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Abstract
This paper is devoted to studying the semilinear elliptic system of Hénon type

⎧
⎪⎨

⎪⎩

–�
BNu = K (d(x))Qu(u, v),

–�
BNv = K (d(x))Qv(u, v),

u, v ∈ H1
r (B

N), N ≥ 3,

in the hyperbolic space BN , where H1
r (B

N) = {u ∈ H1(BN) : u is radial} and –�
BN

denotes the Laplace–Beltrami operator on B
N , d(x) = d

BN (0, x), Q ∈ C1(R×R,R) is
p-homogeneous, and K ≥ 0 is a continuous function. We prove a compactness result
and, together with Clark’s theorem, we establish the existence of infinitely many
solutions.
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Keywords: Hyperbolic space; Hénon equation; Variational methods

1 Introduction and the main result
This article concerns the existence of infinitely many solutions for the following semilinear
elliptic system of Hénon type in hyperbolic space:

⎧
⎪⎪⎨

⎪⎪⎩

–�BN u = K(d(x))Qu(u, v),

–�BN v = K(d(x))Qv(u, v),

u, v ∈ H1
r (BN ), N ≥ 3,

(H)

where BN is the Poincaré ball model for the hyperbolic space, H1
r (BN ) denotes the Sobolev

space of a radial H1(BN ) function, r = d(x) = dBN (0, x), �BN is the Laplace–Beltrami type
operator on B

N .
We assume the following hypotheses on K and Q:
(K1) K ≥ 0 is a continuous function with K(0) = 0 and K(t) �= 0 for t �= 0.
(K2) K = O(rβ ) as r → 0 and K = O(rβ ) as r → ∞ for some β > 0.
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(Q1) Q ∈ C1(R×R,R) is such that Q(–s, t) = Q(s, –t) = Q(s, t), Q(λs,λt) = λpQ(s, t) (Q is
p-homogeneous), ∀λ ∈R and p ∈ (2, δ), where

δ =

⎧
⎨

⎩

2N+2β

N–2 if N – 2 > 0,

∞ if otherwise.

(Q2) There exist C, C1, C2 > 0 such that Q(s, t) ≤ C(sp + tp), Qs(s, t) ≤ C1sp–1, and
Qt(s, t) ≤ C2tp–1, ∀s, t ≥ 0.

(Q3) There exists C3 > 0 such that C3(|s|p + |t|p) ≤ Q(s, t) with p ∈ (2, δ).
In the past few years the prototype problem

–�BN u = d(x)α|u|p–2u, u ∈ H1
r
(
B

N)

has attracted attention. Unlike the corresponding problem in the Euclidean space R
N , He

in [1] proved the existence of a positive solution to the above problem over the range p ∈
(2, 2N+2α

N–2 ) in the hyperbolic space. More precisely, she explored the Strauss radial estimate
for hyperbolic space together with the mountain pass theorem. In a subsequent paper [2],
He and Qiu proved the existence of at least one non-trivial positive solution for the critical
Hénon equation

–�BN u = d(x)α|u|2∗–2u + λu, u ≥ 0, u ∈ H1
0
(
Ω ′),

provided that α → 0+ and for a suitable value of λ, where Ω ′ is a bounded domain in hyper-
bolic space B

N . Finally, by working in the whole hyperbolic space H
N , He [3] considered

the following Hardy–Hénon type system:

⎧
⎨

⎩

–�HN u = db(x)α|v|p–1v,

–�HN v = db(x)β |u|q–1u

for α,β ∈ R, N > 4 and obtained infinitely many non-trivial radial solutions.
We would like to mention the paper of Carrião, Faria, and Miyagaki [4] where they ex-

tended He’s result by considering a general nonlinearity

⎧
⎨

⎩

–�α

BN u = K(d(x))f (u)

u ∈ H1
r (BN ).

(1)

They were able to prove the existence of at least one positive solution through a compact
Sobolev embedding with the mountain pass theorem.

