Conflict Graphs in Mixed-Integer
Linear Programming: Preprocessing,
Heuristics and Cutting Planes

Samuel Souza Brito
Universidade Federal de Ouro Preto

Orientador: Haroldo Gambini Santos

UNIVERSIDADE FEDERAL DE OURO PRETO

Conflict Graphs in Mixed-Integer
Linear Programming: Preprocessing,
Heuristics and Cutting Planes

Samuel Souza Brito
Universidade Federal de Ouro Preto

Orientador: Haroldo Gambini Santos

Tese submetida ao Programa de Pés-
Graduacdo em Ciéncia da Computacio do In-
stituto de Ciéncias Exatas e Biol6gicas da Uni-
versidade Federal de Ouro Preto, como requi-
sito parcial para obtenc3o do titulo de Doutor

em Ciéncia da Computacso.

QOuro Preto, Fevereiro de 2020

SISBIN - SISTEMA DE BIBLIOTECAS E INFORMACAO

B862c Brito, Samuel Souza .
Conflict graphs in mixed-integer linear programming [manuscrito]:
preprocessing, heuristics and cutting planes. / Samuel Souza Brito. -
2020.
110 f.:il.: color., gréf., tab..

Orientador: Prof. Dr. Haroldo Gambini Santos.

Tese (Doutorado). Universidade Federal de Ouro Preto. Departamento
de Computacao. Programa de Ciéncia da Computagao.

Area de Concentragdo: Ciéncia da Computagao.

1. Programacao linear. 2. Heuristica. 3. Programacdo (Computadores) -
Processamento. 4. Programacao heuristica. 5. Teoria dos grafos. I.
Santos, Haroldo Gambini. Il. Universidade Federal de Ouro Preto. Ill.
Titulo.

CDU 004.42

Bibliotecario(a) Responsavel: Celina Brasil Luiz - CRB6-1589

22/06/2020 SEI/UFOP - 0061106 - Folha de aprovagdo do TCC

http

MINISTERIO DA EDUCACAO
UNIVERSIDADE FEDERAL DE OURO PRETO
REITORIA
INSTITUTO DE CIENCIAS EXATAS E BIOLOGICAS
DEPARTAMENTO DE COMPUTACAO

FOLHA DE APROVACAO

Samuel Souza Brito

Conflict Graphs in Mixed-Integer Linear Programming: Preprocessing, Heuristics and Cutting Planes
Membros da banca
Haroldo Gambini Santos - Dr. - UFOP
George Henrique Godim da Fonseca - Dr. - UFOP
Geraldo Robson Mateus - Dr. - UFMG
Marcus Vinicius Soledade Poggi de Aragao - Dr. - PUC-RIO
Tulio Angelo Machado Toffolo - Dr. - UFOP

Versdo final
Aprovado em 28 de Fevereiro de 2020

De acordo

Prof. Dr. Haroldo Gambini Santos

Documento assinado eletronicamente por Haroldo Gambini Santos, PROFESSOR DE MAGISTERIO SUPERIOR, em 17/06/2020, as 20:39,
conforme horaério oficial de Brasilia, com fundamento no art. 6°, § 1°, do Decreto n® 8.539, de 8 de outubro de 2015.

P
cajl
Sel g
assinatura

eletrénica

Referéncia: Caso responda este documento, indicar expressamente o Processo n° 23109.004484/2020-13 SEI n° 0061106

R. Diogo de Vasconcelos, 122, - Bairro Pilar Ouro Preto/MG, CEP 35400-000
Telefone: 3135591692 - www.ufop.br

3aal87b88

http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://sei.ufop.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0

Dedico este trabalho a minha esposa Tamara e a minha mae Maria, pessoas de suma

importdincia em minha vida.

Conflict Graphs in Mixed-Integer Linear
Programming: Preprocessing, Heuristics

and Cutting Planes

Abstract

This thesis addresses the development of conflict graph-based algorithms for Mixed-
Integer Linear Programming, including: (i) an efficient infrastructure for the construc-
tion and manipulation of conflict graphs; (i) a preprocessing routine based on a clique
strengthening scheme that can both reduce the number of constraints and produce
stronger formulations; (iii) a clique cut separator capable of obtaining dual bounds
at the root node LP relaxation that are 19.65% stronger than those provided by the
equivalent cut generator of a state-of-the-art commercial solver, 3.62 times better than
those attained by the clique cut separator of the GLPK solver and 4.22 times stronger
than the dual bounds obtained by the clique separation routine of the COIN-OR Cut
Generation Library; (iv) an odd-cycle cut separator with a new lifting module to pro-
duce valid odd-wheel inequalities; (v) two diving heuristics capable of generating integer
feasible solutions in restricted execution times. Additionally, we generated a new version
of the COIN-OR Branch-and-Cut (CBC) solver by including our conflict graph infras-
tructure, preprocessing routine and cut separators. The average gap closed by this new
version of CBC was up to four times better than its previous version. Moreover, the
number of mixed-integer programs solved by CBC in a time limit of three hours was
increased by 23.53%.

Keywords: Mixed-Integer Linear Programming, Conflict Graphs, Preprocessing, Cut-

ting Planes, Clique Inequalities, Odd-cycle inequalities, Diving Heuristics.

v

Declaracao

Esta tese é resultado de meu proprio trabalho, exceto onde referéncia explicita é
feita ao trabalho de outros, e nao foi submetida para outra defesa nesta nem em outra

universidade.

Samuel Souza Brito

Agradecimentos

Agradeco a Deus por me dar satude, disposicao e calma para enfrentar os desafios

desta caminhada.

Agradeco a minha esposa Tamara pelo carinho, companheirismo e apoio irrestritos.

Por compartilhar alegrias, tristezas, esperancas e medos durante toda esta etapa.

Agradeco a minha mae Maria pelo apoio incondicional e por ser minha fonte de
incentivo e perseveranca. Ao meu pai Elias, pela motivacao durante essa jornada. Ao

meu irmao Thalles, pelo apoio continuo, conversas e palavras de incentivo.

Agradeco ao professor Haroldo pela confianca, paciéncia e dedicacao. Pela impecével
orientacao durante uma década, desde a época da minha graduacao, sempre acreditando
em mim e em meu potencial. Por ter me proporcionado, durante todo esse tempo,
um imensuravel conhecimento, que vai além da simples formacao académica. Agradeco

ainda pelas oportunidades concedidas.

Agradeco a Universidade Federal de Ouro Preto (UFOP), por prover educacdo
publica, gratuita e de qualidade. Aos professores do Departamento de Computacao
(DECOM/UFOP), pelos ensinamentos transmitidos. Ao Departamento de Computagao
e Sistemas (DECSI/UFOP), por ter me permitido dedicar exclusivamente ao doutorado
durante um ano. A Fundacdo de Amparo a Pesquisa do Estado de Minas Gerais

(FAPEMIG), pelo apoio financeiro concedido no estégio inicial deste trabalho.

Por fim, agradeco a todos que me ajudaram direta ou indiretamente neste trabalho.

vi

Preface

If we turn from battle because there is little hope for victory, where then would valor be?

Let it ever be the goal that stirs us, not the odds.

Silver Surfer in "The Silver Surfer: Parable",
Stan Lee and Moebius

vil

Contents

List of Figures
List of Tables
Nomenclature

1 Introduction

1.1 Objectives and Contributions

1.1.1 Published Papers and Conference Presentations

1.2 Text Organization

2 Background and Literature Review

2.1 Combinatorial Optimization
2.2 Mixed-Integer Linear Programming
2.2.1 Preprocessing
2.2.2 Primal Heuristics
2.2.3 Branch-and-bound
2.2.4 Cutting Planes

2.2.5 Branch-and-cut

2.3 Conflict Graphs in Mixed-Integer Linear Programming

viii

xi

xiii

2.4 Literature Review

2.5 Instance Sets,

3 Building Conflict Graphs
3.1 Probing Technique Based on Feasibility Conditions
3.2 Fast Detection of Conflicts,
3.2.1 Space Efficient Data Structures
3.2.2 Query Efficient Data Structures
3.3 Computational Results

3.4 Conclusion s

4 Clique Strengthening
4.1 Computational Results 00000

4.2 Conclusion s

5 Cutting Planes
5.1 Clique Inequalities
5.1.1 Bron-Kerbosch Algorithm
5.2 0Odd-Cycle Inequalities 0.
53 Cut Pool
5.4 Computational Results,
5.4.1 Pivoting Rules of Bron-Kerbosch Algorithm
5.4.2 Clique Cut Separator Experiments
5.4.3 0Odd-Cycle Cut Separator Experiments

5.5 Conclusion,

6 Improving the COIN-OR Branch-and-Cut Solver

1x

25

25

27

30

32

35

38

40

44

47

48

49

ol

54

58

99

29

61

65

67

68

6.1 Computational Results

6.1.1 Individual Impact of Each Routine

6.1.2 Results of the New Version of CBC Solver

6.2 Conclusion

7 Diving Heuristics

7.1 Conflict-Based Diving Heuristics

7.1.1 Conflict Diving

7.1.2 Modified Degree Diving

7.2 Computational Results

7.3 Conclusion

8 Final Considerations

8.1 Further Research

Bibliography

A Detailed Results of the Computational Experiments

75

77

78

81

83

84

86

87

89

94

List of Figures

2.1

2.2

3.1

3.2

4.1

4.2

5.1

5.2

5.3

5.4

5.5

6.1

Improving the LP relaxation of (2.1) through the inclusion of the valid

inequality 1 + 2o < 4. . . . L oL 14
An example of a conflict graph. 17
Filled data structures for the cliques of Table 3.1. 32
Execution times and memory usages in the construction of CGs. 37

Conflict graph for constraints (4.1) to (4.3). For practical purposes, ver-

tices that have only trivial conflicts were omitted. 43
Results of the execution of clique strengthening. 46
Example of a K3 in which the extension module could be applied, trans-

forming it intoa Ky. 51

Example of an odd cycle with the inclusion of a wheel center. Vertices

xg, v7 and xg are connected to all the vertices of the odd cycle formed by

{1, @0, T3, Ty, X5} - 0 57
Execution times and gap closed by the clique cut separators. 63
Average gap closed by each clique cut separator. 64
Execution times and gap closed by the odd-cycle cut separator. 66

Results of the new version of CBC when each conflict-based routine is

individually removed. Lo 70

xi

6.2

6.3

6.4

7.1

Execution times and gap closed by the two versions of CBC solver. . . . 72
Evolution of the average gap closed over time for each instance set. . . . 73

Number of instances solved over three hours. 74

Number of feasible solutions found by each diving heuristic over the time. 85

xil

List of Tables

2.1 All possible logical relations between binary variables x; and zy.
2.2 A summary of related works. L

2.3 Characteristics of the instance sets used in the experiments.

3.1 An example of cliques obtained after running Algorithm 3.1 in three con-

Straints. e e e s

3.2 Instances where new conflicts were discovered.

5.1 Summarized results of the execution of BK algorithm with different piv-

oting rules.
7.1 Summarized results of the conflict-based diving heuristics.

A.1 Instance set characteristics.

A.2 Results of the execution of the COIN-OR Branch-and-Cut solver.

xiii

List of Algorithms

3.1

3.2

3.3

4.1

5.1

5.2

3.3

7.1

7.2

Clique Detection 28
Checking if two variables are conflicting. 34
Getting the variables conflicting with «;. 35
Clique Extension 41
Clique Cut Separator 50

Bron-Kerbosch algorithm for detecting maximal cliques with weights above

a threshold. 52
Odd-Cycle Cut Separator, 55
Generic Diving Heuristic oo 76
Conflict Diving Heuristic 81

xiv

Nomenclature

BP
B&B
B&C
BK
CBC
CG
CGL
CLP
GLPK
LHS
MILP
RHS
SAT

Binary Program
Branch-and-bound Algorithm
Branch-and-cut Algorithm
Bron-Kerbosch Algorithm
COIN-OR Branch-and-Cut
Conflict Graph

COIN-OR Cut Generation Library
COIN-OR Linear Program

GNU Linear Programming Kit
Left-hand side

Mixed-Integer Linear Programming
Right-hand side

Boolean Satisfiability Problem

Chapter 1
Introduction

Over the last years, Mixed-Integer Linear Programming (MILP) has proven to be a
powerful technique for modeling and solving a wide variety of combinatorial optimiza-
tion problems, most of them with practical interest. Some notable applications in-
clude telecommunication network design (Orlowski et al., 2010), protein structure pre-
diction (Xu et al., 2003) and production planning (Pochet and Wolsey, 2006).

Improvements in computer hardware and the development of several techniques such
as preprocessing (Achterberg et al., 2016; Mészaros and Suhl, 2003; Savelsbergh, 1994),
heuristics (Danna et al., 2005; Fischetti et al., 2005) and cutting planes (Hoffman and
Padberg, 1993; Rebennack, 2009) have contributed toward large-scale MILP models
being solved effectively. Preprocessing and cutting planes are part of a mechanism
called automatic reformulation (Van Roy and Wolsey, 1987), which is a key component
of modern MILP solvers. The works of Bixby and Rothberg (2007), Achterberg and
Wunderling (2013), and more recently Achterberg et al. (2016) show that disabling
these features in two state-of-the-art commercial solvers results in large performance

degradation.

An implicit structure used by modern MILP solvers in preprocessing and cut separa-
tion routines is the conflict graph (Savelsbergh, 1994). Such graphs represent the logical
relations between binary variables. There is a vertex for each binary variable and its
complement, with an edge between two vertices indicating that the variables involved

cannot both be equal to one without violating the constraints.

In this thesis, we present conflict graph-based algorithms and data structures for

Mixed-Integer Linear Programming problems. Initially, we proposed and implemented

Introduction 3

a conflict graph infrastructure, characterized by the efficient construction and handling
of such graphs. Our routine for building conflict graphs is an improved version of the
conflict extraction algorithm presented by Achterberg (2007), which extracts conflicts
from knapsack constraints. The basis for the improvement is a new step for detecting
additional maximal cliques without increasing the computational complexity of the al-
gorithm. We also developed optimized data structures that selectively store conflicts
pairwise or grouped in cliques to handle dense conflict graphs without incurring exces-
sive memory usage. The sequence in which similar cliques are discovered is exploited to

store them compactly.

After developing the infrastructure for conflict graphs, we used the information pro-
vided by this structure to implement a preprocessing routine and two cut separators. The
preprocessing routine is based on the concept of clique merging proposed by Achterberg
et al. (2016) and consists of extending set packing constraints by the inclusion of addi-
tional conflicting variables. A greedy algorithm uses the information from the conflict
graph to augment the cliques formed by the set packing constraints. After executing the
clique extension algorithm, all constraints that become dominated are removed. Com-
putational results show that our routine was able to reduce the number of constraints

and strengthen the initial dual bounds for a great number of instances.

The two conflict-based cut separators that we developed are responsible for separating
clique and odd-cycle cuts. Our clique cut separator is capable of obtaining dual bounds
at the root node which are stronger than those provided by the clique cut separation
routine of the COIN-OR, Cut Generation Library (CGL)! and those obtained by the
equivalent cut separators present in a state-of-the-art commercial MILP solver and the
solver of GNU Linear Programming Kit (GLPK)?. The improvements in the dual bounds
obtained by including only odd-cycle cuts were relatively small. However, the execution
of the routine to separate odd-cycle cuts is computationally inexpensive, allowing its use

in a cutting plane strategy without a significant increase in the execution times.

Our conflict graph infrastructure, preprocessing routine and cut separators were in-
cluded in a new version of the COIN-OR Branch-and-Cut (CBC) solver®. CBC is one
of the fastest open-source MILP solvers nowadays and it is also a fundamental compo-
nent used by Mixed-Integer Nonlinear solvers, such as Bonmin (Belotti et al., 2009) and

Couenne (Bonami et al., 2008). In our experiments, the average gap closed by the new

'https://github.com/coin-or/Cgl
’https://www.gnu.org/software/glpk/
*https://github.com/coin-or/Cbc

https://github.com/coin-or/Cgl
https://www.gnu.org/software/glpk/
https://github.com/coin-or/Cbc

Introduction 4

version of CBC was noticeably better than the previous version of this solver. More-
over, the time spent proving the optimality for the MILP models decreased and more

instances were solved in restricted execution times.

Additionally, we proposed and implemented two conflict-based diving heuristics.
These heuristics first adjust the bounds of the variables which are more likely to cause
infeasibilities. In this case, one heuristic considers the degree and the other uses the
modified degree of the variables at the conflict graph to implement the variable selection
strategies. Both proposed diving heuristics presented execution times smaller than the
classical diving heuristics that we evaluated in our experiments. Moreover, the heuristic
that uses the modified degree in its variable selection strategy found the greatest number

of feasible solutions among the heuristics evaluated.

1.1 Objectives and Contributions

The present thesis is motivated by the importance of MILP in solving a wide variety of
combinatorial optimization problems. The development of techniques that improve the
performance of MILP solvers contributes directly to solve different classes of problems,
including real-world ones. Given this motivation, the main objective of this thesis is
to develop conflict graph-based techniques to accelerate the process of solving MILP

models.

The specific objectives of this thesis are:

1. Evaluate the performance of conflict-graph based techniques provided by MILP

solvers, identifying possible improvements;

2. Propose and implement effective algorithms and data structures to construct, store

and use conflict graphs;

3. Investigate, propose and implement automatic reformulation techniques that use
the information provided from conflict graphs to reduce the MILP model dimen-
sions, produce stronger formulations and accelerate the convergence to optimal

solutions;

4. Explore the logical relations from conflict graphs to develop algorithms that are

capable of generating integer feasible solutions.

Introduction 5

In order to achieve the objectives, different approaches were developed. Thus, the

main contributions of this thesis are:

1. An efficient infrastructure to construct, store and handle conflict graphs. Our
algorithm for building conflict graphs is able to detect more conflicts than the
state-of-the-art conflict detection algorithm, with the same worst-case complexity.
Additionally, the data structures that we implemented are efficient to store and

handle dense conflict graphs without incurring excessive memory usage.

2. An improved version of the Bron-Kerbosch algorithm for finding cliques in vertex-
weighted graphs. Our version implements a new pivoting rule, defines a pruning
strategy and uses efficient data structures to reduce the number of recursive calls

and the running time of the algorithm.

3. A clique cut separator that generates a set of violated cliques. This cut separator
obtained better dual bounds than the equivalent cut separators used by CBC,
GLPK and CPLEX solvers.

4. A new strategy for lifting odd-cycle inequalities, which considers the inclusion of

a clique into the center of an odd wheel.

5. A new version of CBC solver that contains our conflict graph infrastructure, pre-
processing routine and cut separators. The average gap closed by this version was
up to four times better than the previous version. Furthermore, the new version

of CBC is capable of solving more problems than the previous one.

6. Two diving heuristics capable of generating integer feasible solutions in restricted
execution times. These heuristics presented competitive results in comparison with

some classical diving heuristics.

1.1.1 Published Papers and Conference Presentations

This thesis is a continuation of the research addressed by the author in his master’s
thesis (Brito, 2015). The following manuscripts, publications and presentations were

derived from the obtained results.

e Brito, S. S.; Santos, H. G.; Poggi, M. A Computational Study of Conflict Graphs

and Aggressive Cut Separation in Integer Programming. VIII Latin-American Al-

Introduction 6

gorithms, Graphs and Optimization Symposium (LAGOS15). May/2015. Be-
beribe, Brazil. DOI: 10.1016/j.endm.2015.07.059

e Brito, S. S.; Santos, H. G. Improving COIN-OR CBC MIP Solver Using Conflict
Graphs. 23rd International Symposium on Mathematical Programming (ISMP2018).
July/2018. Bordeaux, France.

e Brito, S. S.; Santos, H. G.; Vanden Berghe, G. Machine Learning Based Diving
for Mixed Integer Programming: Decision Trees. 30th European Conference on
Operational Research (EURO2019). June/2019. Dublin, Ireland.

e Brito, S. S.; Santos, H. G. Preprocessing and Cutting Planes with Conflict Graphs.
Manuscript * submitted to Computers & Operations Research. September/2019.

1.2 Text Organization

This thesis is divided into eight chapters. Chapters where algorithms are proposed in-
clude computational experiments and specific analysis of these proposals. The remaining

of the text is structured as follows:

Chapter 2: presents the basic concepts employed in this thesis, a literature review and

the instance sets used in computational experiments;

Chapter 3: describes the probing technique for constructing conflict graphs as well as

our conflict graph infrastructure;
Chapter 4: presents our conflict-based preprocessing routine;
Chapter 5: details the implementations of our clique and odd-cycle cut separators;

Chapter 6: presents the results obtained with the integration of our conflict graph-

based algorithms and data structures in the CBC solver;
Chapter 7: presents the two diving heuristics that we proposed and implemented;

Chapter 8: concludes this thesis and presents possible future research directions.

“https://arxiv.org/pdf/1909.07780. pdf

https://arxiv.org/pdf/1909.07780.pdf

Chapter 2
Background and Literature Review

This chapter presents concepts and techniques for understanding the construction and
use of conflict graphs in Mixed-Integer Linear Programming. A literature review and

the instance sets used in the computational experiments are also presented.

2.1 Combinatorial Optimization

Combinatorial Optimization is a field extensively studied by many researchers of Com-
puter Science and Applied Mathematics. It aims to use combinatorial techniques to
solve discrete optimization problems. A discrete optimization problem consists of find-
ing the best possible solution from a finite set of possibilities. It works with deterministic
models, where the relevant information is assumed to be known (without uncertainty).
Examples of some classical combinatorial optimization problems are the traveling sales-
man problem (Applegate et al., 2006), project scheduling (Araujo et al., 2020), vehicle
routing (Toth and Vigo, 2002) and timetabling problems (Fonseca et al., 2017).

A combinatorial optimization problem is formed by an objective function related to
a set of decision variables. The objective function is a real-valued function that can be
either minimized or maximized. The decision variables are limited by the constraints

imposed on them, generating a discrete set of feasible solutions.

Due to its potential for modeling real-world problems, combinatorial optimization
has significative advances over the last decades. Some techniques that can be used

for solving such problems are Mixed-Integer Linear Programming (Jiinger et al., 2009),

Background and Literature Review 8

Constraint Programming (Rossi et al., 2006), heuristics (Glover and Laguna, 1997a,b),
approximation algorithms (Kolliopoulos and Young, 2005; Lenstra et al., 1990) and hy-
brid algorithms (e.g., Mixed-Integer Linear Programming combined with heuristic meth-
ods (Ahuja et al., 2002; Boschetti et al., 2009), Constraint Integer Programming (Achter-
berg, 2007), and others). This thesis focus on Mixed-Integer Linear Programming for

solving combinatorial optimization problems.

2.2 Mixed-Integer Linear Programming

Mixed-Integer Linear Programming (MILP) deals with the minimization (or maximiza-
tion) of a linear objective function subject to one or more linear constraints, where at
least one of the decision variables can only assume integer values. A MILP model is

formally defined as:

¢ =min {c’x | Az <b I<x<u, 2€R", z; €ZVjel} (MILP)

where ¢ € R" represents the objective function coefficients, A € R™*" is the constraint
matrix and b € R™ is the right-hand side (RHS) of the constraints. Vectors [€ R”
and u € R" are the lower and upper bounds for the decision variables, respectively.
Furthermore, N = {1,...,n} is the index set of the decision variables x and I C N
contains the indices of the variables that need to be integral in every feasible solution. A
MILP model whose all of its decision variables are binary (i.e., 0 <z; <1,z; € Z,Vj €
N) is also called Binary Program (BP).

A feasible solution of a MILP model is a vector in the set:

X={reR"| Az <b, I<x<wu, z; €ZVjel}

A feasible solution z* € X of a MILP model is optimal if its objective value satisfies
c'z* = ¢*. A lower bound on the optimal solution value of a MILP model can be
obtained by solving its LP relaxation. The LP relaxation of a MILP model is obtained

when the integrality requirements are omitted:

Background and Literature Review 9

é:min{cT:E|Ax§b,lgxﬁu,xeR"} (LP)

This information is commonly used by the MILP solvers to explore promising nodes of

the branch-and-bound search tree and to prove the optimality of a given solution.

There is extensive research in the field of MILP in order to develop effective and
efficient solution methods. Some of the most common solution methods used in the

literature are:

Branch-and-bound: consists of a systematic enumeration of the candidate solutions

by evaluating smaller subproblems of the original problem;

Cutting plane: tries to iteratively refine a feasible set or objective function by includ-

ing linear inequalities, referred to as cuts;
Branch-and-cut: combines a branch-and-bound algorithm with cutting planes;

Column generation: uses a decomposition scheme to create a master problem and
subproblems; iteratively solves the subproblems and uses the reduced cost to select
variables to add to the master problem; this process repeats until no more columns

with attractive reduced cost exist;
Branch-and-price: combination of branch-and-bound and column generation;

Heuristics and Metaheuristics: use strategies based on the knowledge of the prob-
lem to quickly find feasible, and hopefully good, solutions without ensuring that

an optimal (or even a feasible) solution is found.

2.2.1 Preprocessing

Preprocessing is an essential component in modern MILP solvers that reformulates a
problem in an effort to accelerate the solution process. Several preprocessing strate-
gies have been proposed in the literature and one of the precursors was the work of
Brearley et al. (1975), which describes some preprocessing techniques for mathematical

programming systems. Later, these techniques were inserted in the specific context of
MILP.

Background and Literature Review 10

A preprocessing component tries to reduce the dimension of a MILP model, strengthen
its LP relaxation and extract information that can be used in other solving steps. The

most common techniques are:

detection of inconsistent constraints: consists of discovering constraints that are
inconsistent with respect to the bounds of the variables, proving the infeasibility

of the problem;

elimination of redundant constraints: refers to the detection of constraints whose

removal from the problem does not change the feasible region;

strengthening the bounds of variables: tries to increase the lower bound or de-

crease the upper bound of the variables.

coeflicient improvement: updates the coefficients of the constraint matrix, improving

its LP relaxation.

probing: refers to the identification of relationships between some variables by analyz-

ing the impact of fixing them to one of their bounds.

Generally, a modern MILP solver employs some preprocessing techniques before
starting the branch-and-bound algorithm. However, these techniques can also be ap-
plied in internal nodes of the branch-and-bound tree. In this case, the impact of node
preprocessing is limited to its child nodes. Thus, it is important to evaluate whether
the time spent in node preprocessing is worthwhile. The works of Savelsbergh (1994),
Gamrath et al. (2015) and Achterberg et al. (2016) present detailed explanations of

preprocessing techniques.

2.2.2 Primal Heuristics

In the context of MILP, primal heuristics are algorithms used to find feasible, and
hopefully good, solutions in short execution times. However, there is no guarantee that
these methods can find an optimal solution and, in some cases, even finding a feasible

solution is a hard task.

Primal heuristics play an important role in a MILP solver, since obtaining a feasible
solution in the early stages of the solving process has many advantages (Achterberg,
2007):

Background and Literature Review 11

e it proves that the model is feasible;

e the solving process can be stopped earlier if one can be satisfied with the quality

of the solution;

e it helps to prune nodes in the branch-and-bound search tree, improving the per-

formance of this algorithm.

