27 40838.43 41834.75 -26.40 1.59
att532 2 2 3 0.50 40970.44 55490.27 41042.37 41372.18 -26.04 0.18
att532 2 2 4 0.1 45253.23 55490.27 45988.48 46837.47 -17.12 1.62
att532 2 2 4 0.25 42891.59 55490.27 41843.40 42841.38 -24.59 -2.44
att532 2 2 4 0.50 41888.56 55490.27 39743.78 42841.12 -28.38 -5.12
att532 2 3 2 0.1 44260.81 55490.27 45013.44 46528.37 -18.88 1.70
att532 2 3 2 0.25 42084.92 55490.27 41843.78 42315.66 -24.59 -0.57
att532 2 3 2 0.50 40758.16 55490.27 38743.48 39414.76 -30.18 -4.94
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Table 14 – Complete comparison between Schermer (2018) and GVNS.

Instance
# #

α β BKS S0 S∗ S gapS0,S∗ gapBKS,S∗
truck drone

att532 2 3 3 0.1 43040.19 55490.27 44725.85 44873.41 -19.40 3.92
att532 2 3 3 0.25 39219.11 55490.27 40284.49 40762.78 -27.40 2.72
att532 2 3 3 0.50 40439.74 55490.27 39732.75 40183.64 -28.40 -1.75
att532 2 3 4 0.1 43942.39 55490.27 44024.43 44183.75 -20.66 0.19
att532 2 3 4 0.25 40545.88 55490.27 39276.43 40183.74 -29.22 -3.13
att532 2 3 4 0.50 41925.71 55490.27 40642.97 41732.58 -26.76 -3.06
att532 3 1 2 0.1 34899.89 48618.90 34187.84 34731.42 -29.68 -2.04
att532 3 1 2 0.25 33483.23 48618.90 34742.49 35732.84 -28.54 3.76
att532 3 1 2 0.50 33703.51 48618.90 35863.89 37611.55 -26.23 6.41
att532 3 1 3 0.1 33775.68 48618.90 34764.94 34872.63 -28.50 2.93
att532 3 1 3 0.25 34599.84 48618.90 35732.78 35987.14 -26.50 3.27
att532 3 1 3 0.50 31512.06 48618.90 33842.14 34762.16 -30.39 7.39
att532 3 1 4 0.1 34835.32 48618.90 35832.94 36071.74 -26.30 2.86
att532 3 1 4 0.25 30657.51 48618.90 31872.54 32027.24 -34.44 3.96
att532 3 1 4 0.50 32017.20 48618.90 31283.98 31965.33 -35.65 -2.29
att532 3 2 2 0.1 33851.64 48618.90 34837.94 34992.65 -28.34 2.91
att532 3 2 2 0.25 33259.15 48618.90 32874.25 33183.47 -32.38 -1.16
att532 3 2 2 0.50 31648.79 48618.90 31252.37 31764.35 -35.72 -1.25
att532 3 2 3 0.1 33525.01 48618.90 34847.82 35018.38 -28.32 3.95
att532 3 2 3 0.25 30927.17 48618.90 31837.94 32014.48 -34.52 2.94
att532 3 2 3 0.50 29369.99 48618.90 29874.84 31028.42 -38.55 1.72
att532 3 2 4 0.1 32594.50 48618.90 33219.39 33651.65 -31.67 1.92
att532 3 2 4 0.25 30596.74 48618.90 30843.90 31468.37 -36.56 0.81
att532 3 2 4 0.50 30729.67 48618.90 29834.82 31846.26 -38.64 -2.91
att532 3 3 2 0.1 33726.30 48618.90 32874.51 33081.27 -32.38 -2.53
att532 3 3 2 0.25 28295.15 48618.90 28743.82 29018.38 -40.88 1.59
att532 3 3 2 0.50 31523.46 48618.90 30824.93 30972.28 -36.60 -2.22
att532 3 3 3 0.1 33080.64 48618.90 32984.78 33083.74 -32.16 -0.29
att532 3 3 3 0.25 30384.06 48618.90 29842.11 30284.38 -38.62 -1.78
att532 3 3 3 0.50 29130.71 48618.90 28743.89 28981.47 -40.88 -1.33
att532 3 3 4 0.1 33080.64 48618.90 32874.08 32973.38 -32.38 -0.62
att532 3 3 4 0.25 29852.34 48618.90 29143.84 29982.74 -40.06 -2.37
att532 3 3 4 0.50 30232.14 48618.90 29834.22 30827.26 -38.64 -1.32
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