In this paper, we investigate the existence of infinitely many solutions by considering a
gradient system that generalizes problem (1). We cite [5–11] for related gradient system
problems. In order to obtain our result, we applied Clark’s theorem [12, 13] and got in-
spiration on the nonlinearities condition employed by Morais Filho and Souto [14] in a
p-Laplacian system defined on a bounded domain in R

N .



Cunha and Lemos Advances in Difference Equations         (2020) 2020:29 Page 3 of 12

Regarding the difficulties, many technical difficulties arise when working on B
N , which is

a non-compact manifold. This means that the embedding H1(BN ) ↪→ Lp(BN ) is not com-
pact for 2 ≤ p ≤ 2N

N–2 and the functional related to the system H cannot satisfy the (PS)c

condition for all c > 0.
We also point out that since the weight function d(x) depends on the Riemannian dis-

tance r from a pole 0, we have some difficulties in proving that

∫

BN
d(x)β

(∣
∣u(x)

∣
∣p +

∣
∣v(x)

∣
∣p)dVBN < ∞, ∀(u, v) ∈ H1(

B
N) × H1(

B
N)

leading to a great effort in proving that the associated Euler–Lagrange functional is well
defined.

To overcome these difficulties, we restrict ourselves to the radial functions.
Our result is the following.

Theorem 1.1 Under hypotheses (K1)–(K2) and (Q1)–(Q3), problem (H) has infinitely
many solutions.

2 Preliminaries
Throughout this paper, C is a positive constant which may change from line to line.

The Poincaré ball for the hyperbolic space is

B
N =

{
x ∈R

N ||x| < 1
}

endowed with Riemannian metric g given by gi,j = (p(x))2δi,j, where p(x) = 2
1–|x|2 . We denote

the hyperbolic volume by dVBN = (p(x))N dx. The hyperbolic distance from the origin to
x ∈ B

N is given by

d(x) := dBN (0, x) =
∫ |x|

0

2
1 – s2 ds = log

(
1 + |x|
1 – |x|

)

.

The hyperbolic gradient and the Laplace–Beltrami operator are

–�BN u = –
(
p(x)

)–N
div

(
p(x)N–2∇u

)
, ∇BN u =

∇u
p(x)

,

where H1(BN ) denotes the Sobolev space on B
N with the metric g . ∇ and div denote the

Euclidean gradient and divergence in R
N , respectively.

Let H1
r (BN ) = {u ∈ H1(BN ) : u is radial}.

We shall find weak solutions of problem (H) in the space

H = H1
r
(
B

N) × H1
r
(
B

N)

endowed with the norm

∥
∥(u, v)

∥
∥2 =

∫

BN

(|∇BN u|2
BN + |∇BN v|2

BN
)

dVBN .
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One can observe that system (H) is formally derived as the Euler–Lagrange equation for
the functional

I(u, v) =
1
2

∫

BN

(|∇BN u|2
BN + |∇BN v|2

BN
)

dVBN –
∫

BN
K

(
d(x)

)
Q(u, v) dVBN .

We endowed the norm for Lp(BN ) × Lp(BN ) as follows:

∥
∥(u, v)

∥
∥p

p =
∫

BN

(|u|p + |v|p)dVBN .

To solve this problem, we need the following lemmas.

Lemma 2.1 The map (u, v) �−→ (d(x)mu, d(x)mv) from H = H1
r (BN ) × H1

r (BN ) to Lp(BN ) ×
Lp(BN ) is continuous for p ∈ (2, m̃), where m > 0 and

m̃ =

⎧
⎨

⎩

2N
N–2–2m if m < N–2

2 ,

∞ if otherwise.