There exists a large variety of heuristics for MILP in the literature. One common
strategy is to use information from the LP relaxation to decide the next step. A way to

classify these methods is dividing them into four categories:

Rouding heuristics: try to round the solution values given by the LP relaxation, aim-
ing to find an integer solution that satisfies the constraints of the problem; ex-
amples: Relaxation Enforced Neighborhood Search (RENS) (Berthold, 2006) and
Octane (Balas et al., 2001);

Diving heuristics: iteratively solve the LP relaxation and fix an integer variable to
an integral value. examples: Fractional Diving (Berthold, 2006) and Guided Div-
ing (Danna et al., 2005);

Objective diving heuristics: iteratively solve the LP relaxation and change the ob-
jective value of an integer variable in order to drive this variable to a desired

direction; example: Feasibility Pump (Fischetti et al., 2005);

Improvement heuristics: try to construct a better solution starting from an initial
feasible one; examples: Local Branching (Fischetti and Lodi, 2003) and Relaxation
Induced Neighborhood Search (RINS) (Danna et al., 2005).

In addition to the techniques mentioned above, metaheuristics can be applied to
generate feasible solutions. A metaheuristic is a general framework that provides a set of
strategies to develop heuristic optimization algorithms. Some examples of metaheuristics
are Simulated Annealing (Kirkpatrick et al., 1983), Tabu Search (Glover and Laguna,
1998), Variable Neighborhood Search (Hansen and Mladenovi¢, 1999) and evolutionary
algorithms (Béck et al., 1997). Instead of their general purpose, it is possible to design
effective heuristics based on metaheuristic rules for solving MILP models, such as the
Tabu Search heuristic presented by Lokketangen and Glover (1998) and the Variable
Neighborhood Search heuristic proposed by Hansen et al. (2006).

Background and Literature Review 12

2.2.3 Branch-and-bound

The branch-and-bound (B&B) algorithm was proposed by Land and Doig (1960) and is
used to solve combinatorial optimization problems. It is a recursive divide-and-conquer
approach that consists of conducting a search in the solution space for a given problem,
aiming to find an optimal solution. The calculation of upper and lower bounds of the

objective function allows the algorithm to search only a part of the solution space (Lawler
and Wood, 1966).

The term branch refers to the fact that the method partitions the solution space, and
the term bound emphasizes that the proof of optimality of the solution uses valid limits
to prune some nodes of the search tree. This algorithm recursively divides the problem
into smaller subproblems, based on the fact that the subproblems must be easier to solve

than the original problem.

A generic branch-and-bound algorithm for solving a given MILP model with an

objective function of minimization can be defined as:

1. Set L = oc.

2. Insert the original problem on the candidate list.

3. Select and remove a problem P from the candidate list.
4. Solve the LP relaxation of P to obtain the bound b(P).

(a) If the LP relaxation of P is infeasible, delete P.
(b) Otherwise, if b(P) > L, delete P.

(c) Otherwise, if b(P) < L and the solution is feasible for the original MILP
model, set L = b(P).

(d) Otherwise, divide P into two or more subproblems and add them to the

candidate list.

5. If the candidate list is empty, the algorithm finishes. Otherwise, go to step 3.

Three main steps compose a recursive call of a classical B&B algorithm: node se-
lection, production of two or more subproblems (branching) and evaluation of the new
subproblems (bounding). The algorithm maintains the current best integer solution and

updates it whenever a subproblem gives a better integer solution. At each recursive

Background and Literature Review 13

call, a lower bound for the current subproblem is calculated by solving its LP relax-
ation. This subproblem is stored in the candidate list if its lower bound is better than
the best solution. Otherwise, it is discarded. The search ends when there are no more
subproblems to be processed. Thus, the best current solution is the optimal solution to

the problem.

2.2.4 Cutting Planes

Instead of splitting a problem into smaller subproblems, one can try to tighten the LLP
relaxation of a problem to obtain a stronger one. The LP relaxation can be tightened by
including linear constraints that are violated by the current solution of the LP relaxation
but do not cut off feasible solutions from the original problem. These linear constraints

are known as valid inequalities or cuts.

A cutting plane is a method that iteratively tries to generate and insert valid in-
equalities into a problem, allowing to tighten the LP relaxation of a MILP model. A

generic cutting plane algorithm for solving a given MILP model can be defined as:

1. Solve the LP relaxation of the problem.

2. If the current LP relaxation is feasible for the original problem and the inte-
grality conditions of the variables are satisfied, an optimal solution is found.

Stop.

3. Otherwise, generate a linear constraint that is violated by the current LP
relaxation but which does not cut off any feasible solution of the original

problem. Go to step 1.

The insertion of valid inequalities “cuts” parts of a region that satisfies all constraints
of a problem but does not lead to feasible integer solutions. The process of generating
these inequalities is repeated until the LP relaxation is feasible and integrality constraints
are still violated for one or more variables. When the cutting plane algorithm finishes,

it returns an optimal solution for the considered MILP model.

As an example, consider the following MILP model:

Background and Literature Review 14

min: — 6x; — 51y
subject to: 15xy + Txe < 49
21 + 4wy < 17 (2.1)
r1,T9 > 0

r1,To €L

The gray area of Figure 2.1a corresponds to a feasible region of the LP relaxation of (2.1).
Still, the stars in black and gray represent an optimal solution for the LP relaxation and
for the original problem, respectively. Figure 2.1b shows the impact of adding the valid
inequality z; + o < 4 to (2.1).

xZ, xZ,
‘A 151 ¢ Tz, <49 ‘A 151 ¢ Tz, <49

2z, + 4x, = 17 2z, + 4z, = 17

|
- @
o
e

o
R 4
|
- @
o
e

o
R 4

(a) Initial LP relaxation of (2.1). (b) LP relaxation of (2.1) after inserting a cut.

Figure 2.1: Improving the LP relaxation of (2.1) through the inclusion of the valid
inequality x; + zo < 4.

The initial LP relaxation of (2.1) is ¢ = —27.109, with #; = 1.674 and %, = 3.413.
The inclusion of the valid inequality x; + x5 < 4 allows to eliminate a region that do not
contains any integer feasible solution. Thus, the value of the LP relaxation changes to
¢ = —22.625, with ; = 2.625 and &5, = 1.375. These values approximate to the optimal
solution for the considered MILP model, whose objective value ¢* = —22 is obtained

from 7 = 2 and 25 = 2.

Background and Literature Review 15

2.2.5 Branch-and-cut

Usually, solving MILP models with pure cutting plane methods shows a slow convergence
to the optimal solution. On the other hand, the performance of the branch-and-bound
algorithm can be considerably improved by the inclusion of cutting planes. The combi-
nation of these two approaches generates one of the most successful methods for solving
MILP models: the branch-and-cut (B&C) algorithm. Most modern MILP solvers are
based on this method.

A generic B&C algorithm for solving a given MILP model with an objective function

of minimization can be defined as:

1. Set L = 0.

2. Insert the original problem on the candidate list.

w

. Select a problem P from the candidate list.
4. Solve the LP relaxation of P to obtain the bound b(P).

(a) If the LP relaxation of P is infeasible, delete P.
(b) Otherwise, if b(P) > L, delete P.

(c) Otherwise, if b(P) < L and the solution is feasible for the original MILP
model, set L = b(P).
(d) Otherwise, try to generate valid inequalities for P.

i. If at least one valid inequality is inserted in the LP relaxation of P,

go to 4.

ii. Otherwise, create new subproblems and add them to the candidate
list.

5. If the candidate list is empty, the algorithm finishes. Otherwise, go to step 3.

In a branch-and-cut procedure, the branch-and-bound algorithm selectively explores
the search space with its divide and conquer approach, and the cutting planes strengthen
the bounds of the LP relaxations (step 4d). Heuristics can be performed when an integer
solution is found (step 4c) to improve this solution or before separating cuts (step 4d)

to generate a feasible solution.

The cutting planes can be carried out either at the initial LP relaxation or during

Background and Literature Review 16

the branching phase. Cuts generated by considering branching decisions are valid only
in a local part of the branch-and-bound search tree. These cuts have to be removed from
the LP relaxation after the search leaves the subtree for which they are valid. Globally
cuts can be used during the whole execution of the algorithm. Since several cuts can be

generated, maintain a cut pool is an essential task in the branch-and-cut execution.

The cut generation loop is the process of iteratively generating cuts, inserting them
into the model and resolving the LP relaxation. Many executions of this process can be
computationally expensive. For this reason, MILP solvers frequently define a maximum

number of iterations of the cut generation loop.

2.3 Conflict Graphs in Mixed-Integer Linear

Programming

A Conflict Graph (CG) is a structure that stores assignment pairs of binary variables
which cannot occur in any feasible solution. It consists of an undirected graph with a
set of vertices V = {z;,z; : j=1,..,n} and a set of edges E = {(u,v) : (u,v) C V?}
In such structure, vertex x; represents the assignment of the associated variable to one
(z; = 1), while vertex Z; corresponds to set the variable to zero (x; = 0). Thus, the
notation 7, is used to denote the binary complement of variable z; (i.e., z; = 1—x;). The
assignment pairs represented by the edges in a CG are used to derive logical relations

and, consequently, the edge inequalities provided in Table 2.1.

Table 2.1: All possible logical relations between binary variables x; and xy.

edge logical relations edge inequality

(xj,xk) rj=1 = 2,=0 rj+xp <1
=1 = x; =0

(fj,i’k) xj:0:>ack:1 (1—mj)+(1—ack) <1
=0 = x; =1

(Zj,z1) ;=0 = 2,=0 (1—-zj)4+x, <1
=1 = x;=1

(xj,z1) ;=1 = a3, =1 zj+(1—z) <1
=0 = x; =0

Background and Literature Review 17

An example of a conflict graph with three variables {z1, zo, 23} is presented in Fig-
ure 2.2. There is an edge linking each variable to its complement since only one must
be equal to one in any feasible solution. Dashed lines in Figure 2.2 denote these trivial

conflicts. The conflict graph of this figure generates three edge inequalities:

Ty +x <1

To4+T3<1=29—23<0

fz+.7_33§1:>372+$321

Figure 2.2: An example of a conflict graph.

Generally, a graph with only a subset of all conflict edges is constructed, since
building the full CG is N P-hard. Deciding the feasibility of a binary program is N P-
complete (Garey and Johnson, 1979), and this task can be done by constructing and
analyzing the full CG: a binary program is infeasible if and only if its associated CG is

a complete graph.

A clique is an important concept related to conflict graphs and employed in this
thesis. A clique C of a graph G is a complete subgraph of G, i. e., each pair of vertices
in C' is connected by an edge. A maximal clique is a clique to which no more vertices
can be added. In the graph of Figure 2.2, the subset of vertices {xs, Z5, T3} defines a

maximal clique of size three.

2.4 Literature Review

The primary use of CGs is in the generation of cutting planes. However, there are

works in the literature that use these structures in different stages of the MILP solving

Background and Literature Review 18

process, such as in preprocessing steps. The following paragraphs present a literature

review regarding the construction and use of conflict graphs and their variants.

A structure used to manipulate conflicts involving binary variables of MILP models
is the intersection graph, introduced by Padberg (1973). An intersection graph is an
undirected graph with a set of vertices V' = {z; : j = 1,..,n} and a set of edges
E = {(u,v) : (u,v) C V?}, constructed from the analysis of set packing constraints
(Xjecri <1, »; € {0,1} Vj € C). There is an edge linking two vertices if their
corresponding variables appear together in at least one set packing constraint. From this
definition, it is possible to conclude that the concept of conflict graph is a generalization
of the intersection graph: for a given MILP model, any edge of the intersection graph is
also an edge of the conflict graph. The author uses these graphs to study and identify
facets of the set packing polyhedron. The first set of facets identified for this polyhedron

is formed by cliques, while the second set comprises the odd cycles without chords.

Johnson and Nemhauser (1992) summarize some advances in mathematical program-
ming, including improvements in the MILP methodology. An approach to the detection
of logical relations in knapsack constraints (3, . ajz; < b, a; > 0, z; € {0,1} Vj € C)
is given. Considering two particular variables z; and x, of a knapsack constraint, a
logical relation z; + x; < 1 is detected if a; + a > b, where b is right-hand side of this
constraint and a; and a;, are the coefficients of the variables z; and ;. The authors also
point that these logical relations can be used to generate clique inequalities, contributing

to improve the value of the LP relaxation of a MILP model.

Hoffman and Padberg (1993) construct and use intersection graphs for solving the
airline crew scheduling problem. The intersection graphs are constructed similarly as
presented by Padberg (1973). The authors present a branch-and-cut approach that uses
these graphs to preprocess the problems and to generate clique and odd-cycle inequal-
ities. The graph-based preprocessing routine tries to extend the cliques formed by set
partitioning constraints (>, 2; =1, z; € {0,1} Vj € C). If the extension is success-
fully performed, then it is possible to remove some variables of the original problem.
Clique inequalities are generated by a routine that combines heuristics and enumeration
schemes. The generation of odd-cycle inequalities is done by a shortest path algorithm
that runs in an auxiliary bipartite graph. Computational results show that the developed
branch-and-cut is able to solve even large-size instances of the airline crew scheduling

problem.

Aiming to improve the representation of MILP models, Savelsbergh (1994) presents

Background and Literature Review 19

a framework for describing preprocessing and probing techniques. This work gives an
overview of simple and advanced preprocessing and probing techniques. Such techniques
are used to derive logical implications between variables and, consequently, to build im-
plication graphs. Different from the concept of logical relation explored before, that
only considers the relation between two binary variables, a logical implication can also
involve the relationship between binary and continuous variables or between binary and
integer variables. The logical implications discovered during the execution of prepro-
cessing and probing techniques are used to eliminate variables and generate clique and
implication inequalities. Computational results demonstrate the effectiveness of these
techniques in reducing the integrality gap and the overall effort required to solve most

of the considered problem instances.

Bixby and Lee (1998) use information from the conflict graphs in a branch-and-cut
algorithm for solving the truck dispatching scheduling problem. This problem is modeled
as knapsack equality constraints (3 ;.. a;z; = b, a; > 0, x; € {0,1} Vj € C), and the
developed branch-and-cut algorithm is based on the ideas of Hoffman and Padberg
(1993). The construction of the conflict graphs is given by the analysis of knapsack
constraints, considering the same approach presented by Johnson and Nemhauser (1992).
Clique and odd-cycle inequalities are generated from a subgraph induced by the variables
whose values at the solution of the LP relaxation are fractional. Both cut generation
routines are based on greedy heuristics. Experiments indicate that the branch-and-cut
algorithm significantly reduces the total CPU time to solve some hard instances of the

truck dispatching scheduling problem.

Borndorfer (1998) explores the concept of intersection graphs and presents a branch-
and-cut algorithm for the solution of set partitioning problems. One initial application
that uses intersection graphs is a preprocessing routine that eliminates binary variables
by extending set partitioning constraints (the same idea was presented by Hoffman and
Padberg (1993)). The developed cut separation routines work with subgraphs induced
by the variables whose values at the solution of the LP relaxation are fractional. Clique
inequalities are generated by three procedures. The first procedure is responsible for
heuristically extending a clique extracted directly from a constraint. The second proce-
dure uses a greedy strategy, which constructs a clique by iteratively selecting variables
in non-decreasing order of their values at the solution of the LP relaxation. The last
clique separator combines a branch-and-bound algorithm with a heuristic, avoiding the
exploration of a large set of nodes. Odd-cycle inequalities are also separated during the

execution of the branch-and-cut algorithm. This separator runs Dijkstra’s algorithm in

Background and Literature Review 20

an auxiliary bipartite graph for finding the shortest paths and, consequently, discover-
ing odd cycles from the intersection graph. Computational experiments show that the
branch-and-cut algorithm is able to solve very large set-partitioning problems. Further-
more, the results demonstrate the importance of combining heuristics, preprocessing and

cut separation routines for solving problems of this nature.

Atamtiirk et al. (2000) use conflict graphs for improving the performance of integer
programming solvers. The authors develop algorithms and data structures that allow
the construction, management and use of dynamically changing conflict graphs. They
construct conflict graphs from the detection of generalized upper bound constraints
(ZjeC r; <1, z; € {0,1} Vj € C) and using probing techniques based on feasibility
and optimality considerations. A two-dimensional linked list structure is responsible
for storing generalized upper bound constraints since all variables are conflicting in
this type of constraint. In addition to saving memory, this structure supports fast
checking of whether two variables are conflicting. Edges derived by probing are stored
in a data structure composed of three one-dimensional arrays, which allows for easy
addition of new edges and easy access to the edges incident to a given vertex. Once
constructed and stored, the graphs are used in a preprocessing step to improve the lower
and upper bound of the variables, and in a cut separation routine to generate clique
inequalities. Computational results show that the proposed conflict graph storage and
management are effective and efficient. Furthermore, the results confirm the importance

of preprocessing and cut separation routines in solving integer programs.

Achterberg (2007) presents Constraint Integer Programming, a new paradigm that
integrates Constraint Programming and MILP modeling and solving techniques. It is a
generalization of MILP that supports the notion of general constraints as in Constraint
Programming. The author also describes the software SCIP, a solver and framework
for this new paradigm. An algorithm detects logical implications of a constraint integer
program and stores them in an implication graph. Conflicts involving binary variables
are discovered during the presolving step, where cliques are extracted from knapsack
constraints. The clique extraction procedure is faster than the pairwise inspection per-
formed by the probing techniques used by Savelsbergh (1994) and Atamtiirk et al. (2000),
since several conflicts are detected just traversing a constraint once. Conflicts involving
several variables simultaneously are stored in a clique table to avoid excessive mem-
ory consumption. The implication graph is used to derive preprocessing and presolving
algorithms, branching strategies and cut generation routines. A cut generation rou-

tine that uses information from the implication graph is the clique separator, which

Background and Literature Review 21

separates clique inequalities in a heuristic fashion. Several computational experiments
are performed to measure the impact of each component in solving constraint integer
programs. Furthermore, the results show that SCIP is almost competitive to current

state-of-the-art commercial MILP solvers.

Santos et al. (2016) present some integer programming techniques to solve the nurse
rostering problem. One of these techniques uses information from conflict graphs to
generate valid inequalities. The authors construct conflict graphs by detecting gener-
alized upper bound constraints and performing probing techniques. They also derive
some implications from specific constraints of the problem. Then, these graphs are used
to separate clique and odd-cycle cuts. The clique cut separator uses the Bron-Kerbosch
algorithm (Bron and Kerbosch, 1973) with a pivoting rule to separate all violated cliques
in the subgraph induced by the fractional variables. The odd cycles are separated by
constructing an auxiliary bipartite graph and running the Dijkstra’s algorithm. Com-
putational experiments show that the clique cut separator plays an important role in
reducing the gap between the LP relaxation and the optimal solution. However, the

insertion of odd-cycle cuts has no significant impact on the reduction of this gap.

Following a similar strategy of the work mentioned before, Araujo et al. (2020) con-
struct conflict graphs according to the analysis of problem-specific constraints. The
authors derive four types of conflicts that appear in a MILP formulation for the resource-
constrained project scheduling problem. Routines for separating conflict-based cuts are
presented. The clique and odd-cycle cut separators are the same presented by Santos
et al. (2016). They also present a routine that considers conflict graphs for generating
strengthened Chvatal-Gomory cuts. Results show a considerable improvement in the
LP relaxation bounds, allowing a state-of-the-art MILP solver to find optimal solutions

for several open instances of the considered problem.

Table 2.2 presents a summary of the related works discussed above. Columns “pre-
proc”, “heur” and “cut gen” indicate if the related works use conflict graphs (or their
variants) to implement preprocessing algorithms, heuristics or cut generation routines,
respectively. The last line of Table 2.2 contains information about the use of conflict

graphs in this thesis.

Background and Literature Review 22

Table 2.2: A summary of related works.

work graph type construction method preproc heur cut gen

Padberg (1973) intersection graph logical relations from set pack- v
ing constraints

Johnson and Nemhauser (1992) conflict graph logical relations from knapsack v
constraints

Hoffman and Padberg (1993) intersection graph logical relations from set pack- v v
ing constraints

Savelsbergh (1994) implication graph probing techniques v v

Bixby and Lee (1998) conflict graph logical relations from knapsack v v
constraints

Borndorfer (1998) intersection graph logical relations from set pack- v v
ing constraints

Atamtiirk et al. (2000) conflict graph probing techniques v v

Achterberg (2007) implication graph probing techniques and extrac- v v
tion of cliques from knapsack
constraints

Santos et al. (2016) conflict graph probing and logical rela- v
tions from problem-specific
constraints

Araujo et al. (2020) conflict graph logical relations from problem- v
specific constraints

this thesis conflict graph logical relations from knapsack v v v
constraints

It is worth mentioning that there is a wide range of works in the literature that use
conflict graphs in solving MILP models. The main application for conflict graphs is the
generation of clique and odd-cycle inequalities. In fact, the process of separating these
inequalities always requires the definition of an implicit or explicit graph. In general, the
works in the literature that use conflict graphs employ one of the previously mentioned

forms of construction of these structures.

In this thesis, the conflict graphs are constructed by extracting cliques from knapsack
constraints. It is used the clique extraction algorithm described by Achterberg (2007)
with the insertion of a new step that enables the detection of additional maximal cliques
without increasing the computation effort. Optimized data structures for the conflict
storage are also designed, allowing to handle dense conflict graphs without incurring

excessive memory usage.

This thesis also presents conflict graph-based routines that contribute to solving
MILP models: a preprocessing algorithm, two diving heuristics for obtaining feasible
integer solutions and two cut separation routines. The cut separation routines are im-
proved versions of those presented by Santos et al. (2016) and Araujo et al. (2020): the

Bron-Kerbosch algorithm used in the clique separator has optimized data structures and

Background and Literature Review 23

a different pivoting rule, while the odd-cycle separator has a new lifting module.

2.5 Instance Sets

The instances used in the computational experiments of this thesis consist of 320 mixed
integer programs found in the literature, most of which belong to the current and previ-
ous versions of the Mixed Integer Problem Library (MIPLIB) benchmark set (Gleixner
et al., 2018). MIPLIB is a standard library of tests used to compare the performance of
MILP solvers, containing a collection of challenging real-world instances from academic

and industrial applications.

Our instance set also contains some classical problems of optimization such as Bin
Packing with Conflicts (Sadykov and Vanderbeck, 2013), Nurse Rostering (Haspeslagh
et al., 2014), Bandwidth Multicoloring Problem (Dias et al., 2016) and Educational
Timetabling (Fonseca et al., 2017). Thus, the instances were divided into five instance

sets:

bmec: instances of Bandwidth Multicoloring Problem;
bpwec: instances of Bin Packing Problem with Conflicts;
miplib: instances of MIPLIB;

rostering: instances of Nurse Rostering problem:;

timetabling: instances of Educational Timetabling.

The objective function of all MILP models considered in this thesis are of minimiza-
tion type. Table 2.3 contains summarized information concerning the instance sets. In
this table, column “size” presents the number of instances of each instance set and “cols”
contains the average number of variables. Columns “int”, “bin” and “con” present, respec-
tively, the average number of integer, binary and continuous variables of each instance
set. Finally, columns “rows” and “nz” detail information with respect to the average

number of constraints and nonzeros coefficients of each instance set.

Background and Literature Review 24

Table 2.3: Characteristics of the instance sets used in the experiments.

group size cols int bin con rOwWS nz
bme 9 15,606.33 0.00 15,605.33 1.00 398,899.89 813,363.11
bpwc 20 13,223.40 0.00 13,223.40 0.00 148,569.05 322,656.10
miplib 253 38,603.17 343.98 24,953.26 13,305.94 44,159.98 515,170.28
rostering 22 35,054.77 4.45 35,050.32 0.00 14,082.41 626,280.73
timetabling 16 20,768.25 10,828.75 9,939.50 0.00 40,902.94 159,929.25

We do not consider infeasible instances and instances which do not contain binary
variables. Detailed information about the instance sets is presented in Table A.1 in the

appendix.

Chapter 3

Building Conflict Graphs

CGs can be constructed using a probing technique based on feasibility considerations.
This technique consists of tentatively setting binary variables to one of their bounds and
checking whether the problem becomes infeasible as a result (Savelsbergh, 1994). Thus,
the edges of CGs can be obtained by analyzing the impact of fixing pairs of variables to

different combinations of values.

This chapter explains the probing technique presented by Atamtiirk et al. (2000) and
details a faster approach to construct CGs. For ease of presentation and understanding,
the remainder of this chapter only considers binary programs. Despite this, all of the

techniques presented can be applied to any MILP model containing binary variables.

3.1 Probing Technique Based on Feasibility Condi-

tions

Suppose we are analyzing a constraint with the format:

ZCLJ‘JIJ < b, (31)

jeB

where B is the index set of binary variables x with non-zero coefficients in this constraint.

Suppose also that we are investigating the impact of fixing two binary variables z, and

25

Building Conflict Graphs 26

x4 to values vy and v, respectively. A valid lower bound for the left-hand side (LHS) of

this constraint considering the assignments x, = v, and z, = v is:

Tp=01,Tq=V2 __
L TR = -ap + v ag+ g aj,
J€B~\{p.q}

where B~ is the index set of variables with negative coefficients in the considered con-
straint. In this case, we consider the activation of the variables with negative coefficients
to decrease the value of L*»="1%4="2 a5 much as possible. If L*»="1%¢="2 >} then there
is a conflict between the assignments of x, and z,. Thus, we insert the corresponding

edge in the graph.

This computation is performed for each pair of variables in each constraint in order
to obtain a CG. Therefore, given a MILP model with m constraints and n variables,
its associated CG is constructed in O(mn?) steps. For this reason, probing may be
computationally expensive for MILP models with a large number of variables and dense
constraints. Nevertheless, for some constraint types, a large number of conflicts can be
quickly discovered without having to conduct a pairwise inspection. For instance, in
set packing and set partitioning constraints each variable has a conflict with all others,

explicitly forming a clique. These constraints can be written as:

ij <1l,z;€{0,1}VjeC (set packing)
jeC
ij =1,2; €{0,1}VjeC (set partitioning)
jeC

Set packing and set partitioning constraints often appear in MILP models to represent
the choice of at most one (or exactly one) decision over a set of possibilities. As mentioned
in Section 2.4, graphs that are constructed by only considering these constraints are

denoted as intersection graphs.

Depending on the problem instance, intersection graphs can be very sparse, contain-
ing, for example, only trivial conflicts. In these cases, it may be necessary to execute an

algorithm that analyzes other types of constraints and finds additional conflicts.

Building Conflict Graphs 27

Considering the importance of CGs in solving MILP models and aiming to accelerate
the process of building these structures, Achterberg (2007) developed a fast algorithm to
extract cliques from constraints. We improved this algorithm by inserting an additional
step that detects a higher number of maximal cliques. Additionally, we designed and
implemented data structures that selectively store conflicts pairwise or grouped in cliques
to handle dense CGs without incurring excessive memory usage. Details of our conflict

graph infrastructure are given in the following section.