Proof In [1, Lemma 2.2] it has been proved that the map u �−→ d(x)mu from H1
r (BN )

to Lp(BN ) is continuous for p ∈ (2, m̃). Therefore ‖d(x)mu‖p ≤ C‖u‖H1
r

and ‖d(x)mv‖p ≤
C‖v‖H1

r
. Hence,

(∥
∥d(x)mu

∥
∥2

p +
∥
∥d(x)mv

∥
∥2

p

) 1
2 ≤ C

∥
∥(u, v)

∥
∥.

Now observe that

∥
∥d(x)mu

∥
∥

p +
∥
∥d(x)mv

∥
∥

p =
[(∥

∥d(x)mu
∥
∥

p +
∥
∥d(x)mv

∥
∥

p

)2] 1
2

=
(∥
∥d(x)mu

∥
∥2

p + 2
∥
∥d(x)mu

∥
∥

p

∥
∥d(x)mv

∥
∥

p +
∥
∥d(x)mv

∥
∥

p

) 1
2 .

Applying Cauchy’s inequality ab ≤ a2+b2

2 , we get

∥
∥d(x)mu

∥
∥

p +
∥
∥d(x)mv

∥
∥

p ≤ √
2
(∥
∥d(x)mu

∥
∥2

p +
∥
∥d(x)mv

∥
∥2

p

) 1
2 .

By the subadditivity, we get

(∥
∥d(x)mu

∥
∥p

p +
∥
∥d(x)mv

∥
∥p

p

) 1
p ≤ ∥

∥d(x)mu
∥
∥

p +
∥
∥d(x)mv

∥
∥

p.

Therefore,

∥
∥
(
d(x)mu, d(x)mv

)∥
∥

p ≤ C
∥
∥(u, v)

∥
∥,

and the lemma holds. �
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Remark 2.1 From the previous lemma, there exists a positive constant C > 0 such that
∫

BN
d(x)β

∣
∣u(x)

∣
∣p dVBN +

∫

BN
d(x)β

∣
∣v(x)

∣
∣p dVBN

≤ C
(∫

BN
|∇BN u|2

BN dVBN +
∫

BN
|∇BN v|2

BN dVBN

) p
2

,

where m = β

p and 2 < p < 2N
N–2–2( β

p )
, that is, 2 < p < δ.

Lemma 2.2 The map (u, v) �−→ (d(x)mu, d(x)mv) from H = H1
r (BN ) × H1

r (BN ) to Lp(BN ) ×
Lp(BN ) is compact for p ∈ (2, m̃), where m > 0 and

m̃ =

⎧
⎨

⎩

2N
N–2–2m if m < N–2

2 ,

∞ if otherwise.

Proof Let (un, vn) ∈ H be a bounded sequence. Then, up to a subsequence, if necessary,
we may assume that

(un, vn) ⇀ (u, v).

It is easy to see that un ⇀ u and vn ⇀ v in H1
r (BN ).

We will use the same calculus used by Haiyang He [1] (page 26). We want to show that

lim
n→∞

∫

BN
d(x)mp∣∣un(x)

∣
∣p dVBN =

∫

BN
d(x)mp∣∣u(x)

∣
∣p dVBN ,

lim
n→∞

∫

BN
d(x)mp∣∣vn(x)

∣
∣p dVBN =

∫

BN
d(x)mp∣∣v(x)

∣
∣p dVBN .

Let u ∈ H1
r (BN ), then by Haiyang He [1] we have

∣
∣un(x)

∣
∣ ≤ 1√

ωn–1(N – 2)

(
1 – |x|2

2

) N–2
2 1

|x| N–2
2

‖un‖H1
r (BN ),

∣
∣un(x)

∣
∣ ≤ 1√

ωn–1

(
1 – |x|2

2

) N–1
2 1

|x| N
2

‖un‖H1
r (BN ).

Since {|x| ≤ 1
2 }, ln 1+|x|

1–|x| ≤ 2r
1–r2 , and 2 < p < m̃, we have

d(x)mp|u|p ≤ C
(

ln
1 + |x|
1 – |x|

)mp(1 – |x|2
2

)p N–2
2

(
1

|x| N–2
2

)p

≤ C
(

2|x|
1 – |x|2

)mp(1 – |x|2
2

)p N–2
2

(
1

|x| N–2
2

)p

≡ h1.

Set

g1(x) =

⎧
⎨

⎩

h1(x) if 0 ≤ |x| < 1
2 ,

0 if 1
2 ≤ |x| < 1,
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then

∫

BN
g1 dVBN =

∫ 1
2

0

(
2r

1 – r2

)mp(1 – r2

2

)p N–2
2

(
1

r N–2
2

)p

rN–1
(

2
1 – r2

)N

dr

≤ C
∫ 1

2

0

(
2r

1 – r2

)mp(1 – r2

2

)(p N–2
2 –N)

rN–1–p N–2
2 dr

≤ C
∫ 1

2

0
rmp+N–1–p N–2

2 dr < ∞.

Since {|x| > 1
2 } and 2 < p < m̃, we have

d(x)mp|u|p ≤ C
(

ln
1 + |x|
1 – |x|

)mp(1 – |x|2
2

)p N–1
2

(
1

|x| N
2

)p

≤ C
(

ln
1 + |x|
1 – |x|

)mp(1 – |x|2
2

)p N–1
2

(
1

|x| N
2

)p

≡ h2.

Set

g2(x) =

⎧
⎨

⎩

0 if 0 ≤ |x| < 1
2

h2(x) if 1
2 ≤ |x| < 1,

then

∫

BN
g2 dVBN =

∫ 1

1
2

(

ln
1 + r
1 – r

)mp(1 – r2

2

)p N–1
2

(
1

r N
2

)p

rN–1
(

2
1 – r2

)N

dr

≤ C
∫ 1

1
2

(

ln
1 + r
1 – r

)mp(1 – r2

2

)(p N–1
2 –N)

rN–1– N
2 p dr

≤
∫ ∞

ln 3
smp

(
2es

(es + 1)2

) N–1
2 p–N+1

ds < ∞.

Hence, we have

∣
∣d(x)mqun(x)q∣∣ ≤ g1(x) + g2(x).

By the dominated convergence theorem, we obtain

lim
n→∞

∫

BN
d(x)mqup

n(x) dVBN =
∫

BN
d(x)mpup(x) dVBN .

In the same way we conclude that

lim
n→∞

∫

BN
d(x)mqvp

n(x) dVBN =
∫

BN
d(x)mpvp(x) dVBN ,

and the lemma holds. �
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3 Proof of Theorem 1.1
Clark’s theorem is one of the most important results in critical point theory (see [12]). It
was successfully applied to sublinear elliptic problems with symmetry and the existence
of infinitely many solutions around was shown.

In order to state Clark’s theorem, we need some terminologies.
Let (X,‖·‖X) be a Banach space and I ∈ C1(X,R).

(i) For c ∈R, we say that I(u) satisfies the (PS)c condition if any sequence (uj)∞j=1 ⊂ X
such that I(uj) → c and ‖I ′(uj)‖ → 0 has a convergent subsequence.

(ii) Let S be a symmetric and closed set family in X�{0}. For A ∈ S, the genus
γ (A) = min{n ∈N : φ ∈ C(A,Rn{0}) is odd}. If there is no such natural, we set
γ (A) = ∞.

(iii) Let Ω be an open and bounded set, 0 ∈ Ω in R
n. If A ∈ S is such that there exists an

odd homeomorphism function from A to ∂Ω , then γ (A) = n.

Theorem 3.1 (Clark’s theorem) Let I ∈ C(X,R) be an even function bounded from below
with I(0) = 0, and there exists a compact, symmetric set K ∈ X such that γ (K) = k and
supK I < 0. Then I has at least k distinct pairs of critical points.