3.2 Fast Detection of Conflicts

One way to accelerate the construction of CGs is detecting conflicts involving several
variables simultaneously without using the pairwise inspection scheme. Following this
idea, Achterberg (2007) developed an algorithm that extracts cliques in less-structured
constraints, that is, constraints that do not form a clique explicitly, by only traversing the
constraint once. In addition to improve the process of building CGs, the early detection
of cliques also allows for more efficient storage of the conflicts since explicit pairwise
conflict storage can prove impractical for dense graphs. Thus, one can make use of
special data structures where large cliques are not stored as multiple edges, like the one
proposed by Atamtiirk et al. (2000). Alternatively, graph compression techniques such
as GraphZIP (Rossi and Zhou, 2018) could be employed to represent CGs succinctly.

We developed an improved version of the algorithm presented by Achterberg (2007)
to construct CGs. This algorithm exploits the fact that any linear constraint involving
only binary variables can be rewritten as a knapsack constraint similar to (3.1), with
b > 0 and a; > 0 for each j in the index set B of binary variables x. Sometimes,
transformations on the linear constraints are necessary to rewrite them in this format:
for a variable x; with a negative coefficient a;, we must consider the absolute value |a;|,
replace the variable by its complement z; and update the RHS by adding |a;|. For

instance, the linear constraint x1 + xo — 2x3 < 0 can be rewritten as x1 + x5 + 223 < 2.

Algorithm 3.1 presents our strategy to detect cliques on a given knapsack constraint.
The first step is to sort the index set of variables B in non-decreasing order of their
coefficients. Next, we check if there are cliques in the constraint, by considering the
activation of the two variables with the largest coefficients (line 2). If this assignment
does not violate the RHS of the constraint, we can ignore the possibility of the existence

of conflicts and the algorithm finishes (line 3). Otherwise, we perform a binary search

Building Conflict Graphs 28

to find the smallest £ in B such that a;, 4+ a;,,, > b (line 5). Once we found the value
of k, a clique C' involving variables {z;,,z;,,,,...,7;,} is detected (line 6). This clique is

then stored in clique set S (line 7) and the algorithm continues.

Algorithm 3.1: Clique Detection
Input: Linear constraint >, a;z; <.
Output: Set of cliques S.
Sort index set B = {ji, ..., jn} by non-decreasing coefficient value a;, < ... < aj;, ;
if a;, , +a;, <bthen

L return ();
S « 0;
Find the smallest k such that a;, + aj,, > b;
C<+A{zj,..,xj, 1
S+ Su{C}h
for o =k — 1 downto 1 do
Find the smallest f such that a;, +a;, > b;
10 if f exists then

11 L Ae{xjo}u{xjf,...,xjn};

w N e

© G N O o

12 S+ SU{A};

13 else

14 L break;

15 return S;

After finding C, the algorithm then attempts to detect additional maximal cliques.
The strategy proposed by Achterberg (2007) consists of iteratively trying to replace
the variable with the smallest coefficient in clique C' by one of the variables outside
C, maintaining the clique property. The disadvantage of this approach is that the
additional cliques always differ in only one variable from the initial clique C. As such,
cliques formed by a subset of variables of C' and a variable outside C' are not detected
on the current constraint. This situation is solved using our new step for detecting
additional maximal cliques, which occurs at lines 8 to 14 of Algorithm 3.1. For each
variable at position o outside clique C, a binary search is performed to find the smallest
f such that the assignment pair (r;, = 1,2;, = 1) violates the constraint. If f exists,
then an additional clique A formed by variable x;, and the subset {z;,,...,x;,} of C is
detected and stored. The algorithm stops when the binary search finds no results. The
failure to find a position f indicates that there are no additional cliques on the constraint

since the coefficients are ordered.

Algorithm 3.1 detects and stores cliques in O(nlogn) steps on a given constraint with

Building Conflict Graphs 29

n variables. In this algorithm, sorting a constraint (line 1) is O(nlogn), detecting an
initial clique (line 5) is O(logn), storing an initial clique (6 to 7) is O(n), and detecting
and storing additional cliques (lines 8 to 14) is O(nlogn). Thus, a conflict graph for
a MILP model with m constraints and n variables is constructed in O(mnlogn) steps,

since we run Algorithm 3.1 for each constraint.

It is important to note that detecting and storing additional cliques would spend
O(n?) steps if we explicitly store all the contents of these cliques. With this approach,
we would have to iterate over all elements of a detected clique to store it. Consequently,
the worst-case complexity of Algorithm 3.1 would be O(n?). However, any additional
clique A that can be found by this algorithm is always formed by a subset C” of the first
clique C' and one variable outside C'. For this reason, we implemented data structures
that store only C' completely. For each additional clique A, we store a tuple containing
the variable outside C' and the first position of C' where the subset C” starts. Therefore,
storing an additional clique is O(1) and, consequently, the loop that extracts additional
cliques (lines 8 to 14 of Algorithm 3.1) is O(nlogn). Details about the data structures

used to store conflict graphs are given in the next subsections.

Discarding the existence of cliques on a constraint at the first steps of the algorithm
(lines 2 and 3) does not change its worst-case complexity. However, in practice, the
execution time can be considerably reduced when the algorithm analyzes constraints with
a large set of non-conflicting variables. The same effect occurs with the use of a binary
search to detect the first clique (line 5), and the early termination of the algorithm when
there are no additional cliques to be detected (lines 13 and 14). These simple mechanisms

also represent a contribution to the algorithm proposed by Achterberg (2007).

The following example illustrates how our algorithm for detecting cliques on con-
straints works and compares the detected conflicts with the ones that could be found by
the approach developed by Achterberg (2007).

Example Consider linear constraints:

—3$1+4J]2—5ZE3+65E4+7ZL’5+8ZL‘6 S 2
{L‘1+172+ZL‘321

Building Conflict Graphs 30

where all variables are binary. The first step involves rewriting the constraints as knap-

sack constraints:

3171 + 41’2 + 5[?3 + 6ZE4 + 7ZL‘5 + 81‘6 S 10 (32)
T+ T+ 73 <2 (3.3)

Both constraints are already ordered according to their coefficients. We begin by an-
alyzing constraint (3.2). First, we check for the existence of cliques in this constraint.
When we activate the two variables with the largest coefficients (z5 = 1 and x¢ = 1),
we obtain as + ag = 7+ 8 = 15 > 10. For this reason, we cannot discard the existence
of cliques in this constraint. As such, we must now determine the smallest k& such that
aj, + aj,,., > 10. In this case, for £ = 3 we have a3 + a4 = 5+ 6 = 11. Consequently,
clique C' = {Z3, x4, 25,26} is detected and stored. The next step consists of finding
cliques involving variables z; and x5 outside C. For variable x5, we perform a binary
search that returns f = 5 since as + a5 = 4+ 7 = 11 > 10. Therefore, clique {x2, x5, 4}
is detected. Finally, for z; the binary search finds that a; + ag = 3+ 8 = 11 > 10,
returning f = 6. Thus, clique {Z, 24} is also discovered. It is important to note that if
we used the algorithm proposed by Achterberg (2007), cliques {z2, x5, 26} and {Z1, z¢}
would not have been detected. As the last step, we analyze constraint (3.3). For this

constraint we can discard the existence of cliques, since as +a3=1+1=2 < 2.

3.2.1 Space Efficient Data Structures

Data structures that efficiently store the cliques extracted from constraints are crucial
in our algorithm. As mentioned before, explicitly storing all elements of all cliques

extracted from a constraint increases the computational effort to construct CGs.

In Algorithm 3.1, after an initial clique C is found, any additional clique A is al-
ways a subset ¢ C C plus a variable outside C'. Moreover, given a clique C' =
{@j., .15 75, }, any subset of C' that composes an additional clique A always has the
form C' = {x;,,%;,,,...,x;,}, where [> k. Thus, an additional clique A = {z;,UC"} can
be represented by a tuple containing variable x;, and the first variable x;, of C' where
subset C" starts.

We use three arrays to store the extracted cliques. A two-dimensional array, referred

Building Conflict Graphs 31

to here as first, stores the initial cliques extracted from the constraints. Each row in
first stores the elements of a clique. The array entry size|c| contains the size of the
c-th clique of first. The last array, denoted as addtl, stores the additional cliques. In
this array, a clique is represented by a tuple of the form (z,, ¢,[), which means that it is
composed by variable z, and all variables at positions [to size[c] of the c-th clique of

first.

Additionally, auxiliary arrays are used to store, for each variable, the indexes of
first and addtl that contain cliques involving this variable. These structures are used
to implement queries on the CG. The array entry adjfirst[j| contains the indexes of
cliques stored in first that involve variable x;. The number of cliques in first that
contain x; is stored in sizeaf|j]. Arrays adjaddtl and sizeaa work in a similar way,

but considering the cliques stored in addtl.

Figure 3.1 illustrates how our data structures work. This figure considers the cliques
presented in Table 3.1, which contains an example of cliques that can be found by
Algorithm 3.1. We start storing the first clique {x3, x4, x5, x4} of constraint 1 at the first
row of first. Then, the additional cliques of constraint 1 are converted in tuples and
inserted in addtl:

e clique {xq, x5, 26} is converted on tuple (3,1, 3), since it is composed by variable
x9 and subset {x5, 6}, which starts at index 3 of the first clique of first;

e clique {x1,z6} is converted on tuple (zq,1,4), since it is composed by variable z;

and subset {z4}, which starts at index 4 of the first clique of first.

Table 3.1: An example of cliques obtained after running Algorithm 3.1 in three con-
straints.

constraint first clique additional cliques
1 {73, 4, 5, 26} {w2, 75, 26}
{xla .',UG}
2 {m2, 6, 78}
3 {z4, 26,78, 29, x10} {73, 26, T8, T9, T10}

{.7]2,.%'6,.’178,1'9,.%10}

{z1, 29,210}

Building Conflict Graphs 32

first addtl
1z |z, | 2| | 1| (2, 1,3)
T, | 7, | 7 2 | (z, 1, 4)
T, | 7| 7| 7, |x10| 3 ($3, 3,2)
1 2 3 45 4| (2, 3,2)
5| (z,, 3, 4)
adjfirst sizeaf adjaddtl sizeaa
1]] 1{o] 172 1]2]
2 2] 21| 2|1 2 2]
3[1] 31| 33 301
4{1]3] 42 a4l] 4 0]
511 501] 51 51
6 [1[2]3] 6[3] o6[1][2]3][4] 6/[4]
7 710 7 710
s|2]3] sl2] s34 8|2
93 o1 9345 93]
10]3] 10[1] 1w0]3]4]5 103]
1 2 3 1 2 3 4

Figure 3.1: Filled data structures for the cliques of Table 3.1.

Following, clique {x5,x¢, 23} of constraint 2 is stored at the second row of first.
This constraint does not have additional cliques. Finally, clique {z4, x¢, s, 9, z10} of
constraint 3 is stored at the third row of first and the three additional cliques of this
constraint are stored in addtl:

o {x3,16, 5,9, T10} is stored as (x3,3,2);

o {1y, xg, 78,9, T10} is stored as (z9, 3, 2);

o {x1, 29,110} is stored as (z1,3,4).

3.2.2 Query Efficient Data Structures

The use of the data structures previously presented allows reducing the computational

effort required to build CGs. It not only accelerates the construction process but also

Building Conflict Graphs 33

decreases the memory required to store a graph. However, the cost of making queries
in these data structures increases according to the number of cliques stored by it. For
example, the worst case of a query that returns all variables conflicting with a given
variable occurs when we iterate over all cliques of a graph. The execution of this query
in a graph with a large number of cliques could spend considerable time. This query
would be faster if we use adjacency lists for each variable, explicitly storing all conflicting
variables. In contrast, the use of adjacency lists increases the memory consumption and
the computational effort required to build CGs, especially for the dense ones. Hence,
there is a tradeoff between the computational effort and memory requirements to build

and store a conflict graph, and the performance of querying it.

We implemented a hybrid solution that tries to limit the memory consumption of
the conflict graph without significantly affecting the time spent to construct and query
this structure. This solution uses the data structures presented before and maintains
an adjacency list for each vertex. The array of adjacency lists is referred to here as
adjlist and each array entry adjlist[j] contains a set of variables conflicting with
variable z;. The adjacency list of each vertex is kept sorted so that queries in it can be
performed in O(logn). A parameter minClgSize controls how the cliques are stored.
After creating a conflict graph, we iterate over the cliques in first and addtl and
remove those whose sizes are less than or equal to minClgSize. These small cliques are
now stored as multiple pairs of conflicts in the adjacency lists of the vertices involved.
Thus, large cliques are explicitly stored in first and addtl, while the small cliques are

stored as multiple pairs of conflicts in adjlist.

Checking if two variables are conflicting is a query that frequently appears in conflict
graph-based routines. Algorithm 3.2 implements this query method. Two variables x;
and xj are conflicting if x; appears in the adjacency list of x; (or vice-versa) or if they
appear together in at least one clique. First, we perform a binary search to test if x;
exists in adjlist[j](lines 1 and 2). If adjlist[j] contains x;, variables z; and z; are
conflicting and the algorithm finishes. Otherwise, the algorithm iterates over the cliques
of first (lines 3 to 6) and addtl (lines 7 to 15) that contain x;. At each iteration, if
the current clique contains variable xy, then z; and), are conflicting and the algorithm
finishes returning TRUE. Otherwise, the algorithm continues iterating over the cliques
that contain x;. After iterating over all these cliques and finding none of them that also
contains xy, the algorithm return FALSE, indicating that x; and z;, are not conflicting.
When iterating over array addtl, the algorithm has to convert each tuple (x,,c,() in a

clique (lines 10 to 13). This clique is formed by variable z, and the variables in array

Building Conflict Graphs 34

entries { first[c][l], first[c|[l + 1], ..., first|c]|[size]c]]}.

Algorithm 3.2: Checking if two variables are conflicting.
Input: Variables x; and xy.
Output: TRUE if z; and z;, are conflicting, or FALSE otherwise.
if adjlist[j] contains x) then
L return TRUE;

[V

3 for i =1 to sizeaf[j| do

« | p o adjfirstj]li:

5 if first[p] contains x; then
6 L return TRUE;

7 for i = 1 to sizeaa[j] do
p < adjaddtl]j][i];

9 (2o, ¢, 1) < addtl[p];
1w | A—{z};

11 while [< size[c] do

12 A — AU {first[d][l]};
13 [+ 1+1

14 if A contains x;, then

15 L return TRUE;
16 return FALSE;

Another query method that is frequently employed in routines based on CGs is
the one that returns all variables conflicting with a given variable x;. Algorithm 3.3
presents an implementation of this query method considering our data structures. First,
it gets the conflicting variables stored in the adjacency list of x; (line 1). Then, it
uses the auxiliary arrays to iterate over the cliques of first (lines 2 to 6) and addtl
(lines 7 to 15) that contain x;. At each iteration, the elements of the current clique,
except x;, are inserted in (). The process of decoding a tuple (z,,c,[) is the same as

previously presented for Algorithm 3.2.

Building Conflict Graphs 35

Algorithm 3.3: Getting the variables conflicting with z;.

Input: Variable ;.
Output: A set () of variables conflicting with ;.

1 Q < adjlist[j];

2 for i =1 to sizeaf[j] do

3 ¢ < adj first[j][i];

4 | forl=1 to sizelc] do

5 if first(c|[l] # x; then

; L | @ QuUfirstdl}:
7 for i = 1 to sizeaa[j] do

p < adjaddtl]j][i];
(2o, ¢, 1) < addtl[p];
10 if z, # x; then

11 L Q +— QU {x,};

12 while [< size[c] do

13 if first(c||l] # x; then
14 L Q < QU { first[c][l]};
15 [+ 1+1

16 return Q;

The queries in our conflict graph infrastructure are efficient when most of the cliques
are stored as multiple pairs of conflicts in the adjacency list of the vertices. In fact, for
typical instance problems of MIPLIB (Gleixner et al., 2018), the queries in the conflict
graphs are faster when we set minClgSize = 512. In these conflict graphs, just a small

set of conflicts are explicitly stored as cliques.

3.3 Computational Results

A computational experiment was conducted to compare the performance of our al-
gorithm for building CGs, named as ICFE, against the pairwise inspection scheme of
Atamtiirk et al. (2000), referred to here as PI, and the clique extraction algorithm of
Achterberg (2007), denoted as CE. This experiment was carried out on four computers
with Intel Core i7-4790 3.60 GHz processors and 32 GB of RAM running Ubuntu Linux
version 18.04 64-bit. The source code was developed in C++ programming language

and compiled with g++ version 7.4.0.

The algorithms for building conflict graphs were evaluated concerning the execution

Building Conflict Graphs 36

times and memory usages. Pl and CE were implemented according to the descriptions
given in their respective works. Since PI only detects pairs of conflicts, we use an
adjacency list for each vertex of the graph. The conflict storage of CE uses the same

data structures employed in our algorithm.

In this experiment, PI failed to construct graphs for eight instances: eilA101-2,
eilB101.2, eilD76.2, nw04, s100, square1, square47 and supportcaseb. PI needed more
than 32 GB of memory to construct and store CGs for these instances. They have
some set packing and set partitioning constraints formed by a large number of variables,
whose pairwise storage of conflicts results in excessive memory consumption. Since
the other algorithms can explicitly store cliques, they did not face memory issues with
respect to these instances. We penalize the cases where PI cannot construct CGs due to
memory limitation, assigning for each affected instance a memory usage of 32 GB and

an execution time of 1,800 seconds.

Figure 3.2 shows the memory usage and time spent in constructing CGs for each
algorithm and each instance set. The algorithms presented similar memory usages in
instances of bmc and timetabling. Although the execution times are less than 1 second
for these instances, CE and ICE obtained values that are smaller than PI. Complete
results of this experiment are available for download at http://professor.ufop.br/

samuelbrito/thesis.

Memory usages and execution times are similar in instance set bpwe, except for
instance uFLGN_BPWC 3 2 18. In this instance, IC'E found about 8.7 million addi-
tional conflicts. The higher number of conflicts detected implied a greater consumption

of time and memory.

The greatest performance gain with the use of the clique extraction approach and
our data structures was obtained in miplib set. For some instances of this set, several
cliques were detected and explicitly stored, contributing to the significative reduction
of execution time and memory consumption on the construction of CGs. For example,
PI needs more than 32 GB of memory to construct a graph for instance e:lD76.2, while
CFE and ICE were able to build graphs for the same instance using only 52.10 MB. The
results obtained in instance set rostering also demonstrates that CE and ICE are more

efficient than PI in terms of memory consumption and time spent to create CGs.

In general, the combination of the strategy to avoid analyzing constraints that would
not lead to the discovery of conflicts with the efficient clique extraction approach and

the use of our optimized data structures contributed to decrease the amount of time

http://professor.ufop.br/samuelbrito/thesis
http://professor.ufop.br/samuelbrito/thesis

Building Conflict Graphs 37
bmc bpwc
0.55 1 0.81 11 451
0.50 1 074 10 201
9,
0.45 ,
0.61 8 %
0.40 1
71 301
@ 0.35 1 ~ %27 @ —
20.30 = 04 5 o
g £ 5 5 E 201
£ 0.25 034 e,
0.20 131
) N
0.21 101
0151 —] 21
0.10—5@@ 017 L 14 51
0.05 1 0.0 0,:&.: 0] = — —=
Pl CE ICE Pl CE ICE Pl CE ICE PI CE ICE
miplib rostering
32 1800 1 1254 — 16] —
281 16001 14
1.00 i
1400 1 |
241 00 124 |
1200 1
& 207 N s0754 | _ 10
5 16+ ; 5 _ _ : 8-
5 £ 800+ 5 ‘ ‘ £
= 0.50 1 =
E 12 E 6
600
8 4
4007 0.25 1 L—1 -
a0 200{ 24 &
g s ==
O,AL_A# 0,+J_J_ 0.00 0+
Pl CE ICE Pl CE ICE Pl CE ICE PI CE ICE
timetabling
0.30 1 0.22 1
0.20 1
0.25 1 018 1
0.16
0.20 1
_ 0.14 1
m -~
e $0.121
£0.151 <
£ 2 0.10
@ g ’
£
0.08 1
0.101
0.06 1
0.051 004 — ﬂ
e ooz Q =
000{ — T 000{ — — *
Pl CE ICE PI CE ICE

Figure 3.2: Execution times and memory usages in the construction of CGs.

Building Conflict Graphs 38

and memory required to construct CGs. ICE built and stored CGs for all considered
instance problems spending, on average, 252.47 MB of memory and 7.60 seconds. In
comparison with PI, these results represent a decrease of 85.66% in memory consumption

and 87.20% in the execution time.

The execution times and memory consumption of CE and ICE were similar, except
in instances where ICE found more conflicts. Table 3.2 presents 27 instances in which
ICFE found more conflicts than CFE, quantifying the improvement obtained. The number
of new conflicts refers to the number of new edges that were included in the conflict

graphs.

Our algorithm detected more conflicts than CFE in constraints whose minimum and
maximum coefficients of the variables are different and the highest coefficients are close
to the RHS of the constraints. Instances of Bin Packing Problem with Conflicts use
several constraints with this characteristic to model the capacity of the bins. It is the
case of instance uELGN_ BPWC 3 2 18, where more than 8.7 million of new edges
were inserted in the associated CG. The highest increase of conflicts, in percentage,
was obtained in instance ustanbul-no-cutoff, in which ICE is responsible for detecting
127.78% more conflicts.

3.4 Conclusion

In this chapter, we presented our infrastructure for the efficient construction, storage
and handling of conflict graphs. The routine for building these graphs is an improved
version of the state-of-the-art conflict extraction algorithm. It is capable of detecting
additional maximal cliques without increasing the computational complexity of the al-
gorithm. Our optimized data structures selectively store conflicts pairwise or grouped
in cliques, allowing to handle dense conflict graphs without incurring excessive memory
usage. In these data structures, the sequence in which similar cliques are discovered is

exploited to store them compactly.

Building Conflict Graphs

39

Table 3.2: Instances where new conflicts were discovered.

instance group CE ICE new conflicts % increase
n2seq36q miplib 20,653,320 20,653,344 24 < 0.01
p0548 miplib 920 980 60 6.52
istanbul-no-cutoff miplib 72 164 92 127.78
p2756 miplib 5,640 5,732 92 1.63
ua_ BPWC 1 9 2 bpwc 13,506 13,718 212 1.57
ta_ BPWC 6 9 8 bpwc 13,420 13,868 448 3.34
ta_ BPWC 5 7 4 bpwc 12,876 13,474 598 4.64
ta BPWC 5 7 1 bpwc 12,736 13,440 704 5.53
ua_ BPWC 1 8 10 bpwc 48,532 49,798 1,266 2.61
ta_ BPWC 5 5 5 bpwc 31,198 33,826 2,628 8.42
tELGN BPWC 6 8 9 bpwc 28,542 31,598 3,056 10.71
uMIMT BPPC 2 9 1 bpwc 58,716 64,978 6,262 10.66
neos-631694 miplib 377,746 385,368 7,622 2.02
tELGN_BPWC 6 6 _20 bpwc 78,628 87,642 9,014 11.46
uELGN_ BPWC 3 9 18 bpwc 253,020 281,838 28,818 11.39
neos-631784 miplib 7,918,996 7,966,118 47,122 0.60
neos-662469 miplib 2,401,182 2,460,118 58,936 2.45
tMIMT BPPC_6_3 4 bpwc 542,740 629,266 86,526 15.94
supportcasel8 miplib 1,913,864 2,023,850 109,986 5.75
tELGN _BPWC 7 6 16 bpwc 1,106,790 1,241,972 135,182 12.21
neos-631709 miplib 18,519,540 18,777,268 257,728 1.39
uMIMT BPPC 2 5 2 bpwc 2,636,516 2,978,096 341,580 12.96
tMIMT BPPC 8 7 5 bpwc 3,960,040 4,469,682 509,642 12.87
uMIMT BPPC 3 7 6 bpwe 4,177,466 4,713,606 536,140 12.83
ta_ BPWC 7 1 8 bpwc 5,488,238 6,404,428 916,190 16.69
neos-631710 miplib 129,069,680 130,707,306 1,637,626 1.27
uELGN BPWC 3 2 18 bpwc 53,896,940 62,638,998 8,742,058 16.22

Chapter 4
Clique Strengthening

Preprocessing is an essential component in MILP solvers that can modify the structure
of a MILP model to produce a stronger formulation. Stronger formulations usually have
tighter dual bounds, which makes the branch-and-bound process more effective. Thus,
a preprocessing component may accelerate the solution process and enable the early

detection of infeasible problems.

There are several preprocessing strategies proposed in the literature. One of the
precursors of these strategies was the work of Brearley et al. (1975), which describes
techniques for mathematical programming systems that reduce the problem dimension
by fixing variables, removing redundant rows, replacing constraints by simple bounds
and more. Savelsbergh (1994) presented a framework for describing preprocessing and
probing techniques, providing an overview of simple and advanced techniques to improve
the representation of MILP models. More recently, Gamrath et al. (2015) developed
three preprocessing techniques that were included in the non-commercial solver SCIP,
and Achterberg et al. (2016) described the preprocessing strategies implemented in the

commercial solver Gurobi.

One of the preprocessing strategies developed by Achterberg et al. (2016) and in-
cluded in Gurobi is called clique merging. It consists of combining several set packing
constraints into a single inequality. We based on this algorithm to develop a preprocess-
ing routine that extends set packing constraints instead of combining them. We consider
the whole conflict graph to extend each one of these constraints. Thus, variables that do

not appear in other set packing constraints can be included in an extended constraint.

First, we create a set C containing all cliques formed by the set packing constraints

40

Clique Strengthening 41

of a given MILP model. Then, we try to extend each clique C' in C using Algorithm 4.1.

Algorithm 4.1: Clique Extension
Input: Conflict graph G = (V, E), clique C' and score function S.
Output: Extended clique C".
Let d be the vertex in C with the smallest degree;
L {k e Na(d) | k¢ C};
C'+ C;
while L # () do
Let [be the vertex in L with the largest score S(1);
Remove [from L;
if 3l € Ng(k) Vk € C’ then
L O+ C'u{l};

0w N O YR W

return C’;

©

Algorithm 4.1 is based on a greedy strategy that uses the information from a conflict
graph G = (V, E) and a score function S to add variables in clique C. Initially, a set L
of candidate vertices for inclusion in clique C' is constructed by selecting all neighbors
of a vertex d that are not contained in C'. Vertex d is the one with the smallest degree
between the vertices of C. Notation Ng(d) is used to represent the vertices in graph G
that are adjacent to vertex d. Next, we create a set C’ that initially contains all vertices
of C. Then, we try to insert additional vertices in C” by iteratively selecting the vertex
[€ L with the largest score S(I). Vertex [is inserted in C” only if it is adjacent to all
vertices in C” (lines 7 and 8). The algorithm finishes when L is empty, returning the

extended clique C".

The score function S that is used to select vertices in Algorithm 4.1 can be defined
in several ways. We use information from the MILP model or from the conflict graph

associated with it to implement three variations of this function:

deg: returns the degree of a vertex.

mdg: returns the modified degree of a vertex, which is the sum of its degree and the

degrees of all vertices adjacent to it.

rc: returns the reduced cost of the corresponding variable, which is the amount of
penalty that would be generated if one unit of this variable was introduced into
the solution. This version requires previously solving the LP relaxation of the

considered problem.