The proof of Theorem 1.1 is made by using Theorem 3.1.
The (H) system is the Euler–Lagrange equations related to the functional

I(u, v) =
1
2

∫

BN

(|∇BN u|2
BN + |∇BN v|2

BN
)

dVBN –
∫

BN
K

(
d(x)

)
Q(u, v) dVBN , (2)

which is C1 on H .
The functional I is not bounded from below, therefore, we cannot apply Clark’s tech-

nique for this functional.
In order to overcome this difficulty, we consider the auxiliary functional

J(u, v) =
(∫

BN

(|∇BN u|2
BN + |∇BN v|2

BN
)

dVBN

)p–1

–
∫

BN
K

(
d(x)

)
Q(u, v) dVBN , (3)

where p ∈ (2, δ), while for J ′ we have ∀(φ,ψ) ∈ H

J ′(u, v)(φ,ψ) = (2p – 2)
∥
∥(u, v)

∥
∥2p–4

∫

BN

(〈∇BN u,∇BN φ〉BN + 〈∇BN v,∇BN ψ〉BN
)

dVBN

–
∫

BN
K

(
d(x)

)(
φQu(u, v) + ψQv(u, v)

)
dVBN . (4)

We will show that the set of critical points of J is related to a set of critical points of I
and J satisfies the conditions of Theorem 3.1.

The proof of Theorem 1.1 is divided into several lemmas.

Lemma 3.1 If (u, v) ∈ H , (u, v) �= (0, 0) is a critical point for J , then

(w, z) =
(

u

[(2p – 2)‖(u, v)‖2p–4]
1

p–2
,

v

[(2p – 2)‖(u, v)‖2p–4]
1

p–2

)

is a critical point for I .
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Proof Note that (u, v) �= (0, 0) is a critical point for J if, and only if, (u, v) is a weak solution
to the problem

⎧
⎪⎪⎨

⎪⎪⎩

–(2p – 2)‖(u, v)‖2p–4�BN u = K(d(x))Qu(u, v),

–(2p – 2)‖(u, v)‖2p–4�BN v = K(d(x))Qv(u, v),

u, v ∈ H1
r (BN ), N ≥ 3.

(S)

Define λ(‖(u, v)‖) = [(2p – 2)‖(u, v)‖2p–4]
–1

p–2 , then (w, z) = λ(‖(u, v)‖)(u, v).
Using the p – 1-homogeneity condition of Qu(u, v) and Qv(u, v), observe that

–�BN w – K
(
d(x)

)
Qu(w, z)

= –λ
(∥
∥(u, v)

∥
∥
)
�BN u –

(
λ
(∥
∥(u, v)

∥
∥
))p–1K

(
d(x)

)
Qu(u, v)

= –λ
(∥
∥(u, v)

∥
∥
)
K

(
d(x)

)
Qu(u, v)

(
(
λ
(∥
∥(u, v)

∥
∥
))p–2 –

1
(2p – 2)‖(u, v)‖2p–4

)

and

–�BN z – K
(
d(x)

)
Qv(w, z)

= –λ
(∥
∥(u, v)

∥
∥
)
�BN v –

(
λ
(∥
∥(u, v)

∥
∥
))p–1K

(
d(x)

)
Qv(u, v)

= –λ
(∥
∥(u, v)

∥
∥
)
K

(
d(x)

)
Qv(u, v)

(
(
λ
(∥
∥(u, v)

∥
∥
))p–2 –

1
(2p – 2)‖(u, v)‖2p–4

)

.

Hence (w, z) is a weak solution for problem (H) and so, a critical point for I . �

Lemma 3.2 J(u, v) is bounded from below and satisfies the (PS)c condition.