Clique Strengthening 42

The choice of the score function is made before the execution of the clique extension
algorithm. Since the variables with the largest score are the best candidates to enter
the clique, version rc of the score function has to be modified to return a value that is
inversely proportional to the reduced cost. Thus, we consider that the variables with

the smallest reduced costs have the largest scores.

After obtaining clique C’, we generate the corresponding extended set packing con-
straint and insert it into the MILP model. Finally, a dominance checking procedure is
performed to remove all constraints that are dominated by this extended constraint (Achter-
berg et al., 2016). In this context, a constraint i’ dominates another constraint ¢ if the

corresponding clique of i is a subset of the clique formed by 7'.

Our clique strengthening routine is especially effective when applied to MILP models
that have several constraints expressed by pairs of conflicting variables. However, it can
be computationally expensive, especially for problems with dense CGs and constraints
with a large number of variables. For this reason, we limit the execution of the pre-
processing routine to constraints with at most a,,., variables, where a,,,, is an input

parameter of the algorithm.

The following example illustrates the execution of the clique strengthening process.

Example Consider the following linear constraints:

—4x1 4+ 4xe + bx3 + 624 + T25 + 1026 < 6 (4.1)
To + T3+ Ty S 1 (42)

The first step is to rewrite constraint (4.1) as a knapsack constraint:

471 + 4x9 + dxs + 64 + Txs + 1026 < 10

Now, all the constraints are in the knapsack constraint format and we can run our algo-
rithm for building the CG. Figure 4.1 shows the graph associated with constraints (4.1)
to (4.3).

Clique Strengthening 43

e\

Figure 4.1: Conflict graph for constraints (4.1) to (4.3). For practical purposes, vertices
that have only trivial conflicts were omitted.

Set C is then created, containing cliques of the constraints (4.2) and (4.3). The clique
strengthening procedure is first applied to constraint (4.2), producing the extended con-

straint:

I2+5E3+I4+IL‘5—|—$6§1 (44)

Then, we remove constraints (4.2) and (4.3) since they are dominated by the extended
constraint (4.4). There are no more constraints in C to be extended. Thus, the execution

of clique strengthening in constraints (4.1) to (4.3) results in the following constraints:

—4[[’1+4£L‘2+5£L’3+6l’4+7$5+101‘6 S 6
372+333+374+335+376§1

Clique Strengthening 44

4.1 Computational Results

An experiment was conducted for evaluating the ability of our preprocessing routine to
produce strengthened formulations and to reduce the size of MILP models with respect
to the number of constraints. This experiment was carried out on four computers with
Intel Core i7-4790 3.60 GHz processors and 32 GB of RAM running Ubuntu Linux
version 18.04 64-bit. The source code was developed in C++ programming language

and compiled with g+ version 7.4.0.

We ran clique strengthening for all MILP models of the instance sets presented in
Section 2.5, limiting the execution of the algorithm to constraints with at most 128
variables (e, = 128). This value was defined on a preliminary experiment that inves-
tigated the impact of setting different values to cu,q., considering the execution times

and the improvements in the LP relaxation of the MILP models.

After performing clique strengthening, we used the COIN-OR Linear Program Solver
(CLP)! to solve the LP relaxation of the preprocessed MILP models, and then we cal-
culated the gap closed. The percentage of the integrality gap closed is computed as

follows:

bestSol — currentL P
bestSol — firstLP

gapClosed = 100 — 100 x

where bestSol is the best-known solution of the MILP model, firstLP is the objective
value of the root node LP relaxation and currentL P represents the objective value of the
LP relaxation after applying clique strengthening. Therefore, as the percentage of gap
closed increases, the difference between the objective value of the best-known solution

and the objective value of the current LP relaxation decreases.

We considered four versions of clique strengthening, whose difference is in the clique
extension procedure:
rnd: the clique extension procedure randomly selects the candidate variables.

deg: the clique extension procedure selects, at each iteration, the candidate variable
with the highest degree.

'https://github.com/coin-or/Clp

https://github.com/coin-or/Clp

Clique Strengthening 45

mdg: the clique extension procedure selects, at each iteration, the candidate variable
with the highest modified degree.

rc: the clique extension procedure selects, at each iteration, the candidate variable with

the lowest reduced cost.

Figure 4.2 provides the results regarding the percentage of rows eliminated, exe-
cution times and the percentage of gap closed by executing clique strengthening in
the considered instance sets. The execution times were measured considering the time
spent in performing clique strengthening and solving the LP relaxation of the prepro-
cessed MILP models. Complete results of this experiment are available for download at

http://professor.ufop.br/samuelbrito/thesis.

The four versions presented a similar performance. A more significant difference is
seen in some execution times of these approaches, where version rc presented the highest
values. This version requires solving the LP relaxation of the MILP model to compute
the reduced costs of the variables before performing the clique extension procedure,

which increased its execution times.

Solving the LP relaxation of the preprocessed MILP models taken a considerable
part of the execution times presented in Figure 4.2. Disregarding the time spent in
this process, the maximum execution time of clique strengthening was 14.84 seconds.

Furthermore, this routine ran in less than one second for 289 of 320 instances.

Despite the low impact on improving the values of the LP relaxation, there was a
significant reduction in the number of constraints of the MILP models from instance
sets bme and bpwe. The percentage of constraints eliminated in instances from set bmc

was more than 85% and above 71% in instances from bpwc.

Regardless of the version, the execution of the preprocessing routine did not improve
the linear relaxation neither reduced the number of constraints for 205 of 253 instances
from miplib. These instances were not affected by our preprocessing routine because
they have no set packing constraints. For the other 48 instances of this group, our
preprocessing routine was able to close the gap by up to 98.94% and reduce the number of
constraints by up to 99.91%. Instance sorrel3, for example, had its number of constraints
reduced by 95.39% and its integrality gap was closed by 98.94% after performing version
deg of clique strengthening. This instance belongs to the Maximum Independent Set
Problem and contains 169, 162 set packing constraints of size two that are used to model

the edges of a graph.

http://professor.ufop.br/samuelbrito/thesis

46

bpwc

bmc

Clique Strengthening

- _ 4 o [|
H [e tBpw [tBpw
o [e t Bap [+ Bap
b [~1 rpul [Fpul
Q v =] 0 o w Y ®m N 4 o o ®© o~
S © © © ~ — — - — — - o o o
(%) pareuiwd smol (%) pareuiw@ smol
[_H_ Lol Lol
V*H_ t Bpw t Bpw
] tBap 2 | Gap
Lpul 9] L pul
] P 3 P
L O 1B © 1 O I O 1 O W1 O =
~ Tel N o ~ n N o ~ n N
N N N N i - - -
(-08s) awn ! rod
| t Bpw
| — | 69
| — ropw | pus
} t Bop t Bap
o o o o o
} L pul Lpul S © ® ~ ©
O ® © S N O W © T «~N O o o © o o o o o o o (%) pereuis smoi
N — — — — — (e} 0 ~ © n < [32) N —
(%) paso|o deb (%) paso|o deb A rou
o -| tBpw
£ | 169
g | 1oep
i | tpw
5 | P
£9 @ @ @ @ @ @ © @ o o o
= O o o o o o o o o o o
— o () ¢ ~ (=] n < (3] N -
_ _ Lol e e - L. . . L + Lol — - (-08s) awin
[) t Bpw e e e coe -ed pBpw
[| rou
_ _A t Bap e . R Lo - . . L. .i;_ t Bap Bow
_ _ Fpuw . T e :_ Fpus i _ _ ” ‘mwu
. : : : ; . . - promeoenenineee] t
- o [22] [o] ~ © 0 o o o o o o o o o o o
o &) <] =) © @ © S [} <] ~ © n < ™ 39 — S i _ i fpus
(%) pareuIwId SMOJ (%) pareuiw|d smol S5 5 & 6 & & &6 & & o
m (2] o) ~ © n < [32) N —
I o . - tou (9%) paso|o deb
E tBpw . A . A.i_ t Bpw
) rBep 2 - | Bep
Lpult 2 .. e e Lpul
S B el o AP
n n Yo} [Te] [Te] [Te) [Te) w0 o o o o o o o o o o o o
< re} © ~ ® o o — S &6 &6 &6 &6 &6 6 6 6 & ©
L N, Sg§88L28¢8CKE
(-o8s) awn - A (-08s) awn
H tBpw . . e - e e tBpw
H t Bap P e - e t Bap
- o O © 0o © o o ©o© o o o o
N - i g © ® ~ © 1» ¥ ® « o
(%) paso|o deb (%) pasojo deb

Figure 4.2: Results of the execution of clique strengthening.

Clique Strengthening 47

Several constraints of the instances from set rostering were extended, but few became
dominated. Thus, there was a small reduction in the number of constraints. However,
the execution of clique strengthening in these instances allowed a significant improvement

in the values of LP relaxations, closing the gap by up to 89.09%.

Significant results were also observed in instances of set timetabling. The four versions
of our preprocessing routine were able to reduce the number of constraints of instances
trd445c and trdta0010 in 98.38% and 80.35%, respectively. Moreover, the integrality
gaps in these instances were completely closed. These instances belong to a real Edu-
cational Timetabling problem of a Brazilian university (Gongalves and Santos, 2008),
containing a large number of set packing constraints that are used to model pairs of

conflicting assignments based on student enrollments.

As the results show, clique strengthening can both reduce the number of constraints
and also produce stronger formulations. It is more effective when applied to MILP
models that have several constraints expressed by pairs of conflicting variables. Since
we limited the size of constraints to apply this routine, its execution cost was relatively
low, making possible its integration into MILP solvers. We chose deg as the default
version of clique strengthening since it presented some execution times smaller than the

other versions without decreasing the integrality gap closed.

4.2 Conclusion

This chapter presented a preprocessing routine that extends set packing constraints by
the inclusion of additional conflicting variables. A greedy algorithm uses the information
from a conflict graph to augment the cliques formed by the set packing constraints
of a MILP model. After extending a constraint, a dominance checking procedure is
performed to remove all constraints that become dominated. Computational results
show that this preprocessing routine can both reduce the number of constraints and also

produce stronger formulations.

Chapter 5
Cutting Planes

A primary application for conflict graphs is the generation of valid inequalities, also
known as cuts. Cuts are linear constraints a’z < b that are violated by the current
LP solution of a MILP model but do not remove any integer feasible solution. The
addition of such inequalities enables tightening the LP relaxation of a MILP model,
approximating it to the convex hull of integer feasible points. Cutting planes are often
combined with a branch-and-bound scheme, resulting in the branch-and-cut or cut-and-

branch algorithms that are present in modern MILP solvers.

Any feasible solution of a MILP model defines a vertex packing in its associated
conflict graph. A vertex packing in a graph G = (V| F) is a subset P C V for which all
vj, v, € P satisfy (v, v) ¢ E. Based on this concept, one can conclude that any valid
inequality for the vertex packing polytope is also valid for the convex hull of feasible
solutions for this MILP model (Atamtiirk et al., 2000). Thus, conflict graphs can be

used to find inequalities that cut off the current LP solution.

Cliques and odd cycles are some of the most common classes of inequalities derived
from the vertex packing polytope. Generally, the improvement in the value of the LP
relaxation obtained by the inclusion of odd-cycle inequalities is small (Borndorfer, 1998;
Méndez-Diaz and Zabala, 2008). However, the execution of a routine to separate these
inequalities is computationally inexpensive in comparison with other cut separators,
since they can be separated in polynomial time using shortest path algorithms (Grotschel
et al., 1993; Rebennack, 2009).

The following sections present our routines for separating these conflict-based cuts.

Furthermore, a cut pool structure used to filter and store cuts is presented. Preliminary

48

Cutting Planes 49

versions of our cut separators were successfully applied to three classical combinato-
rial optimization problems: Capacitated Vehicle Routing (Pecin et al., 2017), Project
Scheduling (Araujo et al., 2020) and Nurse Rostering (Santos et al., 2016). The use of
these routines contributed to the solution of several hard instances for the first time in

the literature.

5.1 Clique Inequalities

A clique inequality for a set C' of conflicting variables is defined as:

ijgl

jeC

where C'is a subset of the binary variables and their complements. As mentioned earlier,
a clique represents a constraint in which at most one of the involved variables can be

equal to one.

The main goal of the clique separation routine developed in this work is not to find
a most violated inequality, but a set of violated inequalities. Previous work has proven
this to be the best strategy. For example, Burke et al. (2012) used an algorithm to
discover a most violated clique, but their computational results motivated the inclusion
of additional cuts found during the separation process. This result is consistent with
reports of the utilization of other cuts applied to different models, such as Chvatal-
Gomory cuts (Fischetti and Lodi, 2007). The option of inserting a large number of valid
inequalities at the same time is also responsible for increasing the importance of Gomory
cuts (Cornuéjols, 2007).

Our clique separation routine is presented in Algorithm 5.1. It consists of using an
LP solution # and a conflict graph G = (V, E) of a given MILP model to separate and
return a set S of cliques violated by solution #. Parameter minViol is used to control
the minimum violation that a clique must have to enter in §. Our clique separator
executes two main steps: it separates violated cliques in the first step (lines 1 to 4) and

extend these cliques in the second step (lines 5 to 12).

We begin generating a subgraph G’ = (V' E’) induced by all variables (and their

Cutting Planes 50

Algorithm 5.1: Clique Cut Separator

Input: LP solution #, conflict graph G = (V, E), minViol and maxCalls.
Output: Set S of violated cliques.

1 Let G’ = (V', E') be the subgraph of G induced by all variables with fractional values
in &;

wj; < Ty, Vj e V,;

minW + 1 + minViol;

S + FindCliques(G', w, minW, maxCalls);

for C € S do

Let d be the vertex in C' with the smallest degree;

L (ke Na(d) | k¢ C};

while L # () do

Let [be the vertex in L with the smallest reduced cost in the current LP
relaxation;

10 Remove [from L;

11 if 3l € Ng(k) Vk € C then

12 L C + CuU{l};

© N O, O WW

13 return S,

respective complements) with fractional values at LP solution &. Then, for each vertex
J in subgraph G’, we define the weight w; as the value of its corresponding variable
z; in #. The weight of a vertex j that represents the complement of a variable z; is
w; = 1.0 — ;. Now we have to search for cliques in G’ whose sum of weights of its

vertices is greater than or equal to 1+ minViol (line 4). These are the violated cliques.

The separation of violated cliques uses a modified version of the Bron-Kerbosch (BK)
algorithm (Bron and Kerbosch, 1973). Although BK has exponential computational
complexity in the worst case, the use of pivoting and pruning strategies enables efficient
exploration of the search space. In practice, even for harder instances, maximal cliques
with high weights are found during the first stages of the search. To avoid spending too
much time in the clique separation step, we limit the number of recursive calls of BK
by including a parameter called maxCalls. Details about this algorithm are discussed

in Subsection 5.1.1.

After executing the BK algorithm, we have a set of violated cliques stored in §. The
clique extension module (lines 5 to 12) is then performed to extend each clique C' € S
by inserting the variables (or their complements) with integer values at the current LP

solution #. For this, we use a greedy strategy and conflict graph G.

First, we create a set L of candidates to enter the clique C. It is built with the

Cutting Planes 51

neighbors of the vertex in C' with the smallest degree, excluding those that are already
in C' (lines 6 and 7). Ng(d) indicates the vertices in G that are adjacent to vertex d.
Then, we try to insert additional vertices in C' by iteratively selecting the vertex [€ L
with the smallest reduced cost in the current LP relaxation. At each iteration, vertex [
is inserted in C only if it is adjacent to all vertices in C'. This process repeats until L is

empty.

Figure 5.1 illustrates the importance of extending clique inequalities. Vertices within
the gray area indicate variables with nonzero values in the solution of the current LP
relaxation. Only vertices x5, x3 and x4 could contribute toward defining a most violated
clique inequality. Despite this, subsequent LP relaxations would include three different
K3 cliques, alternating the variable whose value is equal to zero. Reoptimizations of the
LP could be avoided if the inequality of the K, clique was inserted immediately after
the first LP relaxation of the problem. Moreover, a less dense constraint matrix may be

obtained with the insertion of this dominant constraint.

Figure 5.1: Example of a K3 in which the extension module could be applied, trans-
forming it into a Kjy.

5.1.1 Bron-Kerbosch Algorithm

The main component of our clique separator is based on the Bron-Kerbosch algorithm,
which is responsible for finding cliques with weights greater than a certain threshold.
BK is a backtracking-based algorithm that enumerates all maximal cliques in undirected
graphs (Bron and Kerbosch, 1973).

Some strategies to improve this algorithm are present in the literature. For example,

in the same work as they presented the algorithm, Bron and Kerbosch (1973) introduced

Cutting Planes 52

a variation that employs a pivoting strategy to decrease the number of recursive calls.
Tomita et al. (2006) proposed a pivoted version of BK where all maximal cliques are
enumerated in 0(3%‘) steps. This strategy makes the pivot a vertex with the highest

number of neighbors in the candidate set.

Following the idea of Tomita et al. (2006), we implemented a pivoted version of BK.
Additionally, a pruning strategy was added to accelerate the discovery of maximal cliques

with weights greater than a threshold. Algorithm 5.2 details our implementation.

Algorithm 5.2: Bron-Kerbosch algorithm for detecting maximal cliques with
weights above a threshold.

1 Function FindCliques(G,w, minW, maxCalls):

2 R+ 0;:P+V:; X<+ 0,8« 0

3 BronKerbosch(G,w, minW, maxCalls,S, R, P, X,0);

4 return S,

Function BronKerbosch(G,w, minW, maxCalls,S, R, P, X, numCalls):

5
6 numCalls < numCalls + 1;
7 if numCalls > maxCalls then
8 L return,;
9 if PUX =0 then
10 if w(R) > minWW then
11 L S+ SU{R};
12 | return;
13 if w(R) + w(P) > minW then
14 choose a pivot vertex u € P U X;
15 foreach v € P\ Ng(u) do
16 BronKerbosch(G,w,minW,S, RU{v}, PN Ng(v), X N Ng(v));
17 P+ P\ {v};
18 X +— X U{vk

Our algorithm works with three disjoint vertex sets: R, P and X. Set R is the set of
vertices that are part of the current clique. Meanwhile, sets P and X are the candidate
vertices to enter in R and all the vertices that have already been considered in earlier

steps, respectively.

The algorithm begins with R and X empty, while P contains all the vertices of the
graph. Within each recursive call, if the sets P and X are empty (line 8), then R is a
maximal clique. This clique is stored in the clique set S if its weight w(R) = >, w;
is greater than or equal to the minimum weight minW (lines 10 to 11).

If R is not yet a maximal clique, the algorithm proceeds and calculates an upper

Cutting Planes 53

bound to the weight that can be achieved by extending this set. This is done by adding
the current weight of R to the weight of candidate vertices P. The upper bound to the
weight of R is computed to avoid exploring sub-trees which would lead to cliques that

do not satisfy the minimum weight minW (line 13).

Then, a pivot vertex u is selected from P U X. It is well known that the selection of
the pivot vertex is very influential on the overall performance of the method. Thus, we

developed five different pivoting rules:

rnd: randomly selects a vertex.

deg: selects the vertex with the highest degree.

wgt: selects the vertex with the highest weight.

mdg: selects the vertex with the highest modified degree.

mwt: selects the vertex with the highest modified weight.

The modified weight of a vertex is computed as the sum of its weight and the weights
of the vertices adjacent to it. To the best of our knowledge, this is the first time in the
literature that different pivoting rules are evaluated for the BK algorithm in the context

of clique cut separation.

Next, for each candidate vertex v which is not a neighbor of pivot u (line 15) a
recursive call is made, adding v into clique R and updating sets P and X (line 16). At
this point, sets P and X contain the neighbors of vertex v which are also neighbors of
the other vertices contained in clique R. Using this configuration, the algorithm finds
all extensions of R containing v. Once vertex v has been analyzed, it is removed from P
and inserted into X (lines 17 and 18). The algorithm finishes after finding all maximal
cliques with weights greater than minWW or when a maximum number of recursive calls

maxClalls is reached.

Since the most critical bottlenecks of Algorithm 5.2 are the set operations, we employ
bit strings that exploit bit-level parallelism in hardware for optimizing the calculation of
intersection, union and removal of sets. A bit string is an array that maps elements from
some domain to values in the set {0,1}. It is frequently used to represent a subset of
a given population set. Each bit maps an element, where a 1-bit indicates the presence

and a 0-bit the absence of an element in the subset. For example, in a population set of

Cutting Planes 54

five elements {1, 2, 3,4, 5} bit string B = 01101 encodes the subset {1, 3,4}, considering
that the least significant bit is the right-most one.

We encode graph G as an array of bit strings, where each array entry corresponds
to a row of the adjacency matrix of G. The complement graph G of G is also encoded
as an array of bit strings to allow the implementation of efficient bitmasks operations
concerning non-neighbor relations. Finally, sets P and X of the BK algorithm are also
encoded as bit strings. With these representations, we can implement the critical set

operations in Algorithm 5.2 as bitmask AND operations (Segundo et al., 2018):

e PN Ng(v)in line 16: AND operation between bit string P and the v-th row of G.

e X N Ng(v) in line 16: AND operation between bit string X and the v-th row of
G.

e P\ Ng(u) in line 15: AND operation between bit string P and the u-th row of G.

5.2 0Odd-Cycle Inequalities

Odd-cycle inequalities are also derived from the set packing polytope. Given a graph
G = (V, E), asubset O C V is an odd cycle if the subgraph induced by O is a simple cycle
with an odd number of vertices. In this case, the subgraph must have |O| adjacent edges
such that each vertex is incident to exactly two vertices. Thus, an odd cycle O formed

by a set of binary variables (or their complements) defines the odd-cycle inequality:

O]—1
Sy <10

jeo

This inequality ensures that at most half of the variables can be activated.

Our odd-cycle separation routine is described in Algorithm 5.3. Tt is based on the
concepts presented by Rebennack (2009) and returns a set W of tuples containing the
violated odd cycles and their respective wheel centers. First, an auxiliary bipartite
graph G’ = (V' E') is created from the original conflict graph G = (V| E). Lines 2 to
4 present the creation of G'. The vertex set V' is formed by two subsets Vi and V5. In

this case, for each vertex j € V, two vertices j; and j, are created in V', where j; € V;

Cutting Planes 55

and jo € V5. Additionally, for each edge (j,k) € E, two edges (ji,k2) and (jo, k1) are
inserted into E’, where ji, k1 € Vi and jo, ks € V5. The auxiliary graph G’ is bipartite

since there is no edges connecting two vertices of V; or two vertices of V5.

Algorithm 5.3: Odd-Cycle Cut Separator

B S~ N, S-S JU R R

8

9
10
11
12
13
14

15
16
17
18
19
20

21
22
23

24

Input: LP solution # and conflict graph G = (V, E).
Output: Set W of tuples containing violated odd cycles and their respective wheel

centers.
W + 0;
Vie{j1,je lj €V}
E" — {(j1,k2), (j2, k1) | (. k) € E};
G+ (V| E"),
for (j,k) € E do
w(ji, ko) = (1 — &5 — k) /2;
L w2, k) = (1 =& —) /2

for j € V do
P « ShortestPath(j1,j2, G',w);
Convert path P to an odd cycle O in the original graph G;
Let E be the edge set of the subgraph of G induced by O;
cost + 0;
for (j,k) € E do

L cost + cost +w(j, k);

if cost < 0.5 then

C +

Let d be the vertex in O with the smallest degree;

L+ {keNg(d) | k¢O, Ike Ng(j) Vj €O}

while L # 0 do

Let [be the vertex that corresponds to the variable with the smallest
reduced cost in L;

Remove [from L;

if 3l € Ng(k) Vk € C then
L C + CU{l};

W WU{(0,0)};

25 return W;

The next step is to compute the weight of each edge of G’ (lines 5 to 7), since our cut

separator works with an edge-weighted graph. The weight of each edge in the auxiliary

graph G’ is computed according to the corresponding edge (7, k) of the original graph
G, which is defined as:

Cutting Planes 56

) 1—xz;, — 24
wij k) = —— 2=

where #; and %, are the values of variables z; and) at LP solution . Here, variables

x; and zj, are conflicting, which implies that &, + Z; < 1 and, consequently, w(j, k) > 0.

After creating the auxiliary bipartite graph and computing its edge weights, the
search for violated odd cycles begins. For each vertex j € V' we run Dijkstra’s algorithm
in G’ to find the shortest path P from j; to jo. The shortest path has an odd number
of edges since vertices j; and js are in two different sets of the bipartition. Then,
the corresponding odd-cycle O is constructed from the shortest path P (line 10). The

resulting odd-cycle inequality is violated by the current LP solution Z if and only if:

> w(j k) <05

(j.k)EE

where E is the set of edges of the subgraph of G induced by the variables in odd cycle
O. Thus, Algorithm 5.3 tries to find one odd-cycle inequality (namely, a most violated
one) for each variable. Odd-cycles of size three are discarded since they correspond to

cliques and could be found by the clique cut separation procedure.

When a violated odd cycle is found, a lifting step is performed (lines 16 to 23). This
step tries to transform the violated odd cycle into an odd wheel. In graph theory, an
odd wheel is an odd cycle that contains an additional vertex that is adjacent to all other
vertices. Thus, an odd wheel can be obtained by inserting a variable into the center of

the odd cycle. An odd-wheel inequality has the following format:

Sy O, 01
7 c =

= 2 2

where O is an odd cycle and z. is a variable that has conflict with all of those in O.

Our lifting step consists of a new approach: we use a greedy strategy that finds and

inserts a clique C' in the center of the odd cycle. In the literature, it is common to

Cutting Planes 57

consider the insertion of only one variable into the center of the odd cycle, such as the
lifting strategy presented by Rebennack (2009). Initially, we select a vertex d with the
smallest degree between the vertices of O. Then, we create a set L of candidates to
compose clique C'; containing the neighbors of d that are conflicting with all vertices
in O but are not included in O (lines 17 and 18). Following, we construct clique C'
by iteratively selecting the vertex [€ L whose corresponding variable has the smallest
reduced cost. A vertex [is inserted in C' only if it is adjacent to all vertices in C'. This
process repeats until L is empty. Finally, a tuple formed by violated odd-cycle O and

its corresponding wheel center C is inserted in W (line 24).

Figure 5.2 illustrates an odd wheel formed by the inclusion of the clique involving vari-
ables {zg, x7, 25} into the center of the odd cycle formed by variables {x1, x5, x3, 4, x5}
In this example, each variable in the clique is conflicting with all variables that compose

the odd cycle. The odd-wheel inequality associated with the odd cycle of this figure is:

[L’l+$2+I3+$4+$5+2I6+2I7+2$8SQ

Figure 5.2: Example of an odd cycle with the inclusion of a wheel center. Vertices zg,
x7 and xg are connected to all the vertices of the odd cycle formed by {1, x2, 23, x4, x5}

Cutting Planes 58

5.3 Cut Pool

The execution of our cut generation routines can produce a large number of valid in-
equalities, and the insertion of several valid inequalities can deteriorate the solution
process of the LP relaxation and generate numerical issues. On the other hand, the
insertion of few cuts can deteriorate the dual bound that is used to prove optimality.
We try to solve this tradeoff by using a data structure called cut pool. This structure is

responsible for storing the cuts, maintaining only those that are most promising.

Our cut pool implements methods for removing repeated and dominated cuts and
filtering the cuts that are stored by this structure. Before inserting a cut into the cut
pool, we use a hash table to verify if it has already been inserted. Thus, repeated cuts
are quickly discarded. The dominance checking method first normalizes the right-hand
side of the cuts. Then, a cut with coefficients a and right-hand side b dominates another
constraint with coefficients a’ and right-hand side ¢’ if and only if b < b" and a; > a’; for
each j € {1,...,n}. Since the dominance checking is time-consuming, we only perform

this step after generating all cuts of the current cut loop iteration.

A major challenge in developing a cut pool structure is to decide how to filter cuts,
maintaining a set of the most promising ones. Our filtering strategy consists of comput-
ing a score S(C) for each cut C' that we try to insert into the cut pool and using this
score to decide whether the cut will be stored or discarded. Given a cut C' and an LP

solution %, the score of this cut is computed as:

S0 = R0

where viol(C') is the violation of the cut with respect to & and actv(C) is the number of

variables in C' whose values in ¥ are greater than zero.

We use an auxiliary array to identify, for each variable, the cut in the pool with the
best score that contains this variable. The auxiliary array is updated at each successful
insertion of a cut in the cut pool. A cut is only inserted into the cut pool if it has the
best score for at least one variable. Therefore, we limit the maximum number of cuts
that can be stored by our cut pool to the number of the variables of the MILP model

under consideration.

Cutting Planes 59

5.4 Computational Results

We conducted three computational experiments to evaluate the conflict-based cut sep-
arators proposed in this thesis. The first experiment evaluated the pivoting rules im-
plemented in the BK algorithm. The second experiment analyzed the improvements in
the dual bounds obtained by the execution of our clique cut separator and compared
this routine against the clique cut separators available in some MILP solvers. The last
computational experiment evaluated the contribution of our odd-cycle cut separator in
improving the dual bounds and compared the performance of two lifting strategies. All
of these experiments were carried out on four computers with Intel Core i7-4790 3.60
GHz processors and 32 GB of RAM running Ubuntu Linux version 18.04 64-bit. The
source code was developed in C++ programming language and compiled with g4+

version 7.4.0.

The metrics used for comparison purposes were the execution times and the gap

closed by the cut separators. The percentage of gap closed is computed as:

bestSol — currentL P
bestSol — firstLP

gapClosed = 100 — 100 x

where bestSol is the best-known solution of the MILP model, firstLP is the objective
value of the root node LP relaxation and currentL P represents the objective value of
the LP relaxation after including the separated cuts into the MILP model. The metric
average gap closed is also employed and is computed as the arithmetic mean of the gap
closed over the problem instances. Complete results of the experiments presented in
this chapter are available for download at http://professor.ufop.br/samuelbrito/

thesis.

5.4.1 Pivoting Rules of Bron-Kerbosch Algorithm

An essential part of our clique cut separator is the BK algorithm. Tt is responsible for
finding cliques with weights greater than a certain threshold in a vertex-weighted graph.
The pivoting rule plays an important role in this algorithm, allowing the reduction of

the number of recursive calls made by it.

In this sense, we conducted a computational experiment to evaluate the performance

http://professor.ufop.br/samuelbrito/thesis
http://professor.ufop.br/samuelbrito/thesis

Cutting Planes 60

of the pivoting rules that we implemented in the BK algorithm. First, we generated an
instance set containing several vertex-weighted graphs. We ran our clique cut separator
in the MILP models presented in Section 2.5, stopping this routine when no cut was
separated or after performing three iterations of the cut generation loop. The pivoting
rule of BK was randomly selected at each execution of the algorithm. In each iteration of
the cut generation loop, we used CLP to solve the LP relaxation of the MILP models and
saved the subgraphs induced by the variables with fractional values. After performing

these steps, 438 conflict graphs were generated.

Following, we ran the BK algorithm to detect the violated cliques in these graphs,
limiting the maximum number of recursive calls to 100,000 (maxCalls = 100,000). We
investigated the performance of five versions of the BK algorithm that differ only from
the pivoting rule. These versions are referred to here according to their pivoting rules,

which were presented in Section 5.1.1.

Table 5.1 presents the summarized results of the execution of each version of the BK
algorithm. In this table, column “exact” indicates the number of graphs for which the
algorithm ran completely, without stopping for the maximum number of recursive calls.
Column “avg calls” presents the average number of recursive calls made by the algorithm.
The average and the maximum number of violated cliques found are presented in columns
“avg clgs” and “max clgs”. Finally, columns “avg time” and “max time” present the

average and the maximum time spent, in seconds, by each version of the BK algorithm.

Table 5.1: Summarized results of the execution of BK algorithm with different pivoting
rules.

version exact avgcalls avgclgs max clgs avg time max time

rnd 416 12,515.72 370.90 8,940 0.57 35.24
deg 414 13,506.78 356.14 11,559 0.56 26.95
wgt 424 9,759.37 381.66 11,115 0.28 14.80
mdg 413 13,393.91 355.09 11,660 0.49 26.64
mwt 410 13,790.83 357.18 9,076 0.53 34.09

The execution of the BK algorithm was very fast. Regardless of the pivoting rule,
the time spent by this algorithm was less than one second for 94% of the instances.
The instances in which the algorithm spent more than one second have dense conflict

graphs with many cliques explicitly stored. Consequently, the process of iterating over

Cutting Planes 61

the conflicts to encode the graphs as arrays of bit strings took the largest portion of the

execution times in these instances.

According to the results, the pivoting rule that defines the vertex with the highest
weight as the pivot obtained the best results. The number of recursive calls made by
this version is up to 29% less than those made by other versions. The reduction in
the number of recursive calls implied a decrease in the execution time, making wgt the
fastest version among those tested. In addition, wgt ran completely for a greater number
of instances and found more cliques than the other versions. Based on these results, we

defined wgt as the default pivoting rule of our implementation of the BK algorithm.

5.4.2 Clique Cut Separator Experiments

After choosing the pivoting rule to be used in the BK algorithm, we evaluated the
ability of our clique cut separator in tightening the LP relaxations. In this experiment,
we considered two versions of our clique cut separator: one version with the lifting
module disabled and other with this module activated. These versions are referred to

here as bkclq and bkclgext, respectively.

We compared the performance of our clique cut separator against the clique cut
separators implemented in three MILP solvers. The first clique cut separator that we
compared, referred to here as cglclq, is used by the COIN-OR CBC solver and provided
by the COIN-OR Cut Generation Library (CGL)'. We used the C++ API of CGL to
develop a routine that calls the clique cut separator at each iteration of the cut generation

loop.

The second clique cut separator compared in this experiment, named here as glpclg,
is provided by the open-source solver of the GNU Linear Programming Kit (GLPK)?
version 4.65. We ran GLPK with all presolving, preprocessing, heuristics and other cut
separators turned off. Thus, we capture only the effect of the inclusion of the clique
inequalities. Furthermore, we implemented a callback procedure that computes and
stores the number of cuts separated, the current objective value of the LP relaxation,

the gap closed and the time elapsed at each iteration of the cut generation loop.

The last clique cut separator that we compared was the one included in the commer-

'https://github.com/coin-or/Cgl
’https://wuw.gnu.org/software/glpk/

https://github.com/coin-or/Cgl
https://www.gnu.org/software/glpk/

Cutting Planes 62

cial solver IBM ILOG CPLEX? version 12.8, referred to here as cpzclg. We considered
only the “very aggressively” strategy of this cut separator since in preliminary experi-
ments it performed slightly better than the other strategies. We ran CPLEX with all
presolving, preprocessing, heuristics and other cut separators turned off, according to
the CPLEX User’s Manual®. We also implemented a callback procedure that computes
and stores the current objective value of the LP relaxation, the gap closed and the time

elapsed at each iteration of the cut generation loop.

All cut separators were executed at the root node LP relaxation of the instance
problems presented in Section 2.5, considering at most 50 iterations of the cut generation
loop and a time limit of 10,800 seconds. CLP was employed to solve the LP relaxation
at each iteration of bkclq, bkclgext and cglclg, while glpclg and cpzclg used their own

linear program solvers.

Figure 5.3 presents the execution times and the gap closed by each clique cut sep-
arator. Comparing the two versions of our cut separator, one can observe that the
inclusion of the lifting module contributed to improve the execution times. The inser-
tion of lifted cliques avoided some reoptimizations of the LP relaxations, which saved
some iterations of the cut generation loop and, consequently, the execution time of the
cut separator. Moreover, the version of our clique cut separator that includes the lifting

module produced better dual bounds.

Our clique cut separator improved the LP relaxation for 136 instances. Most in-
stances in which the objective value of the LP relaxation was not changed belong to
instance set miplib. In fact, we analyzed these instances and noted that their associated

CGs have only trivial conflicts or a small set of non-trivial conflicts.

The dual bounds obtained by bkclgext are significantly better than those attained by
cglelg and glpclq in all instance sets. Even in instances with denser conflict graphs, such

as those in sets bmec and bpwe, cglelq and glpclq had difficulty finding violated cliques.

Similar results in terms of the percentage of gap closed were obtained by bkclgext
and cpzclg, except in set bpwe. On the instances of this set, ¢pzclg did not find violated
any violated clique, while the cliques separated by bkclgext contributed to close the gap
by up 97.71%. It is worth mentioning that, for some instances, the initial bounds of
the root node LP relaxations computed by CPLEX were already better than the values
calculated by CLP and the linear program solver of GLPK, even with the preprocessing

Shttps://www.ibm.com/analytics/cplex-optimizer
‘https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/

https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/

63

Cutting Planes

bpwc

& L 1xabjoxq
H] |broxa
x_ L bjoxdo
_ L bjod|6
_ L bioj6o
O & 0 @ © @ © & © & o
o o o o o o o o o o
o o o o o o o o o o
o (] [¢°) ~ © [Te) < o™ N —
s (-09s) awn
I _ |- xebiosig
., [——
t bjoxdo
.. & L bjod|6
Y: L bjoja
O 6 @ © 9o o © & o o
m (<2} ¢ ~ © T2 < o N —
(%) paso|o deb
. L 1xabjoxq
T b e
t bjoxdo
t bjod|6
t bjo|bo
O O 0 0 9 © & © © & o o
o o o o o o o o o o o
o o o o o o o o o o o
— o (o2} @ ~ © T2 < (32 N —
o — (-0as) awn
£
o
] - xabixg
-
D L bjoxdo
_ L bjod|6
_ L bjojBo
© ¥ o © «§ @® v o
N ~N ~N - - o o o

(%) paso|o deh

.. *Q L 1xabjodg

e — —
Y _H= L bjoxdo

é L bjod|b

e — [T) o

6000
5500

rostering

T R et
e i —

— s

_ I biod|6

— —— T

80+
70 A
60
5
4
3
204

(%) paso|o deb

miplib

. E._ L 1xabjoxq
e .. I._ L bosg
. l_ L bjoxda
. e ee v i__ L bjodb
. iu_ L bjojbo
©C 0 0 0 0 0 o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
— o (o] e} ~ © n < (32} N —
— (-0as) awn
. - R cooem o *: L 1xabjoxq

on @e e ,.Sszii_ L bosg

e o s e e e -*D L bjoxdo

e men .:E.:.:!_ L bjod|6
e meea ,:._ L bjojbo

100 -

T T T
o o
© Te} <

90
80
70+
0
30
0
0
0

(%) paso|o deb

1xabjoxq
bioxqg
bjoxdo
bjod|6
bjo|62

.

0 =— == —

9000
8000
7000
4000 -
3000 -
2000
1000 -

timetabling

L 1xabjoyq

+ brosa

t bjoxdo

t bjoj6o

100 -

(%) paso|o deh

Figure 5.3: Execution times and gap closed by the clique cut separators.

Cutting Planes 64

routines disabled.

In addition to obtain better dual bounds, the execution of bkclgext was responsible
for completely closing the gap for a greater number of instances. Cut separators bkclqext,
cpzrclg and glpclg completely closed the gap for 8, 5 and 2 instances, respectively. Cut

separators bkclq and cglclg were not able to completely close the gap for any instance.

The average gap closed by the clique cut separators at each iteration of the cut
generation loop is presented in Figure 5.4. Differences in the performances of the cut

separators can be seen in the earlier steps of the separation process.

[cqlclg ~--e - glpclg = cpxclg e bkclg bkclgext -~

2 O T T T T T T T T T

18 - -.a A.A_‘_A_‘.A_A,A.A-A.AAA.A.A-A-A‘A-A. AAAAALALALLMLLAL LML LLas
a A
a

16 - o el
14 - S e i
12 | A_.':.._v']

10 - -~ N

average gap closed (%)

O N b~ O O
T
[}
¢ =n
¢ =
n
(]
]
| |
n
*
*
*
*
*
*
*
*
*
*
*
L 4
*
*
*
*
*
*
*
*
*

0 5 10 15 20 25 30 35 40 45 50
iterations

Figure 5.4: Average gap closed by each clique cut separator.

After 50 iterations, the average gap closed by the cut separators was 4.33% for cqglclg,
5.05% for glpclq, 15.27% for cpzclg and 18.27% for bkclgext. Thus, the average gap closed
by our clique cut separator was 4.22 times better than the clique cut separator of CGL,
3.62 times better than the clique cut separator provided by GLPK and 19.65% better
than the clique cut separator of CPLEX.

Cutting Planes 65

5.4.3 0dd-Cycle Cut Separator Experiments

Following the evaluation of our conflict-based cut separation routines, we analyzed the
ability of our odd-cycle cut separator in improving the bounds given by the LP relaxation
of a MILP. We also investigated the impact of performing our proposed lifting module,
which consists of inserting a clique into the center of an odd cycle. For this, we ran our
odd-cycle cut separation at the root node LP relaxation of the instances, considering at
most 50 iterations of the cut generation loop and a time limit of 10,800 seconds. CLP

was employed to solve the LP relaxation at each iteration.

We ran three versions of our cut separator. In the first version, named here as off,
we did not execute the lifting module. In the second version, referred to here as var, we
executed a lifting module that tries to insert one variable into the center of an odd cycle.
Our proposed lifting module was performed in the third version of the cut separator and

is referred to here as clg. The results of this experiment are presented in Figure 5.5.

Regardless of the version of the cut separator, the inclusion of odd-cycle inequalities
had no significant impact on the dual bound improvement. For most instances, no odd
cycles of size greater than three were found. As explained before, odd cycles of size three
are not separated by the odd-cycle cut separator, since they correspond to cliques and
can be separated by the clique cut separator. Even in instances where a considerable
set of odd-cycle cuts were separated, the improvement in the LP relaxation was small.
For example, clg separated 1,764 odd-cycle cuts in instance br2 of set timetabling, but

the gap closed was 5.03%.

Odd-cycle cuts were separated in 82 of 320 instances, but the improvement in the
objective value of the LP relaxation occurred only in 31 of them. The maximum per-
centage of gap closed by our cut separator was 88.00%, obtained by all separators in

instance neos8. Several odd cycles of size 5, 7 and 9 were separated in this instance.

In general, the time spent in separating odd-cycle cuts was small. Considering all
problem instances, the maximum time spent in this step was 7.42 seconds. The execution
of CLP to solve the LP relaxation of the problems in each iteration of the cut generation

loop was responsible for increasing the execution times.

It was not possible to detect differences between the performances of the three ver-
sions of our odd-cycle separator. In fact, there are few cases where the lifting module was
able to insert wheels into the centers of the odd cycles. Regardless of the version of the

lifting module, some odd cycles were transformed into odd wheels only in 11 instances.

Cutting Planes

66

gap closed (%)

gap closed (%)

bmc
10 A 1204
1104
100+
8-
901
801
67 < 704 §
@ @
< 601 :
I [)
J S 501 —— o
4 § - =
40 - i
30+
2
204
10 A —
o — — — 01
off var ciq off var ciq
miplib
90+ 11000 4
804 10000 4
9000
70+
8000
60
7000 =
~ e
501 © 6000 - 3
2 1)
£ 5000 - 3
401 ES e
[
4000 A =
30+
: 3000 4
20+
2000
107 1000 *
o o i i ol Lt i
off var ciq off var ciq
timetabling
14+ 450 -
400 -
124
350
104
300 -
g, _
§ E 2501
o
S] £ 2001
2 =
(=2}
150 -
44
100 -
24
50+
o COCOC 0l
off var clg

bpwc

20+

18

16 -

14

124

10

time (sec.)

T
off var

clg

rostering

10

time (sec.)

T
off var

[

clg

160 -
150 -
140 1
1301
1201
1101
100 -
90 -
80 -
701
60
50 1
40
30
201
10

ol

iy

T
off var

100 -

90+

80

70+

60

50+

40+

30

20 A

104

0+

off var

Figure 5.5: Execution times and gap closed by the odd-cycle cut separator.

Cutting Planes 67

For these instances, the average gap closed by clqg was 3.84% better than var.

5.5 Conclusion

This chapter presented two cut separation routines and a data structure for storing the
cuts. The proposed cut pool is responsible for removing repeated and dominated cuts
as well as filtering the cuts in order to maintain only those that are most promising.
Our clique cut separator uses the BK algorithm for separating a set of violated clique
inequalities. It was capable of obtaining dual bounds at the root node LP relaxation
which are even stronger than the ones provided by the clique cut separator of CPLEX
solver. Our odd-cycle cut separator has a new lifting module that tries to insert cliques
in the centers of the odd cycles. The improvements in the dual bounds obtained by

including only odd-cycle cuts were relatively small.

Chapter 6

Improving the COIN-OR
Branch-and-Cut Solver

The conflict graph-based algorithms and data structures proposed in this thesis were
included in the source code of the COIN-OR Branch-and-Cut (CBC) solver. CBC is a
MILP solver written in C++, and it is one of the fastest open-source alternatives nowa-
days. It is also a fundamental component used by Mixed-Integer Nonlinear solvers, such
as Bonmin (Belotti et al., 2009) and Couenne (Bonami et al., 2008). The new version
of CBC containing our contributions can be downloaded from the GitHub repository!.
This version will be released as CBC 3.0.

In this new version, a conflict graph is constructed after the execution of the prepro-
cessing routines of CBC, followed by the execution of the clique strengthening routine.
Our conflict-based cut separators are performed during the execution of the branch-and-
cut algorithm. The clique and odd-cycle cut separators of CGL, included in the previous
version of CBC, were replaced by our cut separators. The following section investigates

the performance of the new version of CBC.

6.1 Computational Results

Two experiments were performed to evaluate the new version of CBC that includes our
conflict graph-based algorithms and data structures. The first experiment analyzed the

individual contribution of our preprocessing and cut separation routines in the solving

lhttps://github.com/coin-or/Cbc

68

https://github.com/coin-or/Cbc

Improving COIN-OR Branch-and-Cut Solver 69

process of CBC. The second computational experiment compared the new version of
CBC against its previous version. Both experiments were carried out on four computers
with Intel Core i7-4790 3.60 GHz processors and 32 GB of RAM running Ubuntu Linux
version 18.04 64-bit, considering the instances described in Section 2.5. The source code

was developed in C++ programming language and compiled with g+-+ version 7.4.0.

For comparison purposes, we used the execution times and the gap closed by CBC

in solving the MILP models. The percentage of gap closed is computed as:

bestSol — lastLP
bestSol — firstLP

gapClosed = 100 — 100 x

where bestSol is the best-known solution of the MILP model, firstL P is the objective
value of the root node LP relaxation and lastLP represents the lower bound obtained
by CBC at the end of its execution. The metric average gap closed is also employed and
is computed as the arithmetic mean of the percentage of gap closed over the problem

instances.

6.1.1 Individual Impact of Each Routine

The first experiment investigated the individual performance impact of our preprocess-
ing and cut separation routines in CBC solver. To this end, we first executed the new
version of CBC and then individually removed each routine, generating additional con-
figurations. The default parameters of CBC for heuristics, preprocessing, branching
rules and cuts separators were used in all executions. We only turned off the clique and
odd-cycle cut separators of CBC, since we are using our cut separators. Each configura-
tion was executed for all instances of the sets described in Section 2.5 with a time limit
of 10, 800 seconds.

The box plots of Figure 6.1 show the results of this experiment. In this figure, con-
figuration “cbc+cg” refers to the new version of CBC including all of our routines. Con-
figuration “-{clgstr}” represents the new version of CBC without performing our clique
strengthening routine. Finally, configurations “-{bkclqext}” and “-{oddw}” contain the
results of the execution of the new version of CBC without including our clique and
odd-cycle cut separators, respectively. Detailed results of this experiment is presented

in Table A.2 in the appendix.

70

Improving COIN-OR Branch-and-Cut Solver

| | | mppo}-
_ | Hoxebioxa}-
7 _ - L {nsba}-
7 __ L 62+9g0
S O O 0 0O O O © © & o o
o o o o o o o o o o o
o o o o o o (=) o o o o
H._ m o e} ~ (e} n < (30} N —
m (-08s) awn
Q.
o
o - Lowppol-
7 _ “““““““““““ | Hxebposa}-
D “““““““ | o Hasbp}-
o e
S © © © © & & o & o o
o (o)) 5] ~ o wn < ™ ~N —
— (%) paso|o deb
_ - {mppo}-
_ +ixabjosa}-
_ L {nsbjo}-
_ I 6o+0q0
S © & © & & & © & o o
o o [=) o o o o o o o o
5] ~ O n < (32} N — o [} <]
o o o o o o o o o (2] (o2}
- — — - — — - — —
o (-08s) awn
£
Qo
e | | |4 ool
[Hoebowa)-
R — TS
A | R
S © © © © © & 9 © o o
w (o] [ee] ~ o n < (3] N -

| _ | | {mppo}-
7 _ T -{xabjoxa}-
7 _ T F{nsbo}-
7 _ T L Ba+0qo
S O O O O 9 © & & o & o
S © © & ©6 ©6 & & & © o
o O O O O O O O O O O

£ (-08s) awn

]

%)

3 D +{mppo}-
H “““““““““““ T - Hixebjoya}-
H ““““““ | +{nsbyo}-
D t69+2900
S © 9 © 9o 9o ©o o o
S o) Ies) ~ © n < ™ N
— (%) paso|o deb
_ 7 ““““ | |{mppo}-
_ ““““ { +{ixabjoxa}-
_ ““““ | +{nsbio}-
_ 7 ““““ { +Bo+0qgo
S S S S S S &2 d g
o O O O O O O O O O o
SO © © © © 6 & © © © o
= m d ® K © b ¥ ® « 4

2 (-08s) awn

f=3

1S
7 _ ““““““““““““““ { +H{mppo}-
7 _ _ ““““““““““ | Hoxabjoxa}-
| _ e | Hnsbio}-
7 _ * ““““““““““““““““ | LBo+0g0
© © © © 9 © © o © o o
w ® © K © mb ¥ ®m® « +d

timetabling

_ |1 HHmppo)-
D “““““““““ | - | {xebpsia}-
_ {nsbjo}-

_ ““““““““““““““““““““ { FBo+oqo
S O O O O O O © © & o o
o o o o o o o o o o o
o o o o o o o o o o o
M w (o] [e6] ~ o T) < ™ N -

(-09s) awn

EH_ “““““““ ! - {mppo}-
DH_ “““““““““ | - Lixabposia}-
ﬁ ““““““““ | - Hasbjo}-
EH_ ““““““““ | . LBotogo
& & © 0 6 o © & & & o

w o 5] ~ O n < ™ N —

Figure 6.1: Results of the new version of CBC when each conflict-based routine is

individually removed.

Improving COIN-OR Branch-and-Cut Solver 71

The most significant impact occurred when our clique cut separator was removed.
In this case, the average gap closed by CBC decreased by 69.54% in instance set bmc,
14.51% in bpwe, 5.59% in miplib, 4.79% in rostering and 3.38% in timetabling. The
removal of this routine also resulted in an increase in the average execution times. For
example, the average execution time for instance set bpwe increased in 53.78%. More-

over, the total number of instances whose optimality was proven decreased in 12.40%.

6.1.2 Results of the New Version of CBC Solver

As the second experiment, we investigated the performance improvement of the new ver-
sion of CBC against its previous version. The default parameters of CBC for heuristics,
preprocessing, branching rules and cuts separators were used in both versions. We ran
each version of CBC on all MILP models of the sets described in Section 2.5, considering
a time limit of 10, 800 seconds. The new version of CBC is denoted here as cbc+cg, while
the previous version of this solver is referred to as cbe. Figure 6.2 shows the results of

this experiment. Detailed results are presented in Table A.2 in the appendix.

The inclusion of our conflict graph-based algorithms and data structures in CBC
contributed significantly to improve the dual bounds obtained by this solver. As observed
in Figure 6.2, the median gap closed by the new version of CBC is greater than the values
obtained by the previous version of this solver in all instance sets. The percentage of
gap closed by cbc+cg was greater than or equal to that obtained by cbe in all 320
instances. Consequently, the average gap closed by CBC increased from 58.86% to
68.76%, representing an improvement of 16.82%. Reductions in the execution times

were observed in several instances.

In order to better visualize the results, we computed the evolution of the average
gap closed by each version of CBC over the execution time for each instance set. The
results are presented in Figure 6.3. The most significative improvements were obtained
in instance sets bmc, bpwe and rostering. In instances of these three sets, the clique
strengthening routine considerably reduced the number of rows of these instances, while

the clique cut separator inserted strong valid inequalities.

At the end of the executions, the average gap closed by cbc+cg was four times better
than the one obtained by cbe in instance set bmc. Furthermore, the average gap closed
by the new version of CBC was 54.01% better in instance set bpwe, and 66.45% better

in rostering.

Improving COIN-OR Branch-and-Cut Solver

gap closed (%)

gap closed (%)

bmc
100 A — 10800 —— ———
90 10700 -
80 10600 -
70 10500 -
60 10400 g
2 °
%) Q
50 210300 4 2
g ©
= Q
40 - 10200 - S
30 10100 -
20 10000 -
10 : 9900
ol —— 9800
cbe cbc#cg che cbc#cg
miplib
100 A 11000 -
90 - 10000
801 9000
701 8000
7000 =
60 - _ <
@ 6000 - ks
2
50 < a
2 5000 =
401 = g
4000 -
301 3000
207 2000 1
104 10004 :
ol : ol : :
cbe cbc#cg che cbc#cg
timetabling
1001 —— 11000
90 - 10000
80 3 9000
70 | 8000
—_ - 7000 -
S’\i 60 - o
3 @ 6000 -
2
g 50 2
° 2 5000
S 40 =
4000
301 3000 -
2071 — 2000 1
10 1000 -
0 0
che cbclcg

bpwc
100 11000
90 A 10000 -
80 9000 4
704 | 8000 -
| 7000
60 - i —_
& 6000 -
50 2
2 5000
40 =
4000 4
301 3000
20 20001
10+ 1000 -
04 —/— 0
chc cbc#cg cbe cbc#cg
rostering
100 11000 1
90 - 10000 -
80 9000 4
704 8000 -
7000 -
60 - —_
& 6000 -
50 - <
2 5000
40 =
4000 4
301 3000 -
20 20001
101 1000
04 i 0- i
cbe cbc#cg cbe cbc#cg
cbc cbct+cg

Figure 6.2: Execution times and gap closed by the two versions of CBC solver.