Proof From (K1)–(K2), (Q2)–(Q3), and Remark 2.1

J(u, v) =
(∫

BN
|∇BN u|2

BN + |∇BN v|2
BN dVBN

)p–1

–
∫

BN
K

(
d(x)

)
Q(u, v) dVBN

≥ ∥
∥(u, v)

∥
∥2p–2 – C

∫

BN
d(x)β

(|u|p + |v|p)dVBN

≥ ∥
∥(u, v)

∥
∥2p–2 –

∥
∥(u, v)

∥
∥p,

so that J(u, v) is bounded from below.
Let (un, vn) ∈ H be such that |J(un, vn)| ≤ C with C ∈R

+, J ′(un, vn) → 0. Since

C ≥ J(un, vn) ≥ ∥
∥(un, vn)

∥
∥2p–2 –

∥
∥(un, vn)

∥
∥p,

we conclude that ‖(un, vn)‖ is bounded. So, there exists (u, v) ∈ H such that, passing to a
subsequence if necessary,

(un, vn) ⇀ (u, v), as n → ∞.
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From the embedding Lemma 2.2, we have

∫

BN

(
d(x)

)β(|un|p + |vn|p
)

dVBN −→
∫

BN

(
d(x)

)β(|u|p + |v|p)dVBN ,

and by (K2) – (Q2), we infer that

|K(d(x)
(
unQu(un, vn) + vnQv(un, vn)

)| ≤ C
(
d(x)

)β(|un|p + |vn|p
)
.

Therefore, by the Lebesgue dominated convergence theorem,

∫

BN
K

(
d(x)

)(
Qu(un, vn)un + Qv(un, vn)vn

)
dVBN

→
∫

BN
K

(
d(x)

)(
Qu(u, v)u + Qv(u, v)v

)
dVBN .

Since J ′(u, v)(u, v) = 0 and J ′(un, vn)(un, vn) = on(1) as n → ∞, we have

(2p – 2)
(∥
∥(un, vn)

∥
∥2p–2 –

∥
∥(u, v)

∥
∥2p–2)

= J ′(un, vn)(un, vn) – J ′(u, v)(u, v)

+
∫

BN
K

(
d(x)

)(
Qu(un, vn)un + Qv(un, vn)vn

)
dVBN

–
∫

BN
K

(
d(x)

)(
Qu(u, v)u + Qv(u, v)v

)
dVBN = on(1),

then ‖(un, vn)‖ → ‖(u, v)‖. Therefore,

(un, vn) → (u, v), as n → ∞, in H . �

The next lemma ends the proof of Theorem 1.1.

Lemma 3.3 Given k ∈N, there exists a compact and symmetric set K ∈ H such that γ (K) =
k and supK J < 0.

Proof Let Xk ⊂ H be a subspace of dimension k. Consider the following norm in Xk :

∥
∥(u, v)

∥
∥

Xk
=

(∫

BN
K

(
d(x)

)(|u|p + |v|p)dVBN

) 1
p

.

Since Xk ⊂ H has finite dimension, there exists a > 0 such that

a
∥
∥(u, v)

∥
∥

Xk
≤ ∥

∥(u, v)
∥
∥ ≤ 1

a
∥
∥(u, v)

∥
∥

Xk
, ∀(u, v) ∈ Xk .

Therefore, we obtain from (Q3) that

J(u, v) ≤ ∥
∥(u, v)

∥
∥2p–2 – C

∫

BN
K

(
d(x)

)(|u|p + |v|p)dVBN =
∥
∥(u, v)

∥
∥2p–2 – C

∥
∥(u, v)

∥
∥p

Xk
,
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where C ∈R is a positive constant. We then conclude that

J(u, v) ≤ ∥
∥(u, v)

∥
∥p

Xk

(‖(u, v)‖p–2
Xk

a2p–2 – C
)

.

Let A = a
2p–2
p–2 and consider the set K = {(u, v) ∈ Xk : ‖(u, v)‖Xk = A

2 C
1

p–2 }, then

J(u, v) ≤ C
Ap

2p

(
1

2q–2 – 1
)

< 0, ∀(u, v) ∈ K .