Improving COIN-OR Branch-and-Cut Solver

73

average gap closed (%)
Ho= NN W WS
o U O U1 O U1 O U O
o

~
o o

= N W B U O
o O O o

average gap closed (%)

o

Figure 6.3: Evolution

|
average gap closed (%)

o

average gap closed (%)

L L L L L L L

4 5 6 7 8 9 10 11
time (x 103 seconds)

timetabling

80
70
60
50
40
30
20

time (x 103 seconds)

rostering

4 5 6 7
time (x 103 seconds)

average gap closed (%)

3 4 5 6

7

time (x 103 seconds)

of the average gap closed over time for each instance set.

Improvements in the average gap closed of instance sets miplib and timetabling were

slightly smaller. In timetabling, the average gap closed by CBC increased in 14.74%. The

smallest improvement in the average gap closed was 8.95%), obtained in the instances of

miplib. As observed in the previous experiments, the conflict graphs of several instances

of this set have only trivial conflicts or a small set of non-trivial conflicts. Thus, conflict-

based routines have difficulties to improve the dual bounds.

We also investigated the evolution of the number of instances solved by each version

of CBC over time. These results are provided in Figure 6.4. The previous version of

CBC was able to prove the optimality for 102 instances, while the new version proved

the optimality for 126 instances. This result represents an increase of 23.53% in the

number of instances solved. Moreover, the use of our conflict graph-based algorithms

Improving COIN-OR Branch-and-Cut Solver 74

and data structures not only increased the number of instances solved but also decreased
the execution time necessary for doing so. Considering the 24 instances in which cbc+cg
proved the optimality and cbc stopped by time limit, almost half of them were solved in
less than 1,000 seconds.

140 T T T T T , | : | |
120 | e
8 i 0 e gk PR + B
g 100 M,X e R IR]
5 80 _.-ﬂ;":*ﬁ _
) *ﬁ##
g 60§ |
©
t'; cbc R i
= 0 CbC+Cg ——
20 |

O | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10 11

time (x 103 seconds)

Figure 6.4: Number of instances solved over three hours.

6.2 Conclusion

The integration of our conflict graph-based algorithms and data structures in the CBC
solver was presented in this chapter. The average gap closed by the new version of
CBC containing our contributions was up to four times better than its previous version.
Moreover, the number of MILP models solved by CBC in a time limit of three hours was
increased by 23.53%. Considering the individual impact of each routine on the solution
of MILP models by CBC, the most significant contribution was given by our clique cut

separator.

Chapter 7
Diving Heuristics

In effective branch-and-bound algorithms, subproblems are frequently discarded for in-
feasibility or bounding. Considering an objective function of minimization, a subproblem
whose lower bound exceeds or equals the global upper bound is discarded because it can-
not lead to a better solution. Therefore, branch-and-bound algorithms benefit directly
from obtaining an integer feasible solution as early as possible. An integer solution can
be obtained from primal heuristics (Fischetti and Lodi, 2011) or directly from the LP

relaxation of a subproblem when the integrality conditions of the variables are satisfied.

A special type of primal heuristics is called diving heuristics (Berthold, 2006). A div-
ing heuristic can be seen as a depth-first-search in the branch-and-bound tree whose main
goal is to construct integer feasible solutions from fractional solutions. Algorithm 7.1
illustrates a generic diving procedure. It starts constructing a set D containing all inte-
ger variables whose values in LP solution & are fractional. While the stopping criteria
are not satisfied, a variable z; with the best score s; is chosen from D, and one of its
bounds is updated depending on the rounding direction d;. The process of replacing a
lower bound [; by [Z;] is called bounding up the variable z;, while replacing an upper
bound wu; by |Z;] is referred to as bounding down the variable z;. The LP relaxation of
the modified problem is then solved, and if it is infeasible, the algorithm finishes without
obtaining an integer solution. Otherwise, the set D is updated, and if it is empty, an

integer feasible solution is found and returned.

75

Diving Heuristics 76

Algorithm 7.1: Generic Diving Heuristic

[S N VN

© o N O

10
11

12
13

14
15
16
17
18

19

Input: LP solution Z, rounding function p and score function ¢.
Output: An integer feasible solution or NULL.
D« {jel|i;¢ZL}
while stopping criteria are not satisfied do

for j € D do

L dj < p(j);

sj = 6(J);

Let j be the index of the candidate variable with the best score s;;
Let [; and u; be the lower and upper bounds of ;, respectively;
if d; = up then

ERENE
else

| uy < E];
if LP relaxation of the modified problem is infeasible then

L return NULL;

else
T < new LP solution;
D {jel|d ¢
if D = () then
L return I;

return NULL;

The diving process terminates when one of the following conditions holds:

e an integer feasible solution is found;
e the LP relaxation is infeasible after some fixations;

e some stopping criterion (e.g. time limit or iteration limit) is reached.

It is noteworthy that the algorithm can be modified to continue the search when an

integer solution is found, aiming to find solutions with better quality. It is also possible

to use a backtracking scheme to try different paths in the tree, thus preventing the search

from stopping at the first infeasibility found.

There are several ways to define the score function ¢. Generally, the rounding func-

tion p consists of bounding a variable to the direction where the best score is obtained.

The combination of a rounding function and score function defines the variable selection

Diving Heuristics 7

strategy and, consequently, the diving heuristic. Some of the most common strategies

are:

Coefficient Diving: selects the variable with the smallest number of potentially vio-

lated rows;
Fractional Diving: selects the variable with the lowest fractionality;

Linesearch Diving: selects the variable with the greatest difference between the first

LP solution and the current LP solution;

Vectorlength Diving: selects the variable with the smallest ratio of potential objective

change and number of affected constraints.

More details about diving heuristics are presented in the work of Berthold (2006).

The following section presents two diving heuristics that we proposed and imple-
mented. These heuristics consider the information extracted from conflict graphs to

define their variable selection strategies.

7.1 Conflict-Based Diving Heuristics

Some diving heuristics use the concept of down-locks and up-locks to define their variable
selection strategy. The number of down-locks of a variable corresponds to the number
of constraints that this variable appears with negative coefficients (Berthold, 2006). On
the other hand, the number of constraints in which a variable appears with positive

coefficients defines its up-locks.

Given these definitions, a variable with zero up-locks (down-locks) can always be
bounded up (bounded down) without increasing the current violation of any constraint.
However, bounding up (bounding down) a variable whose number of up-locks (down-
locks) is greater than zero might increase the current violation of the constraints. There-
fore, a variable lock is a value that indicates the risk of increasing the constraint violations

when bounding a variable in a certain direction.

Coefficient diving is an example of a diving heuristic that employs the concept of
locks. It selects, at each iteration, the variable with the smallest number of locks and

defines the rounding direction as the direction that this minimum value is obtained.

Diving Heuristics 78

Contrary to this idea, we proposed and implemented two conflict-based diving heuris-
tics that prefer selecting the variables with the highest risk of generating infeasibilities.
A strategy that considers taking the most critical decisions first is called fail fast strat-
egy (Berthold, 2014). In the context of primal heuristics, fail fast strategies have two
advantages. Firstly, it is probably easier to repair infeasibility when there are a small
number of fixed variables. Secondly, the failure of a heuristic caused by an early decision

may avoid spending much running time.

An example of a diving heuristic that employs the fail fast strategy is proposed by
Witzig and Gleixner (2019). Whenever an infeasibility is detected during the diving
process, it is analyzed, the corresponding conflict constraint is stored and the algorithm
performs 1-level backtracking. With this mechanism, several conflict constraints are
dynamically discovered during the diving iterations. This information is then used to
develop a conflict diving heuristic, which consists of selecting the variable that most
appears in the conflict constraints. Unlike this approach, our diving heuristics considers

the conflicts provided from the conflict graph.

7.1.1 Conflict Diving

The first diving heuristic that we proposed analyzes the number of conflicts (i.e., the
degree) of the variables with respect to the conflict graph. For this, we consider the
conflict locks of the variables. The number of conflict up-locks of a variable corresponds
to the degree of its corresponding vertex in the conflict graph. On the other hand, the
number of conflict down-locks of a variable is related to the degree of the vertex that
corresponds to the complement of this variable. In this case, conflict locks estimate the

risk of generating infeasibility when bounding a variable in a certain direction.

The rounding function p.,s of Conflict Diving prefers the direction that is more likely
to lead to infeasibilities. Thus, the rounding direction of a given variable z; is defined

as.

Diving Heuristics 79

down if gj > Zj,
up if Zj > gj,
down if ¢; = gj and f; < 0.5,
up iijzgj and f; > 0.5,

/0<j)cnf =

where gj and Ej are the number of conflict down-locks and conflict up-locks of z;, re-
spectively. When the number of conflict up-locks and conflict down-locks are equal, we
consider the fractional part f; = &; — | ;] of variable z; in the current LP solution & to

choose the rounding direction.

In Conflict Diving, the score function ¢, prefers variables that have a large number

of locks on the chosen rounding direction. The score ¢.,¢(j) for a variable z; is given
by:

if p(§) = down,
WG1ag = {5 100 = doun
¢ if p(j) = up.

Thus, the diving candidates are explored in the non-increasing order of their conflict

locks.

It is important to note that the score function ¢, always returns zero for general in-
teger variables since conflict graphs are composed only by binary variables. Furthermore,
¢ens always returns one for variables that have only trivial conflicts. As a consequence,
in some cases, the best score of the diving candidates can be less than or equal to one,
indicating that Conflict Diving does not have sufficient information to choose the vari-
able that will be bounded. In this situation, we use the variable selection strategy of
Linesearch Diving (Berthold, 2008).

The rounding direction of a variable x; considering Linesearch Diving is defined as:

Diving Heuristics 80

down if 7; < :Z‘f,

_ up if ;> &%,
p(])lns = ’ ’

down if @; = if and f; < 0.5,

| up if ; = i’f and f; > 0.5,
were Z% is the solution of the root node LP relaxation and & is the LP solution of the
current node. When Z; are equal to &, we consider the fractional part f; = &; — ;] of
variable z; in the current LP solution & to choose the rounding direction. In Linesearch
Diving, the score function ¢, prefers the variables that have the greatest difference
between the solution of the root node LP relaxation and the current LLP solution on the

chosen rounding direction. Therefore, the score ¢,s(j) for a variable z; is given by:

i:;,,-; Liij
Qb(j)lns = (quix; . .
oy if p(j) = up.

J

if p(j) = down,

Algorithm 7.2 presents the proposed Conflict Diving Heuristic. It starts constructing
a set D containing all integer variables whose values in LP solution & are fractional. In
each iteration of the algorithm, the best score s, of the variables in D is computed,
considering the score function ¢, (lines 4 to 9). If spes is less than or equal to one,
the algorithm uses rounding function p;,s and score function ¢;,s of Linesearch Diving
(lines 10 to 13). Then, the variable with the best score is chosen and one of its bounds
is updated according to the rounding direction (lines 14 to 19). After changing the
bound of a binary variable (i.e., fixing it), it is possible to propagate this change by
using the information from the conflict graph (line 20). The propagation of the bound
change reduces the number of diving iterations and, consequently, decreases the running
time of the heuristic. The LP relaxation of the modified problem is then solved. If it
is infeasible, the algorithm finishes without obtaining an integer solution. Otherwise,
solution & and set D are updated. If D is empty, an integer feasible solution is found

and returned. Otherwise, another iteration of the algorithm is performed.

Diving Heuristics 81

Algorithm 7.2: Conflict Diving Heuristic

Input: Conflict graph G, LP solution & of the root node, rounding function
Peng, Tounding function py,,, score function ¢, and score function ¢@p,,.
Output: An integer feasible solution or NULL.
1@ 3
2D {jel |z ¢L}
3 while stopping criteria are not satisfied do
4 Sbest < 07

5 for j € D do

6 dj < pens(5);

7 §j <= Geng (J);

8 if s; > Syt then

9 Sbest < S35
10 if sy < 1 then

11 for j € D do

12 L dj — plns(])7

13 Sj ¢ Gins(J);
14 Let j be the index of the candidate variable with the best score s;;
15 Let [; and u; be the lower and upper bounds of z;, respectively;

16 if d; = up then

17 L lj — (fj—‘,

18 else

19 L u; | %5

20 Propagate this bound change using conflict graph G}

21 if LP relaxation of the modified problem is infeasible then
22 L return NULL;

23 else

24 T < new LP solution;
25 D« {jel|i;¢ZL};
26 if D=0 then

27 L return 7;

28 return NULL;

7.1.2 Modified Degree Diving

The second conflict-based diving heuristic that we proposed and implemented is called
Modified Degree Diving. In this heuristic, the definition of conflict locks is related to the
modified degree of the variables. The number of conflict up-locks of a variable is the

modified degree of its corresponding vertex in the conflict graph. On the other hand,

Diving Heuristics 82

the number of conflict down-locks of a variable is related to the modified degree of the

vertex that corresponds to the complement of this variable.

The rounding function p,,q, of Modified Degree Diving prefers the direction that
has the highest modified degree. Thus, the rounding direction of a given variable x; is
defined as:

doun if £ > ¢,
up if & > 3
down if §; = éj and f; < 0.5,
up if §; =&, and f; > 0.5,

P(j)mdg =

\

where §j and Ej are the number of conflict down-locks and conflict up-locks of x;, re-
spectively. When the number of conflict up-locks and conflict down-locks are equal, we
consider the fractional part f; = #; — [Z;] of variable z; in the current LP solution & to

choose the rounding direction.

The score function ¢,,q, of Modified Degree Diving prioritizes the variables that
have a large number of locks on the chosen rounding direction. The score ¢,q,4(j) for a

variable z; is given by:

if p(4) = down,
I
£ if p(j)

up.

Similar to Conflict Diving, the diving candidates in Modified Degree Diving are explored

in the non-increasing order of their conflict locks.

The score function ¢,,q, always returns zero for general integer variables and two for
variables that have only trivial conflicts (both variable and its complement have their
degrees equal to one). When the best score of the diving candidates is less than or equal
to two, we use the variable selection strategy of Linesearch Diving in the same way as
used in Conflict Diving. The algorithm of Modified Degree Diving can be obtained by
replacing the rounding function pe,r by pmds and the score function ¢en¢ by ¢pmay in
Algorithm 7.2.

Diving Heuristics 83

7.2 Computational Results

We evaluated our conflict-based diving heuristics concerning the ability to generate fea-
sible integer solutions. For this, we ran Conflict Diving and Modified Degree Diving for
each instance problem presented in Section 2.5, stopping the executions when one of the

following conditions holds:

e an integer feasible solution is found;
e the LP relaxation is infeasible;

e execution time reached 10,800 seconds.

For comparison purposes, we implemented four of the most common diving heuris-
tics: Fractional Diving, Coefficient Diving, Linesearch Diving and Vectorlength Div-
ing (Berthold, 2006). These heuristics only require an initial LP relaxation and the
general structure of the MILP model itself to be executed.

All the diving heuristics were implemented in C+-+ programming language and com-
piled with g++ version 7.4.0. The experiment was carried out on four computers with
Intel Core i7-4790 3.60 GHz processors and 32 GB of RAM running Ubuntu Linux version
18.04 64-bit. Table 7.1 presents the results obtained in this experiment. Detailed results

are available for download at http://professor.ufop.br/samuelbrito/thesis.

Table 7.1: Summarized results of the conflict-based diving heuristics.

strategy solution found best solution only solution avg time
coefficient 112 69 16 823.26
fractional 87 53 2 728.87
linesearch 140 81 14 383.03
vectorlength 117 52 1 508.20
conflict 137 71 3 352.79
modified degree 150 83 14 370.75

There were 68 instances for which all the diving heuristics found a feasible solu-
tion. The diving heuristic that found the greatest number of feasible solutions was the

Modified Degree Diving, which was able to produce by up 72.41% more solutions than

http://professor.ufop.br/samuelbrito/thesis

Diving Heuristics 84

the other heuristics. In each iteration of this heuristic, when the fractional variables
have only trivial conflicts, the variable selection strategy of Linesearch was performed
and contributed to generate feasible solutions for several instances. On the other hand,
when the fractional variables also have non-trivial conflicts, the variable selection strat-
egy that considers the modified degree was executed and could guide the heuristic in the
process of finding feasible solutions. Even though this heuristic does not consider the

objective coefficient of the variables, it found the best solutions for 83 instances.

The number of feasible solutions obtained by Conflict Diving is slightly less than
Linesearch Diving. For some instances, selecting the variables with the highest degrees

generated infeasibilities in the early diving iterations.

Conflict Diving and Modified Degree Diving obtained the best execution times. In
instances with dense conflict graphs, performing a conflict propagation after changing the
bound of a variable can considerably reduce the number of diving iterations, decreasing
the running time of the heuristics. In addition, choosing the most conflicting variable
can generate infeasibilities in the first diving iterations. These results corroborate with
the idea that taking the most critical decisions first is a good strategy for solving MILP
models (Berthold, 2014).

The relation between the number instances where a feasible solution was found and
the execution time of the heuristics is presented in Figure 7.1. In this figure it is possible
to observe that Modified Degree Diving generated a greater number of feasible solutions,

spending smaller execution times when compared with the other diving heuristics.

Most of the feasible solutions found by the diving heuristics were discovered in the
earlier execution times. For example, the feasible solutions for 125 of 150 instances found

by Modified Degree diving were generated in less than 100 seconds.

As the results show, the conflict-based diving heuristics proved to be reasonable
algorithms to find feasible solutions. Hence, they can be inserted into a MILP solver to

provide initial solutions after running the branch-and-cut algorithm.

7.3 Conclusion

We have shown in this chapter two diving heuristics that use information from conflict
graphs to generate feasible solutions for MILP models. These heuristics employ the

concept of fail fast strategy, first adjusting the bounds of the variables that are more

Diving Heuristics 85

+

Coef 44444

frac

”ne

vect oo

conf o
mdeg

X

*

feasible solutions

4 5 6 7 8 9 10
time (x 103 seconds)

Figure 7.1: Number of feasible solutions found by each diving heuristic over the time.

likely to cause infeasibilities. Both proposed diving heuristics presented execution times
smaller than the classical diving heuristics that we evaluated in our experiments. More-
over, the heuristic that uses the modified degree in its variable selection strategy found

the greatest number of feasible solutions among the diving heuristics evaluated.

Chapter 8
Final Considerations

This thesis presented conflict graph-based algorithms for Mixed-Integer Linear Program-
ming problems. We developed a conflict graph infrastructure, characterized by the ef-
ficient construction and storage of such graphs. Our algorithm for building conflict
graphs is an improved version of a state-of-the-art conflict detection algorithm that
extracts cliques from MILP model constraints. We included an additional step in this
algorithm that detects additional maximal cliques without changing the worst-case com-
plexity. Optimized data structures that selectively store conflicts pairwise or grouped
in cliques were also developed. Our conflict graph infrastructure was able to construct

graphs even for instances with a large number of conflicts.

Conflict graphs were then used in the implementation of a preprocessing algorithm
and two cut separators. The preprocessing algorithm is based on a clique merging pro-
cedure that combines several set packing constraints into a single constraint. Significant
improvements with respect to the dual bounds of the problems were obtained, especially
for MILP models with several constraints expressed by a small number of conflicting
variables. Our preprocessing routine was responsible for reducing the number of con-
straints, strengthening the initial dual bounds and for accelerating the process of proving

optimality for a great number of instances.

The two conflict-based cut separators that we developed are responsible for separating
cliques and odd cycles. Our clique cut separator obtained better dual bounds than
those provided by the equivalent cut generators of CBC, GLPK and CPLEX solvers.
As previous works shows, the inclusion of odd cycle cuts had no significant impact on

the dual bound improvement. However, the cost for separating these cuts is low, which

86

Final Considerations 87

means that it can be included in a cutting plane strategy without a significant increase

in execution time.

A new version of the CBC solver was generated, including our conflict graph infras-
tructure, preprocessing routine and cut separators. Experiments with this new version
revealed an improvement in the average gap closed of 16.88% in comparison to the pre-
vious version of the CBC solver. Furthermore, time spent to prove optimality for the
instances decreased, while the number of instances solved increased from 102 to 126. For
instance sets containing MILP models of Bin Packing with Conflicts, Nurse Rostering,
Bandwidth Multicoloring and Educational Timetabling, the average gap closed by the

new version of CBC was up to four times better than its previous version.

Two conflict-based diving heuristics were also proposed and developed in this thesis.
These heuristics tend to select first the variables that are most likely to produce infeasi-
bilities. One heuristic considers the degree and the other uses the modified degree of the
variables at the conflict graph. Both diving heuristics presented execution times smaller
than the classical diving heuristics that we compared in our experiments. Moreover,
the heuristic that uses the modified degree in its variable selection strategy found the

greatest number of feasible solutions among those considered in the experiments.

8.1 Further Research

Regarding the construction and use of conflict graphs explored in this thesis, some

aspects may be further investigated:

e the number of conflicts in the graphs could be augmented by using constraint

propagation techniques;

e other exact algorithms and heuristics could be employed to develop new clique cut
separation routines, in order to compare them with the performance of the BK

algorithm;

e conflict graphs could be used to strengthen other families of cuts, such as knapsack

inequalities;

e machine learning techniques could be used to decide when to activate or deactivate
the preprocessing and cut separators since for some cases they cannot improve dual

bounds;

Final Considerations 88

e node selection strategies based on the conflict graphs could be designed, in order

to accelerate the process of solving MILP models;

e machine learning techniques could be used to choose the best diving heuristic for

a given problem;

e logical relations of conflict graphs could be used to develop improvement heuristics;
these heuristics could be performed during some steps of branch-and-cut in order

to improve the incumbent solution.

Bibliography

Achterberg, T.: 2007, Constraint Integer Programming, PhD thesis, Technische Univer-
sitat Berlin, Berlin, Germany.

Achterberg, T., Bixby, R. E., Gu, Z., Rothberg, E. and Weninger, D.: 2016, Presolve re-
ductions in mixed integer programming, Technical Report 16-44, Zuse Institute Berlin,
Berlin.

Achterberg, T. and Wunderling, R.: 2013, Mixed integer programming: Analyzing
12 years of progress, Facets of Combinatorial Optimization: Festschrift for Martin
Grétschel, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 449-481.

Ahuja, R. K., Ozlem Ergun, Orlin, J. B. and Punnen, A. P.: 2002, A survey of very
large-scale neighborhood search techniques, Discrete Applied Mathematics 123(1), 75
- 102.

Applegate, D. L., Bixby, R. E.; Chvatal, V. and Cook, W. J.: 2006, The traveling
salesman problem: a computational study, Princeton university press.

Araujo, J. A., Santos, H. G., Gendron, B., Jena, S. D., Brito, S. S. and Souza, D. S.:
2020, Strong bounds for resource constrained project scheduling: Preprocessing and
cutting planes, Computers & Operations Research 113, 104782.

Atamtiirk, A., Nemhauser, G. L. and Savelsbergh, M. W.: 2000, Conflict graphs in
solving integer programming problems, Furopean Journal of Operational Research
121(1), 40 — 55.

Back, T., Fogel, D. B. and Michalewicz, Z.: 1997, Handbook of evolutionary computation,
CRC Press.

Balas, E., Ceria, S., Dawande, M., Margot, F. and Pataki, G.: 2001, Octane: A new
heuristic for pure 01 programs, Operations Research 49(2), 207-225.

Belotti, P., Lee, J., Liberti, L., Margot, F. and Wichter, A.: 2009, Branching and bounds
tightening techniques for non-convex minlp, Optimization Methods and Software 24(4-
5), b97-634.

Berthold, T.: 2006, Primal heuristics for mized integer programs, diploma thesis, Tech-
nische Universitat Berlin, Berlin, Germany.

89

BIBLIOGRAPHY 90

Berthold, T.: 2008, Heuristics of the branch-cut-and-price-framework scip, Operations
Research Proceedings 2007, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 31-36.

Berthold, T.: 2014, Heuristic algorithms in global MINLP solvers, PhD thesis, Technis-
che Universitat Berlin, Berlin, Germany.

Bixby, R. E. and Lee, E. K.: 1998, Solving a truck dispatching scheduling problem using
branch-and-cut, Operations Research 46(3), 355-367.

Bixby, R. and Rothberg, E.: 2007, Progress in computational mixed integer
programming—a look back from the other side of the tipping point, Annals of Oper-
ations Research 149(1), 37-41.

Bonami, P., Biegler, L. T., Conn, A. R., Cornuéjols, G., Grossmann, I. E., Laird,
C. D., Lee, J., Lodi, A., Margot, F., Sawaya, N. and Wachter, A.: 2008, An algorith-
mic framework for convex mixed integer nonlinear programs, Discrete Optimization
5(2), 186-204.

Borndorfer, R.: 1998, Aspects of Set Packing, Partitioning, and Covering, PhD thesis,
Technische Universitat Berlin, Berlin, Germany.

Boschetti, M. A., Maniezzo, V., Roffilli, M. and Bolufé Rohler, A.: 2009, Matheuristics:
Optimization, simulation and control, in M. J. Blesa, C. Blum, L. Di Gaspero, A. Roli,
M. Sampels and A. Schaerf (eds), Hybrid Metaheuristics, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 171-177.

Brearley, A. L., Mitra, G. and Williams, H. P.: 1975, Analysis of mathematical program-
ming problems prior to applying the simplex algorithm, Mathematical Programming
8(1), H4-83.

Brito, S. S.: 2015, Conflict graphs: Construction and applications in integer program-
ming problems (in portuguese), Master’s thesis, Universidade Federal de Ouro Preto,
Ouro Preto, Brazil.

Bron, C. and Kerbosch, J.: 1973, Algorithm 457: finding all cliques of an undirected
graph, Commun. ACM 16(9), 575-577.

Burke, E. K., Mare¢ek, J., Parkes, A. J. and Rudova, H.: 2012, A branch-and-cut
procedure for the udine course timetabling problem, Annals of Operations Research
194(1), 71-87.

Cornuéjols, G.: 2007, Revival of the gomory cuts in the 1990’s, Annals of Operations
Research 149(1), 63-66.

Danna, E., Rothberg, E. and Pape, C. L.: 2005, Exploring relaxation induced neighbor-
hoods to improve mip solutions, Mathematical Programming 102(1), 71-90.

Dias, B., de Freitas, R., Maculan, N. and Michelon, P.: 2016, Constraint and integer
programming models for bandwidth coloring and multicoloring in graphs, Proceedings
of the XLVIII Brazilian Symposium on Operations Research, pp. 4116-4127.