We get that supK J < 0, where K ⊂ H is a compact and symmetric set such that
γ (K) = k. �

Finally, from Lemmas 3.2 and 3.3, Theorem 3.1 implies the existence of at least k distinct
pairs of critical points for the functional J . Since k is arbitrary, we obtain infinitely many
critical points in H .

In view of Lemma 3.1, we conclude that the functional J possesses, together with I ,
infinitely many critical points in H .

Finally, we point out that since H is a closed subspace of the Hilbert space H1(BN ) ×
H1(BN ), following some ideas in [4, 15], we can conclude that (u, v) is a critical point in
H1(BN ) × H1(BN ).

4 Further result
We can apply the same method used in the proof of Theorem 1.1 to establish the existence
of infinitely many solutions for the following semilinear elliptic equation:

⎧
⎨

⎩

–�α

BN u = K(d(x))|u|p–2u,

u ∈ E ⊂ H1
r (BN ), N ≥ 3,

(H∗)

where K satisfies (K1) – (K2), –�α

BN is the Laplace–Beltrami type operator

–�α

BN u = –
(
p(x)

)–N
div

(
p(x)N–2(d(x)

)α∇u
)

and

E =
{

u ∈ H1
r
(
B

N)
: ‖u‖E =

(∫

BN

(
d(x)

)α|∇BN u|2
BN dVBN

) 1
2

< ∞
}

.

We obtain the following result.

Theorem 4.1 Under hypotheses (K1)–(K2), (H∗) equation has infinitely many solutions.

The energy functional corresponding to (H∗) is

I(u) =
1
2

∫

BN

(
d(x)

)α|∇BN u|2
BN dVBN –

1
q

∫

BN
K

(
d(x)

)|u|p dVBN (5)

defined on E.
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Problem (H∗) is closely related to the one studied by Carrião, Faria, and Miyagaki [4].
In [4], they proved that the map u �−→ d(x)mu from E to Lq(BN ) is compact for q ∈ (2, m̃),
where

m̃ =

⎧
⎨

⎩

2N
N–2–2m+α

if m < N–2+α
2 ,

∞ if otherwise

and then there exists a positive constant C > 0 such that

∫

BN
d(x)β

∣
∣u(x)

∣
∣q dVBN ≤ C

(∫

BN

(
d(x)

)α|∇BN u|BN dVBN

) q
2

, (6)

by taking m = β

q with 2 < q < 2N
N–2–2 β

q +α
.

Using (K1)–(K2) together with inequality (6), we get that the functional I is well defined.
This functional is not bounded from below, hence we cannot apply Clark’s technique [12].

In order to overcome this difficulty, we consider the auxiliary functional

ψ(u) =
(∫

BN

(
d(x)

)α|∇BN u|2
BN dVBN

)p–1

–
∫

BN
K

(
d(x)

)|u|p dVBN , (7)

where p ∈ (2, 2β
α), u ∈ E, and

ψ ′(u)v = (2p – 2)‖u‖2p–4
E

∫

BN

(
d(x)

)α〈∇BN u,∇BN v〉BN dVBN

–
∫

BN
K

(
d(x)

)|u|p–2uv dVBN . (8)

We have the corresponding results of Lemmas 3.1, 3.2, and 3.3 for problem (H∗). The set
of critical points of ψ is related to a set of critical points of I and ψ satisfies the conditions
of Theorem 3.1.

Lemma 4.1 If u ∈ E, u �= 0 is a critical point for ψ , then v = u

[(2p–2)‖u‖2p–4
E

]
1

p–2
is a critical

point for I .

Lemma 4.2 ψ(u) is bounded from below and satisfies the Palais–Smale condition (PS).

Lemma 4.3 Given k ∈N, there exists a compact and symmetric set K ∈ E such that γ (K) =
k and supK ψ < 0.

From Lemmas 4.2 and 4.3 and Theorem 3.1, we conclude that the functional I possesses
infinitely many critical points.
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