BIBLIOGRAPHY 91

Fischetti, M., Glover, F. and Lodi, A.: 2005, The feasibility pump, Mathematical Pro-
gramming 104(1), 91-104.

Fischetti, M. and Lodi, A.: 2003, Local branching, Mathematical Programming
98(1), 23-47.

Fischetti, M. and Lodi, A.: 2007, Optimizing over the first chvatal closure, Mathematical
Programming B 110(1), 3-20.

Fischetti, M. and Lodi, A.: 2011, Heuristics in mixed integer programming, Wiley En-
cyclopedia of Operations Research and Management Science, Vol. 8, John Wiley &
Somns, pp. 738-747.

Fonseca, G. H., Santos, H. G., Carrano, E. G. and Stidsen, T. J.: 2017, Integer pro-
gramming techniques for educational timetabling, Furopean Journal of Operational
Research 262(1), 28 — 39.

Gamrath, G., Koch, T., Martin, A., Miltenberger, M. and Weninger, D.: 2015, Progress
in presolving for mixed integer programming, Mathematical Programming Computa-

tion 7(4), 367-398.

Garey, M. R. and Johnson, D. S.: 1979, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman & Co., New York.

Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M., Berthold, T.,
Christophel, P., Jarck, K., Koch, T., Linderoth, J., Liibbecke, M., Mittelmann, H. D.,
Ozyurt, D., Ralphs, T. K., Salvagnin, D. and Shinano, Y.: 2018, MIPLIB 2017.
http://miplib.zib.de.

Glover, F. and Laguna, M.: 1997a, General purpose heuristics for integer programming—
part i, Journal of Heuristics 2(4), 343-358.

Glover, F. and Laguna, M.: 1997b, General purpose heuristics for integer programming—
part ii, Journal of Heuristics 3(2), 161-179.

Glover, F. and Laguna, M.: 1998, Tabu Search, Springer US, Boston, MA, pp. 2093—
2229.

Gongalves, L. C. N. 1. and Santos, H. G.: 2008, Optimization in mass higher education
institutions: a tactical approach using aps concepts (in portuguese), Anais do XLIIT
Simpdsio Brasileiro de Pesquisa Operacional, pp. 692—703.

Grotschel, M., Lovasz, L. and Schrijver, A.: 1993, Geometric Algorithms and Combina-
torial Optimization, Springer.

Hansen, P. and Mladenovi¢, N.: 1999, An Introduction to Variable Neighborhood Search,
Springer US, Boston, MA, pp. 433-458.

http://miplib.zib.de

BIBLIOGRAPHY 92

Hansen, P., Mladenovi¢, N. and Urosevi¢, D.: 2006, Variable neighborhood search and
local branching, Computers & Operations Research 33(10), 3034 — 3045. Part Special
Issue: Constraint Programming.

Haspeslagh, S., De Causmaecker, P., Schaerf, A. and Stglevik, M.: 2014, The first inter-
national nurse rostering competition 2010, Annals of Operations Research 218(1), 221—
236.

Hoffman, K. and Padberg, M.: 1993, Solving airline crew scheduling problems by branch-
and-cut, Management Science 39(6), 657-682.

Johnson, E. L. and Nemhauser, G. L.: 1992, Recent developments and future directions
in mathematical programming, IBM Systems Journal 31(1), 79-93.

Jiinger, M., Liebling, T. M., Naddef, D., Nemhauser, G. L.., Pulleyblank, W. R.., Reinelt,
G., Rinaldi, G. and Wolsey, L. A.: 2009, 50 Years of integer programming 1958-2008:
From the early years to the state-of-the-art, Springer Science & Business Media.

Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P.: 1983, Optimization by simulated
annealing, Science 220(4598), 671-680.

Kolliopoulos, S. G. and Young, N. E.: 2005, Approximation algorithms for cover-
ing /packing integer programs, Journal of Computer and System Sciences 71(4), 495
— 505.

Land, A. H. and Doig, A. G.: 1960, An automatic method of solving discrete program-
ming problems, Econometrica: Journal of the Econometric Society pp. 497-520.

Lawler, E. L. and Wood, D. E.: 1966, Branch-and-bound methods: A survey, Operations
Research 14(4), 699-719.

Lenstra, J. K., Shmoys, D. B. and Tardos, E.: 1990, Approximation algorithms for
scheduling unrelated parallel machines, Mathematical programming 46(1-3), 259-271.

Lokketangen, A. and Glover, F.: 1998, Solving zero-one mixed integer programming
problems using tabu search, European Journal of Operational Research 106(2), 624 —
658.

Méndez-Diaz, 1. and Zabala, P.: 2008, A cutting plane algorithm for graph coloring,
Discrete Applied Mathematics 156, 159-179.

Mészaros, C. and Suhl, U. H.: 2003, Advanced preprocessing techniques for linear and
quadratic programming, OR Spectrum 25(4), 575-595.

Orlowski, S., Wessily, R., Pioro, M. and Tomaszewski, A.: 2010, Sndlib 1.0 survivable
network design library, Networks 55(3), 276-286.

Padberg, M.: 1973, On the facial structure of set packing polyhedra, Mathematical
Programming 5(1), 199-215.

BIBLIOGRAPHY 93

Pecin, D., Pessoa, A., Poggi, M. and Uchoa, E.: 2017, Improved branch-cut-and-price for
capacitated vehicle routing, Mathematical Programming Computation 9(1), 61-100.

Pochet, Y. and Wolsey, L. A.: 2006, Production planning by mized integer programming,
Springer Science & Business Media.

Rebennack, S.: 2009, Stable set problem: Branch & cut algorithms, in C. A. Floudas
and P. M. Pardalos (eds), Encyclopedia of Optimization, Springer US, pp. 3676-3688.

Rossi, F., Van Beek, P. and Walsh, T.: 2006, Handbook of constraint programming,
Elsevier.

Rossi, R. A. and Zhou, R.: 2018, Graphzip: a clique-based sparse graph compression
method, Journal of Big Data 5(1), 10.

Sadykov, R. and Vanderbeck, F.: 2013, Bin packing with conflicts: A generic branch-
and-price algorithm, INFORMS Journal on Computing 25(2), 244-255.

Santos, H. G., Toffolo, T. A. M., Gomes, R. A. M. and Ribas, S.: 2016, Integer pro-
gramming techniques for the nurse rostering problem, Annals of Operations Research
239(1), 225-251.

Savelsbergh, M. W. P.: 1994, Preprocessing and probing techniques for mixed integer
programming problems, ORSA Journal on Computing 6(4), 445-454.

Segundo, P. S., Artieda, J. and Strash, D.: 2018, Efficiently enumerating all maximal
cliques with bit-parallelism, Computers € Operations Research 92, 37-46.

Tomita, E., Tanaka, A. and Takahashi, H.: 2006, The worst-case time complexity for
generating all maximal cliques and computational experiments, Theoretical Computer
Science 363(1), 28 — 42. Computing and Combinatorics.

Toth, P. and Vigo, D.: 2002, An OQuverview of Vehicle Routing Problems, Society for
Industrial and Applied Mathematics, pp. 1-26.

Van Roy, T. J. and Wolsey, L. A.: 1987, Solving mixed integer programming problems
using automatic reformulation, Operations Research 35(1), 45-57.

Witzig, J. and Gleixner, A.: 2019, Conflict-driven heuristics for mixed integer program-
ming, Technical Report 19-08, Zuse Institute Berlin, Berlin, Germany.

Xu, J., Li, M., Kim, D. and Xu, Y.: 2003, Raptor: Optimal protein threading by linear
programming, Journal of Bioinformatics and Computational Biology 01(01), 95-117.

Appendix A

Detailed Results of the

Computational Experiments

Table A.1 presents the characteristics of the mixed-integer linear programs used in the
computational experiments. Columns “set” and “cols” present the instance set and the
number of variables of each instance, respectively. Columns “int”, “bin” and “con” con-
tain the number of integer, binary and continuous variables of each problem instance.
Columns “rows” and “nz” detail information with respect to the number of constraints
and nonzeros coefficients of each instance. Finally, column “cg,” presents the density of

the conflict graph constructed by our algorithm for each instance.

Table A.1: Instance set characteristics.

name set cols int bin con rows nz cgp (X100)
30n20b8 miplib 18,380 62 18,318 0 576 109,706 0.85
50v-10 miplib 2,013 183 1,464 366 233 2,745 0.03
air03 miplib 10,757 0 10,757 0 124 91,028 13.87
air04 miplib 8,004 0 8,904 0 823 72,065 1.34
air05 miplib 7,195 0 7,195 0 426 52,121 2.44
appl-1 miplib 2,480 0 1,225 1,255 4,926 18,275 0.04
appl-2 miplib 26,871 0 13,300 13,571 53,467 199,175 0.00
assignl-5-8 miplib 156 0 130 26 161 3,720 1.16
atlanta-ip miplib 48,738 106 46,667 1,965 21,732 257,532 0.00
blclsl miplib 3,872 0 288 3,584 3,904 11,408 0.17
babl miplib 61,152 0 61,152 0 60,680 854,392 0.08
bab2 miplib 147,912 0 | 147,912 0 17,245 2,027,726 0.00
bab3 miplib 393,800 0 393,800 0 23,069 3,301,838 0.01
babb miplib 21,600 0 21,600 0 4,964 155,520 0.03
bab6 miplib 114,240 0 | 114,240 0 29,904 1,283,181 0.00
beasleyC3 miplib 2,500 0 1,250 1,250 1,750 5,000 0.04
binkar10_ 1 miplib 2,298 0 170 2,128 1,026 4,496 0.29
blp-ar9s miplib 16,021 0 15,806 215 1,128 200,601 0.03

94

Detailed Results of the Computational Experiments 95
Table A.1: Instance set characteristics (continued).

name set cols int bin con rows nz cgp (X100)
blp-ico8 miplib 13,640 0 13,550 90 717 191,947 0.04
bnatt400 miplib 3,600 0 3,600 0 5,614 21,698 0.04
bppc4-08 miplib 1,456 0 1,454 2 111 23,964 1.29
brl timetabling 1,344 0 1,344 0 3,243 12,004 0.17
br2 timetabling 4,284 0 4,284 0 9,248 42,584 0.10
br3 timetabling 6,368 0 6,368 0 12,056 61,408 0.08
brs timetabling 19,468 0 19,468 0 28,981 221,123 0.11
brazil3 timetabling 23,968 94 23,874 0 14,646 133,184 0.06
chromaticindex1024-7 miplib 73,728 0 73,728 0 67,583 270,324 0.00
chromaticindex512-7 miplib 36,864 0 36,864 0 33,791 135,156 0.01
cmflsp50-24-8-8 miplib 16,392 0 1,392 15,000 3,520 158,622 0.07
CMS750_4 miplib 11,697 0 7,196 4,501 16,381 44,903 0.01
c0-100 miplib 48,417 0 48,417 0 2,187 1,995,817 6.26
cod105 miplib 1,024 0 1,024 0 1,024 57,344 9.45
compO07-2idx timetabling 17,264 109 17,155 0 21,235 86,577 0.01
comp?21-2idx timetabling 10,863 71 10,792 0 14,038 57,301 0.01
cost266-UUE miplib 4,161 0 171 3,990 1,446 12,312 0.59
csched007 miplib 1,758 0 1,457 301 351 6,379 0.64
csched008 miplib 1,536 0 1,284 252 351 5,687 0.61
cvs16r128-89 miplib 3,472 0 3,472 0 4,633 12,528 0.08
d_BPWC_2 4 10 bpwe 22,824 0 22,824 0 287,902 620,453 0.18
da_BPWC 2 8 6 bpwe 6,475 0 6,475 0 83,612 179,175 0.24
da_BPWC_2 8 9 bpwe 6,475 0 6,475 0 82,878 177,707 0.24
dano3_3 miplib 13,873 0 69 13,804 3,202 79,655 0.73
dano3_5 miplib 13,873 0 115 13,758 3,202 79,655 0.44
drayage-100-23 miplib 11,090 0 11,025 65 4,630 41,550 0.48
drayage-25-23 miplib 11,090 0 11,025 65 4,630 41,550 0.48
ds miplib 67,732 0 67,732 0 656 1,024,059 3.44
dws008-01 miplib 11,096 0 6,608 4,488 6,064 56,400 0.26
eil33-2 miplib 4,516 0 4,516 0 32 44,243 23.62
eilA101-2 miplib 65,832 0 65,832 0 100 959,373 20.90
€ilAT6 miplib 1,422 0 1,422 0 75 10,967 11.60
eilB101 miplib 2,818 0 2,818 0 100 24,120 12.87
eilB101.2 miplib 53,444 0 53,444 0 100 577,946 17.39
€ilB76 miplib 1,060 0 1,060 0 75 6,296 8.15
€ilC76 miplib 1,644 0 1,644 0 75 14,673 13.40
eilC76.2 miplib 28,599 0 28,599 0 75 314,837 18.38
eilD76 miplib 1,898 0 1,898 0 75 19,111 15.02
eilD76.2 miplib 30,588 0 30,588 0 75 381,749 20.08
enlight hard miplib 200 100 100 0 100 560 0.50
exp-1-500-5-5 miplib 990 0 250 740 550 1,980 0.60
fast0507 miplib 63,009 0 63,009 0 507 409,349 0.00
fastxgemm-n2r6s0t2 miplib 784 0 48 736 5,998 19,376 1.05
fiball miplib 34,219 258 33,960 1 3,707 104,792 0.02
germanrr miplib 10,813 5,251 5,323 239 10,779 175,547 0.01
glass-sc miplib 214 0 214 0 6,119 63,918 0.23
glass4 miplib 322 0 302 20 396 1,815 0.80
gmu-35-40 miplib 1,205 0 1,200 5 424 4,843 0.41
gmu-35-50 miplib 1,919 0 1,914 5 435 8,643 0.46
graph20-20-1rand miplib 2,183 0 2,183 0 5,587 19,277 0.30
graphdraw-domain miplib 254 20 180 54 865 2,600 0.70
h80x6320d miplib 12,640 0 6,320 6,320 6,558 31,521 0.32
hypothyroid-k1 miplib 2,602 1 2,601 0 5,195 433,884 0.84
ic97 _potential miplib 728 73 450 205 1,046 3,138 0.11

Detailed Results of the Computational Experiments 96
Table A.1: Instance set characteristics (continued).

name set cols int bin con rows nz cgp (X100)
icir97_tension miplib 2,494 573 262 1,659 1,203 22,333 0.19
irish-electricity miplib 61,728 0 9,888 51,840 104,259 523,257 0.01
irp miplib 20,315 0 20,315 0 39 98,254 14.05
istanbul-no-cutoff miplib 5,282 0 30 5,252 20,346 71,477 6.33
klmushroom miplib 8,211 1 8,210 0 16,419 1,697,946 0.42
kellerdcpart miplib 9,606 0 9,606 0 327,198 663,660 0.30
kellerdcpartpp miplib 9,601 0 9,601 0 41,648 386,003 0.30
1152lav miplib 1,989 0 1,989 0 97 9,922 3.24
lectsched-5-obj miplib 21,805 416 21,389 0 38,884 239,608 0.00
leol miplib 6,731 0 6,730 1 593 131,218 0.08
leo2 miplib 11,100 0 11,099 1 593 219,959 0.08
long_early01 rostering 52,729 0 52,729 0 17,241 1,012,492 0.23
long_early02 rostering 52,803 0 52,803 0 17,241 1,012,566 0.22
long_hidden0O1 rostering 63,205 0 63,205 0 28,370 1,065,275 0.16
long_hidden02 rostering 63,205 0 63,205 0 28,370 1,065,275 0.16
long_late01 rostering 63,005 0 63,005 0 27,875 1,063,670 0.16
long_late02 rostering 63,005 0 63,005 0 27,875 1,063,670 0.16
long_late04 rostering 63,005 0 63,005 0 27,875 1,063,670 0.16
lotsize miplib 2,985 0 1,195 1,790 1,920 6,565 0.08
mad miplib 220 0 200 20 51 2,808 1.62
maplO miplib 164,547 0 146 164,401 328,818 549,920 0.34
mapl6715-04 miplib 164,547 0 146 164,401 328,818 549,920 0.34
markshare_4_0 miplib 34 0 30 4 4 123 1.69
markshare2 miplib 74 0 60 14 7 434 0.84
mas74 miplib 151 0 150 1 13 1,706 0.33
mas76 miplib 151 0 150 1 12 1,640 0.33
mell miplib 3,040 0 1,520 1,520 1,920 6,080 0.03
mesched miplib 1,747 0 1,745 2 2,107 8,088 0.09
medium __early02 rostering 30,309 0 30,309 0 8,668 622,471 0.42
medium__hidden01 rostering 37,415 0 37,415 0 16,070 635,725 0.27
medium _hidden02 rostering 37,415 0 37,415 0 16,070 635,725 0.27
medium _hidden05 rostering 37,415 0 37,415 0 16,070 635,725 0.27
medium_ late01 rostering 34,850 0 34,850 0 14,062 623,360 0.31
medium_ late02 rostering 34,814 0 34,814 0 14,062 623,352 0.31
medium _late03 rostering 29,486 0 29,486 0 8,872 603,434 0.43
mik-250-20-75-4 miplib 270 175 75 20 195 9,270 0.67
milo-v12-6-r2-40-1 miplib 2,688 0 840 1,848 5,628 14,604 0.10
momentuml miplib 5,174 0 2,349 2,825 42,680 103,198 0.49
mushroom-best miplib 8,468 118 8,237 113 8,580 188,735 0.01
mzzvll miplib 10,240 251 9,989 0 9,499 134,603 0.13
mzzv42z miplib 11,717 235 11,482 0 10,460 151,261 0.08
n2seq36q miplib 22,480 0 22,480 0 2,565 183,292 1.02
n3div36 miplib 22,120 0 22,120 0 4,484 340,740 0.01
neos-1281048 miplib 739 0 739 0 522 8,808 1.07
neos-1354092 miplib 13,702 420 13,282 0 3,135 187,187 0.02
neos-1445765 miplib 20,617 0 2,150 18,467 2,147 40,230 0.02
neos-1456979 miplib 4,605 180 4,245 180 6,770 36,440 0.76
neos-1582420 miplib 10,100 100 10,000 0 10,180 24,814 0.01
neos-1595230 miplib 490 0 490 0 1,750 3,885 1.03
neos-1599274 miplib 4,500 0 4,500 0 1,237 46,800 0.58
neos-1620770 miplib 792 0 792 0 9,296 19,292 1.45
neos-1620807 miplib 231 0 231 0 1,340 2,860 2.49
neos-1622252 miplib 828 0 828 0 9,695 20,125 1.41
neos-2657525-crna miplib 524 378 146 0 342 1,690 0.68

Detailed Results of the Computational Experiments 97
Table A.1: Instance set characteristics (continued).

name set cols int bin con rows nz cgp (X100)
neos-2746589-doon miplib 50,936 224 50,704 8 31,530 271,072 0.10
neos-2978193-inde miplib 20,800 0 64 20,736 396 41,600 0.79
neos-2987310-joes miplib 27,837 0 3,051 24,786 29,015 580,291 0.03
neos-3046615-murg miplib 274 16 240 18 498 1,266 0.42
neos-3216931-puriri miplib 3,555 0 3,268 287 5,989 91,691 0.50
neos-3381206-awhea miplib 2,375 1,900 475 0 479 4,275 0.11
neos-3402294-bobin miplib 2,904 0 2,616 288 591,076 2,034,888 0.14
neos-3555904-turama miplib 37,461 0 37,461 0 146,493 793,605 0.73
neos-3627168-kasai miplib 1,462 0 535 927 1,655 5,158 0.09
neos-3656078-kumeu miplib 14,870 4,455 9,755 660 17,656 59,292 0.02
neos-3754480-nidda miplib 253 0 50 203 402 1,488 1.01
neos-4300652-rahue miplib 33,003 0 20,900 12,103 76,992 183,616 0.00
1e0s-4338804-snowy miplib 1,344 42 1,260 42 1,701 6,342 0.04
neos-4387871-tavua miplib 4,004 0 2,000 2,004 4,554 23,496 0.13
neos-4413714-turia miplib 190,402 0 190,201 201 2,303 761,756 0.03
neos-4532248-waihi miplib 86,842 0 86,841 1 167,322 525,339 0.16
1neos-4647030-tutaki miplib 12,600 0 7,000 5,600 8,382 3,953,388 0.02
neos-4722843-widden miplib 77,723 20 73,349 4,354 113,555 311,529 0.00
neos-4738912-atrato miplib 6,216 5,096 1,120 0 1,947 19,521 0.06
neos-4763324-toguru miplib 53,593 0 53,592 1 106,954 266,805 0.11
neos-4954672-berkel miplib 1,533 0 630 903 1,848 8,007 0.08
neos-5049753-cuanza miplib 242,736 0 8,304 234,432 322,248 1,440,672 0.01
neos-5052403-cygnet miplib 32,868 0 32,868 0 38,268 4,898,304 0.00
neos-5093327-huahum miplib 40,640 0 64 40,576 51,840 784,768 0.79
neos-5104907-jarama miplib 345,856 0 9,520 336,336 489,818 2,053,548 0.01
neos-5107597-kakapo miplib 3,114 0 2,976 138 6,498 19,392 0.02
neos-5114902-kasavu miplib 710,164 0 14,560 | 695,604 961,170 4,240,376 0.01
neos-5188808-nattai miplib 14,544 0 288 14,256 29,452 133,686 0.55
neos-5195221-niemur miplib 14,546 0 9,792 4,754 42,256 176,586 0.02
neos-565815 miplib 1,276 0 1,276 0 15,413 124,071 2.44
neos-611135 miplib 6,400 0 6,400 0 5,277 769,300 3.06
neos-631694 miplib 3,725 0 3,725 0 3,996 18,523 0.71
neos-631709 miplib 45,150 0 45,150 0 46,496 225,148 0.23
neos-631710 miplib 167,056 0 167,056 0 169,576 834,166 0.12
neos-631784 miplib 22,725 0 22,725 0 23,996 113,023 0.39
neos-662469 miplib 18,235 328 17,907 0 1,085 200,055 0.19
neos-785899 miplib 1,320 0 1,320 0 1,653 17,180 1.26
neos-787933 miplib 236,376 0 236,376 0 1,897 298,320 0.00
neos-791021 miplib 9,448 0 9,448 0 3,694 29,708 0.14
neos-799838 miplib 20,844 0 20,844 0 5,976 57,888 0.03
neos-808214 miplib 1,308 0 1,308 0 640 22,530 1.21
neos-825075 miplib 800 0 800 0 328 5,480 0.92
neos-848589 miplib 550,539 0 747 | 549,792 1,484 1,101,078 0.07
neos-860300 miplib 1,385 0 1,384 1 850 384,329 5.23
neos-873061 miplib 175,288 0 87,644 87,644 93,360 350,576 0.00
neos-905856 miplib 686 0 686 0 403 6,601 1.43
neos-911970 miplib 888 0 840 48 107 3,408 0.74
neos-912023 miplib 686 0 686 0 623 14,728 1.52
neos-931538 miplib 7,920 0 7,920 0 5,964 33,480 0.10
neos-934531 miplib 1,082 0 1,082 0 47,078 136,119 2.06
neos-948346 miplib 57,855 0 57,855 0 1,570 540,443 0.20
neos-950242 miplib 5,760 240 5,520 0 34,224 104,160 0.08
neos-957323 miplib 57,756 0 57,756 0 3,757 499,656 0.19
neosl miplib 2,112 0 2,112 0 5,020 21,312 0.17

Detailed Results of the Computational Experiments 98
Table A.1: Instance set characteristics (continued).

name set cols int bin con rows nz cgp (X100)
neosl7 miplib 535 0 300 235 486 4,931 0.17
neosl18 miplib 3,312 0 3,312 0 11,402 24,614 0.04
neosb miplib 63 0 53 10 63 2,016 0.95
neos8 miplib 23,228 4 23,224 0 46,324 313,180 0.01
net12 miplib 14,115 0 1,603 12,512 14,021 80,384 0.08
netdiversion miplib 129,180 0 129,180 0 119,589 615,282 0.00
nexp-150-20-8-5 miplib 20,115 0 17,880 2,235 4,620 42,465 0.01
ns1208400 miplib 2,883 0 2,880 3 4,289 81,746 0.61
ns1688347 miplib 2,685 0 2,685 0 4,191 66,908 3.23
ns1696083 miplib 7,982 0 7,982 0 11,063 384,129 2.47
ns1760995 miplib 17,956 0 17,822 134 615,388 1,854,012 0.38
ns1830653 miplib 1,629 0 1,458 171 2,932 100,933 0.95
ns894236 miplib 9,666 0 9,666 0 8,218 41,067 0.26
ns903616 miplib 21,582 0 21,582 0 18,052 91,641 0.21
nu25-prl2 miplib 5,868 36 5,832 0 2,313 17,712 0.01
nursesched-medium-hint03 rostering 34,248 78 34,170 0 14,062 622,800 0.32
nursesched-sprint02 rostering 10,250 20 10,230 0 3,522 204,000 1.20
nw04 miplib 87,482 0 87,482 0 36 636,666 22.12
opm?2-z10-s4 miplib 6,250 0 6,250 0 160,633 371,240 0.21
p0033 miplib 33 0 33 0 16 98 2.52
p0201 miplib 201 0 201 0 133 1,923 1.18
p0282 miplib 282 0 282 0 241 1,966 0.44
p0548 miplib 548 0 548 0 176 1,711 0.17
P1 bme 11,824 0 11,823 1 304,432 620,645 0.07
P2 bme 11,656 0 11,655 1 288,525 588,663 0.07
P200x1188c miplib 2,376 0 1,188 1,188 1,388 4,752 0.04
p2756 miplib 2,756 0 2,756 0 755 8,937 0.04
P3 bme 8,842 0 8,841 1 227,468 463,735 0.10
P4 bme 9,388 0 9,387 1 232,257 473,859 0.08
P5 bmec 8,317 0 8,316 1 213,918 436,110 0.10
P6 bme 7,582 0 7,581 1 187,451 382,441 0.11
p6b miplib 462 0 462 0 5,852 11,704 1.48
P7 bmec 23,668 0 23,667 1 610,120 1,243,865 0.04
P8 bme 11,824 0 11,823 1 304,432 620,645 0.07
P9 bme 47,356 0 47,355 1| 1,221,496 2,490,305 0.02
pb-simp-nonunif miplib 23,848 0 23,848 0 | 1,451,912 4,366,648 0.00
pdistuchoa miplib 500 0 500 0 26,314 52,628 5.37
Pg miplib 2,700 0 100 2,600 125 5,200 0.50
pg5_34 miplib 2,600 0 100 2,500 225 7,700 0.50
physiciansched3-3 miplib 79,555 0 72,141 7,414 266,227 1,062,479 0.00
physiciansched6-2 miplib 111,827 0 109,346 2,481 168,336 480,259 0.00
piperout-08 miplib 10,399 130 10,245 24 14,589 44,959 0.33
piperout-27 miplib 11,659 121 11,514 24 18,442 54,662 0.26
pkl miplib 86 0 55 31 45 915 0.92
proteindesignl121hz512p9 miplib 159,145 91 159,054 0 301 629,449 0.38
proteindesign122trx11p8 miplib 127,326 78 | 127,248 0 254 503,427 0.45
qapl0 miplib 4,150 0 4,150 0 1,820 18,200 0.23
radiationm18-12-05 miplib 40,623 11,247 14,688 14,688 40,935 96,149 0.01
radiationm40-10-02 miplib 172,013 47,213 62,400 62,400 173,603 406,825 0.00
railol miplib 117,527 0 | 117,527 0 46,843 392,086 0.00
railo2 miplib 270,869 0 | 270,869 0 95,791 756,228 0.00
rail507 miplib 63,019 0 63,009 10 509 468,878 0.00
ranl4x18-disj-8 miplib 504 0 252 252 447 10,277 0.20
rd-rplusc-21 miplib 622 0 457 165 125,899 852,384 2.83

Detailed Results of the Computational Experiments 99
Table A.1: Instance set characteristics (continued).

name set cols int bin con rows nz cgp (X100)
reblock115 miplib 1,150 0 1,150 0 4,735 13,724 0.22
reblock67 miplib 670 0 670 0 2,523 7,495 0.35
rmatr100-p10 miplib 7,359 0 100 7,259 7,260 21,877 0.50
rmatr200-p5 miplib 37,816 0 200 37,616 37,617 113,048 0.25
rocl-4-11 miplib 6,839 1,016 5,192 631 10,883 27,383 0.02
roclI-5-11 miplib 11,523 0 11,341 182 26,897 303,291 0.45
rococoB10-011000 miplib 4,456 136 4,320 0 1,667 16,517 0.02
rococoC10-001000 miplib 3,117 124 2,993 0 1,293 11,751 0.03
roi2alpha3n4 miplib 6,816 0 6,642 174 1,251 878,812 0.02
roisalphalOng8 miplib 106,150 0 105,950 200 4,665 2,370,224 0.00
roll3000 miplib 1,166 492 246 428 2,295 29,386 0.52
5100 miplib 364,417 0 | 364,417 0 14,733 1,777,917 0.96
$250r10 miplib 273,142 0 | 273,139 3 10,962 1,318,607 0.14
satellites2-40 miplib 35,378 0 34,324 1,054 20,916 283,668 0.01
satellites2-60-fs miplib 35,378 0 34,324 1,054 16,516 125,048 0.01
savschedl miplib 328,575 0 | 252,731 75,844 295,989 1,770,507 0.00
sct2 miplib 5,885 0 2,872 3,013 2,151 23,643 0.03
seymour miplib 1,372 0 1,372 0 4,944 33,549 0.04
seymourl miplib 1,372 0 451 921 4,944 33,549 0.15
sing326 miplib 55,156 0 40,010 15,146 50,781 268,173 0.01
sing44 miplib 59,708 0 43,524 16,184 54,745 281,260 0.01
snp-02-004-104 miplib 228,350 167 167 228,016 126,512 463,941 0.30
sorrell3 miplib 1,024 0 1,024 0 169,162 338,324 8.12
sp150x300d miplib 600 0 300 300 450 1,200 0.17
sp9T7ar miplib 14,101 0 14,101 0 1,761 290,968 0.03
sp98ar miplib 15,085 0 15,085 0 1,435 426,148 0.04
splicelkl miplib 3,253 1 3,252 0 6,505 1,761,016 2.69
sprint_early01 rostering 10,460 0 10,460 0 3,522 204,210 1.15
sprint__early02 rostering 10,458 0 10,458 0 3,522 204,208 1.15
sprint_hidden01 rostering 10,421 0 10,421 0 3,814 202,591 1.14
sprint_hidden02 rostering 10,421 0 10,421 0 3,814 202,591 1.14
sprint_late0l rostering 11,863 0 11,863 0 5,032 208,583 0.89
sprint_ late02 rostering 10,423 0 10,423 0 3,804 202,783 1.14
square4l miplib 62,234 37 62,197 0 40,160 13,566,426 11.03
squared? miplib 95,030 43 94,987 0 61,591 | 27,329,856 11.19
stdc6262p timetabling 16,415 0 16,415 0 27,334 95,471 0.01
supportcasel0 miplib 14,770 0 14,770 0 165,684 555,082 0.02
supportcasel8 miplib 13,410 0 13,410 0 240 28,920 0.29
supportcase26 miplib 436 0 396 40 870 2,492 0.13
supportcase33 miplib 20,203 101 20,102 0 20,489 211,915 0.36
supportcase40 miplib 16,440 0 2,000 14,440 38,192 104,420 0.26
supportcase6 miplib 130,052 1 | 130,051 0 771 584,976 5.61
supportcase? miplib 138,844 14 451 | 138,379 6,532 2,845,545 0.22
swathl miplib 6,805 0 2,306 4,499 884 34,965 0.02
swath3 miplib 6,805 0 2,706 4,099 884 34,965 0.02
t1717 miplib 73,885 0 73,885 0 551 325,689 0.64
1722 miplib 36,630 0 36,630 0 338 133,096 0.72
ta BPWC 5 5 5 bpwe 945 0 945 0 4,664 10,979 1.00
ta BPWC 5 7 1 bpwe 591 0 591 0 2,186 5,315 1.05
ta_ BPWC 5 7 _4 bpwe 591 0 591 0 2,290 5,523 1.05
ta_BPWC_6_9 8 bpwe 834 0 834 0 2,542 6,273 0.56
ta_ BPWC_7 1 8 bpwe 28,038 0 28,038 0 205,356 465,793 0.21
tbfp-network miplib 72,747 0 72,747 0 2,436 215,837 0.83
tELGN_BPWC_6_6_20 bpwe 1,645 0 1,645 0 4,980 12,771 0.84

Detailed Results of the Computational Experiments 100

Table A.1: Instance set characteristics (continued).

name set cols int bin con rows nz cgp (X100)
tELGN_BPWC_6_8_9 bpwe 918 0 918 0 1,569 4,495 0.99
tELGN_BPWC_7_6_16 bpwe 9,142 0 9,142 0 108,815 234,919 0.38
thor50dday miplib 106,261 0 53,131 53,130 53,360 212,060 0.00
timtabl miplib 397 94 7 226 171 829 0.65
tMIMT _BPPC_6_3_4 bpwe 5,899 0 5,899 0 26,108 63,535 0.46
tMIMT_BPPC_8 7 5 bpwe 21,816 0 21,816 0 332,209 706,047 0.24
tr12-30 miplib 1,080 0 360 720 750 2,508 0.14
traininstance2 miplib 12,890 2,602 5,278 5,010 15,603 41,531 1.14
traininstance6 miplib 10,218 2,056 4,154 4,008 12,309 32,785 1.48
trd445c timetabling 1,431 0 1,431 0 96,133 195,080 3.84
trdcrooms timetabling 174,915 170,303 4,612 0 338,305 1,176,743 0.02
trdncl8 timetabling 10,930 828 10,102 0 3,850 48,103 0.09
trdta0010 timetabling 5,759 121 5,638 0 6,367 29,756 0.31
trdta449 timetabling 14,741 1,293 13,448 0 23,268 73,966 0.03
trdta8265 timetabling 9,151 89 9,062 0 19,484 126,610 0.11
trdta99 timetabling 9,613 175 9,438 0 26,881 157,258 0.12
trdtatl9220 timetabling 5,778 177 5,601 0 9,378 40,800 0.12
trentol miplib 7,687 0 6,415 1,272 1,265 93,571 0.01
ua_ BPWC 1 8 10 bpwe 1,548 0 1,548 0 9,257 21,131 0.55
ua_BPWC_1 9 2 bpwe 834 0 834 0 2,663 6,515 0.55
uccasel2 miplib 62,529 0 9,072 53,457 121,161 419,447 0.01
uccase9 miplib 33,242 0 8,064 25,178 49,565 332,316 0.01
uct-subprob miplib 2,256 0 379 1,877 1,973 10,147 0.15
uELGN_BPWC_3_2_18 bpwe 114,957 0 114,957 0 1,348,796 2,925,507 0.12
uELGN_BPWC_3 9 18 bpwe 3,638 0 3,638 0 9,337 23,951 0.55
uMIMT_BPPC_2 5 2 bpwe 15,185 0 15,185 0 192,758 414,887 0.33
uMIMT_BPPC_2 9 1 bpwe 1,388 0 1,388 0 2,696 7,169 0.88
uMIMT_BPPC_3_7_6 bpwe 20,725 0 20,725 0 260,763 560,977 0.28
unitcal 7 miplib 25,755 0 2,856 22,899 48,939 127,595 0.02
var-smallemery-m6j6 miplib 5,608 0 5,606 2 13,416 850,621 0.03
wachplan miplib 3,361 1 3,360 0 1,553 89,361 0.35
wng-n100-mw99-14 miplib 10,000 0 10,000 0 656,900 1,333,400 0.33

Table A.2 presents the detailed results of the experiments with the new version of the
CBC solver. Configuration “cbc+cg” refers to the new version of CBC including all of
our routines, while “cbc” represents the previous version of this solver. Configuration “-
{clgstr}” represents the new version of CBC without performing our clique strengthening
routine. Finally, configurations “-{bkclgext}’ and “-{oddw}” contain the results of the
execution of the new version of CBC without including our clique and odd-cycle cut

separators, respectively.

101

Detailed Results of the Computational Experiments

000°0080T @8GCL 000700801 18%°¢cL 000°0080T 98GGL 000°0080T @8GTL 000°0080T I8%°¢cl qrdra HNN-9953802
000°0080T 67079 00000801 6€1°09 000°0080T ¥eg€9 00000801 695799 000700801 T61°LS Surqejewry xprg-1gdwod
(AN 4474 000°00T 000°0080T 000°00T 0TL TE68 000°00T 0%0°T0S8 000°00T 000°0080T 000°00T Suriqejeury xpig-L0duwod
000°0080T L0G°LE 000°0080T 080°L¢ 000°0080T T61°LE 000°0080T €80°L¢ 000°0080T 6€C°LE qrdra S0TpPO°
000°0080T 89€°61 000°0080T 8L0°6T 000°0080T 8L0°61 000°0080T 9¢T"9% 000°0080T 19¥°¢t qrdru 001-02
000700801 000°0 000700801 000°0 000°0080T 000°0 00000801 000°0 000700801 00070 qrdiw v 0SLSIND
000°0080T 8¥6°0% 000°0080T 8760V 000°0080T 8V6°0% 000°0080T 8760V 000°0080T 8¥6°0% qrdru 8-8-¥¢-0gdsguo
000°0080T 000°0 000700801 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 00070 qrdiu LG TGXapumdrewoIyd
000°0080T 000°0 000700801 000°0 000°0080T 000°0 000°0080T 000°0 000700801 00070 qrdru L-pg0OTXepUdIRWOIYd
000°0080T Gev'96 000°0080T 606°06 000°0080T agev g6 000°0080T 000°00T 000°0080T ¥9€798 Suriqejeury glizeIq
000°0080T ¢gces 000°0080T €L2°C8 000°0080T VL1678 000°0080T c8geR 000°0080T £€00°08 Surqejeury €1q
000°0080T 6€6°€6 000°0080T 00826 000°0080T ov1°'76 000700801 16¢°€6 000°0080T 19€°16 Surqejawry €19
000°0080T 190718 00000801 800°18 000°0080T 870°c8 000°0080T 863°C8 000700801 6€7°18 Surqejewry c1q
000°0080T 697°L8 000°0080T T9L°08 000°0080T geT’L8 000°0080T €9T°L8 000°0080T 9T0°GL Suriqejeury 119
000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 00070 qudru 80-poddq
000°0080T 000°0 000700801 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 00070 qrdru 00¥733euq
000°0080T CLT 9L 00000801 CLT 9L 000°0080T CLG9L 00000801 CLT 9L 000700801 CLG 9L qrdrw 8601-d[q
000°0080T PIT°L8 000°0080T PIT'L8 000°0080T VITL8 000°0080T VIT'L8 000°0080T VIT' L8 qudrur g6re-diq
0C9'8TT 000°00T 09¢°0TT 000°00T 089°0TT 000°00T 0T9°9TT 000°00T 09€°LTT 000°00T qrdra 1~ oTIeuIq
000°0080T L01°98 000°0080T L0T"G8 000°0080T LOT g8 000700801 L0T°G8 000°0080T L0T g8 qrdru gD Aa1seaq
000°00801 cc8'c8 00000801 TLLT8 000°0080T gecres 00000801 YcL 98 000700801 0L€°28 qrdiw 99eq
000°0080T 116°¢6 000°0080T €99°69 000°0080T £99°69 000°0080T 116°€6 000°0080T £99°69 qudru gqeq
000°0080T ¥8L°€6 000°0080T cI8'69 000°0080T C¢I8°69 000°0080T ¥8L°€6 000°0080T ¢I8'69 qrdra £qeq
000°0080T 1S L8 000700801 QLT 18 000°0080T QLG 18 000°0080T 1¢e L8 000700801 QLG 18 qrdiu cqeq
000°0080T €09°99 000°0080T €09°¢9 000°0080T €09°99 000°0080T €09°99 000°0080T €09°99 qudrur Tq®q
000°0080T 88¢°09 000°0080T 88¢°09 000°0080T 88209 000°0080T 88¢°09 000°0080T 882°09 qrdra TsT219
000°0080T 686°0 000700801 016°0 000°0080T 9€6°0 000°0080T €0€°LT 000°0080T 44 qrdiu dr-ejuerje
000°0080T I81°¢¥ 000°0080T I8T°¢¥ 000°0080T I81°¢¥ 000°0080T I8T°¢¥ 000°0080T I8T°¢¥ qrdiu 8-g-Tussse
0€8°967¢ 000°00T 00g°TvS¢€ 000°00T 06¢°€cee 000°00T 08L°T€9¢€ 000°00T ove ecee 000°00T qudrur g-1dde
060°LT 000°00T 0S¥ 9T 000°00T oveLT 000°00T 06691 000°00T 020"LT 000°00T qrdra 1-1dde
0L0°7€ 000°00T 026°€c 000°00T 06¢°c¢ 000°00T 08L°7¢€ 000°00T oTL €ee 000°00T qrdiu goIre
069°€¢ 000°00T 097 ¥¥1 000°00T 0y8°€g 000°00T 0€0°8¢ 000°00T 07979 000°00T qrdru yoire
08¢°C 000°00T ovL'e 000°00T ove'e 000°00T 089°¢C 000°00T 0cT'T 000°00T qudrur €01
000°0080T T18°€9 000°0080T T18°€9 000°0080T T18°€9 000°0080T T18°€9 000°0080T T18°€9 qrdra 0T-20¢
000°0080T 069°€8 000700801 069°€8 000°0080T 069°€8 000°0080T 069°€8 000°0080T 069°€8 qrdru 890cu0€
s} posojo de8 swiry posoo de8 auwiy posoro de8 auwry posoo de8 auwr} posoro de8
{mppo}- {3xoboyq}- {a3sbro}- 804290 2q° dnoua8 |Sduejsur

"I9ATOS Jn)-pue-ypuelg HO-NIOD 29U} JO UOIINI\Xs 9] Jo SHNsaY 7'V 9[qel,

102

Detailed Results of the Computational Experiments

000°0080T 606°LL 000700801 60G°LL 000°0080T 60G°LL 000°0080T 60G°LL 000°0080T 60G°LL qrdru P02€9%¥08Y
000°0080T 6CL°16 000700801 086°68 000°0080T 800°¢6 00000801 ¢€9'16 000700801 196°88 qrdru urewop-meapydess
000°0080T LOT 6% 000°0080T L0T 6% 000°0080T LOT 6% 000°0080T LOT 6V 000°0080T LOT" 6V qudru pueir-0z-0gydels
000°0080T 28C0 000°0080T ¢8C0 000°0080T <820 000°0080T <8¢0 000°0080T <820 qrdra 0g-gg-nws
000°0080T L0T' 1T 000°0080T L0C°TT 000°0080T L0T'TT 000°0080T L0C'TT 000°0080T L0T'TT qrdru op-gg-nws
000700801 100°0¢ 000700801 100°0¢ 000°0080T 000°0¢ 00000801 000°0¢ 000700801 000°0¢ qrdiw psses
000°0080T 97¢°99 000°0080T 9¥€°99 000°0080T 9vE'G9 000°0080T 9v€°99 000°0080T il qrdru os-sse[8
000°0080T 8%0°L¢C 000°0080T @869 000°0080T L60°LC 000°0080T g0 Le 000°0080T 60T°LC qrdiu Jruewaas
06€°8¢8 000°00T 080°¢06 000°00T 0T€"G8L 000°00T 0LV vEL 000°00T 069778 000°00T qrdru eqy
000°0080T 861°C 000°0080T 68€°C 000°0080T 1¢v°¢C 000°0080T T¢¢'C 000°0080T L8E'C qudrur 210891 u-wwedx)sey
076°609T 000°00T 0C1°0G8T 000°00T 006°049T 000°00T 0€0'8LLT 000°00T 0L€79871 000°00T qrdru L0803s%j
000°0080T €8CGL 000°0080T €€T°GL 000°0080T €ee 6L 000700801 €8C°GL 000°0080T €ee gL qrdiu §-¢-00¢-T-dxa
000700801 000°0 000700801 000°0 000°0080T 000°0 000°0080T 000°0 000700801 00070 qrdru prey jySiue
000°0080T 8L0°T¢ 000°0080T 8C8°€C 000°0080T 8C8'EC 0¢ge'90¢€ 000°00T 000°0080T 8C8'ET qudrur ¢'9Ldrte
0L0°68T 000°00T V¥ vg 000°00T 090°'9T¢ 000°00T 08T1°9T¢ 000°00T 08T TCL 000°00T qudru 9.dite
080°CV¥T 000°00T 000700801 8¥0°€S 000°0080T 870°€¢ 08 LSVT 000°00T 000°0080T 870°€¢ qrdru ¢ 9LDT1
066°9¢ 000°00T 00998 0007001 0¢e’es 000°00T 0¢6°76 000°00T 02S°689 000°00T qrdrw 9LDI®
09%°9 000°00T 010" L 000°00T 086°9 000°00T 00¢°9 000°00T 0€1°9¢ 000°00T qudrur 9,41t
000°0080T 80¢°T9 000°0080T 80¢°T9 000°0080T 80¢°T9 000°0080T 9T€°0L 000°0080T 001709 qrdra c'1otdie
068°6€LT 000°00T 0€9°69% 000°00T 0€6°€8LT 000°00T 0€6°L961 000°00T 09S°6€¥7C 000°00T qrdru Totdie
04061 000°001 00€°vG 000°00T 08161 000°00T 0e8'81 000°00T 028°€€e 000°00T qrdru ILVI®
000°0080T ¢90°%C 000°0080T g98°0¢C 000°0080T €98°0¢ 09¢'8LV0T 000°00T 000°0080T €98°0¢ qudru ¢ 10TV
0T9'PET 000°00T 000°0080T 0gL’et 000°0080T 0gLet 0€9°L¢ 000°00T 000°0080T 0gLer qrdra ¢-gele
000°0080T <Ly oy 000700801 cLy oy 000°0080T cLy oy 000°0080T cLy OV 000700801 cLyv oy qrdiu T0-800sMp
000°0080T 1ce’t 000°0080T 009°1T 000°0080T 12e°T 000°0080T 1ce’T 000°0080T 62€°0 qudrur sp
000°0080T L16°66 000°0080T L16°66 000°0080T L16°66 000°0080T LT6°66 000°0080T L1666 qrdra €g-gg-ofederp
0€0°8¥% 000°00T 08¢°G¢ 000°00T 0cL Ly 000°00T 069°8% 000°00T 097" LY 000°00T qrdiu £2-00T-98eAeIp
006" 1701 000°00T 079°8c0T 000°00T 0L1°120T 000°00T 0TS¢ L10T 000°00T 09L°8TTT 000°00T qrdiu g gouep
080°TS¢ 000°00T 0cL'18¢ 000°00T 028°08¢ 000°00T 0CSe'8¢¢ 000°00T 067°0¢¢€ 000°00T qudrur ¢ gouep
000°0080T 9TL 9¢ 000°0080T 897°0 000°0080T T0L'9¢ 000°0080T €CL 9% 000°0080T ¢60°T Suppoedurq 6 8 & pmdd ep
000°0080T 8E€T'8G 000700801 €cl'e 000°0080T 6€€°8¢ 000°0080T GLE 8¢S 000°0080T 1544 Suppredurq 9 8 ¢ OMdJI ®P
01€°08 000°00T 000700801 001°¢8 0€G°L0V1 000°00T 068°08 000°00T 000700801 100°0 Suppedurq 0T ¥ ¢ OMdd P
000°0080T 898°8¢C 000°0080T 898°'8¢C 000°0080T 898'8¢C 000°0080T 898°'8¢C 000°0080T 898°8¢C qudrur 68-8CTI9TSAD
000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 00070 qrdra 800PoY252
000°0080T L0297 000700801 L0 9% 000°0080T L0297 000°0080T L0C 9% 000°0080T L0297 qrdru L00P2Y2sd
s} posojo de8 swiry posoo de8 auwiy posoro de8 auwry posoo de8 auwr} posoro de8
{mppo}- {3xoboyq}- {a3sbro}- 804290 2q° dnoua8 |Sduejsur

‘(penuruon) I0A[OS

mO-pue-puelg YO-NIOD JO UOIINISX Y} I0] SHNSY 7'V 9[qR],

103

Detailed Results of the Computational Experiments

000°0080T €c1'v6 000700801 cEg98 000°0080T ¥07°c6 000°0080T £€99°€6 000°0080T c6LT1E Butaagsox T0P3®[WInIpour
000°0080T €0€°9¢ 00000801 V617G 000°0080T SIS LY 00000801 T€L°1¢ 000700801 000°0 Buiagsox goueppIY wWnipow
000°0080T ¥v9°69 000°0080T 65€°19 000°0080T 02’89 000°0080T 87869 000°0080T 00070 Burieyso1 ZoueppIy wnipaur
000°0080T 9€0°09 000°0080T T¥8°€g 000°0080T 908'8¢ 000°0080T €eeT69 000°0080T 008°¢ Buriesox TQUeppIY wnipaw
08229 000°00T 066°29 000°00T 0TE 161 000°00T 002°99 000°00T 000°0080T 0v€ 09 Butaagsox zoA[res wnrpew
016°1€96 0007001 000700801 ¢9¢ g8 0L6°1696 000°001 0€8°99L6 000°00T 000700801 09L°€8 qrdiw payosowt
000°0080T veL gL 000°0080T veL gL 000°0080T VeLGL 000°0080T veL gL 000°0080T VeLGL qrdru Trow
02g'61 000°00T 09261 000°00T 0€S¢'61 000°00T 0€C°61 000°00T 0L9°61 000°00T qrdiu 9Lsewt
ovg 6Vt 000°00T 0€0°TGT 000°00T 0T0'671 000°00T 089671 000°00T 0gv Ly1 000°00T qrdru pLsewt
000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 00070 qudrur galeysyreut
08%°¢T 000°00T 0S0°%T 000°00T 0€9°¢T 000°00T 0gLeT 000°00T 099°¢T 000°00T qrdru 0 7 ereysyrew
000°0080T €89°0 000°0080T €99°0 000°0080T €99°0 000700801 €990 000°0080T €99°0 qrdiu v0-g1L91dewW
08L°T10€ 000°00T 0L6°€S1¢€ 000°00T 0L2°LLOE 000°00T 09.°€50¢€ 000°00T 06G°€9¢€¢€ 000°00T qrdru ordew
000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 00070 qudrur peut
000°0080T T1L°68 000°0080T T1L°6€ 000°0080T T1L768 000°0080T T1L°6€ 000°0080T T1L76€ qudru 92Z1s30]
000°0080T T9L°8L 000700801 T9L°8L 000°0080T T9L°8L 000°0080T 97476 000°0080T 000°0 Butaagsox poeyer Suop
000°0080T 0L1°66 00000801 897796 000°0080T 666°66 00000801 866°66 000700801 000°0 Buiagsox coerel Suop
000°0080T L6€°66 0909898 000°00T 000°0080T €LL°66 082°0C¢8 000°00T 000°0080T 000°0 Buriaysox T0o%e] Suof
000°0080T ¥89°¢6 000°0080T 841°¢8 000°0080T ¥89°¢6 000°0080T ¥89°¢6 000°0080T 6L6°V¢C Buriesox coueppry Suoj
000°0080T L66°€6 000°0080T 7E8°78 000°0080T <¢0€°06 000700801 7€6°€6 000°0080T £€69°9¢ Butaagsox Toueppry Suof
004°19¢€¢ 000°001 066°LS81 000°00T 0€6°678¢ 000°00T 01¢°920¢ 000°00T 000700801 860°56 Buiagsox coAaes Juog
079702 000°00T 08T°89L 000°00T 0v9'ves 000°00T 00%°LL9 000°00T 0€7°998 000°00T Burieysox ToA[1ee Suo]
000°0080T ov8'eg 000°0080T 0F8'gg 000°0080T 0¥8'es 000°0080T 0v8'€4 000°0080T U2 qrdra co9
000°0080T ¥10°L9 000700801 ¥10°L9 000°0080T ¥10°L9 000°0080T ¥10°L9 000700801 ¥10°L9 qrdiu 1091
000°0080T 00S°29 000°0080T 00¢°29 000°0080T 00¢°29 000°0080T 00¢°¢9 000°0080T 00¢°29 qudrur fqo-g-patsjoat
066°T 000°00T 01e'T 000°00T 06¢€°T 000°00T 0ge'T 000°00T 0cv'T 000°00T qrdra ABICSTI
000°0080T eTe'e 000700801 9z1°0 000°0080T g¢ce'e 000°0080T ¢oee 000°0080T 90T°0 qrdiu ddjzeddpaarey
000°0080T 96¢€°€Y 000°0080T L89°1€ 000°0080T ego 1y 000°0080T 96¢€°€Y 000°0080T ¥91°8¢ qrdiu yredopaariey
000°0080T °61'T 000°0080T T6T'C 000°0080T ¢61°C 000°0080T c61°¢C 000°0080T c61°C qudrur wooIysnuITy
0€1°089T 000°00T 0€T'8CLT 000°00T 0€7'6891 000°00T 0LT°CTLT 000°00T 0¥8°¢L0C 000°00T qrdra Bojno-ou-[nquesst
0LL9T 000°00T 0¢8'9 000°00T 0%9°¢1 000°00T 06791 000°00T 0L€°6 000°00T qrdiu dar
000°0080T 61978 00000801 eco'v8 000°0080T 86478 00000801 €29'78 000700801 60978 qrdru 310123090~y s1at
000°0080T 189°0L 000°0080T 189°0L 000°0080T 189701 000°0080T 189702 000°0080T 189°0L qudrur uorsuay LEIIor
000°0080T 999 000°0080T g8¢€7°99 000°0080T vy e9 000°0080T vv'<¢9 000°0080T vy e9 qrdra Terjuejod ™ 46T
062°C¢63T 000°00T 0829161 000°00T 0€9°9061 000°00T 079°0761 000°00T 0€9°9¥81 000°00T qrdru T3-proadyjod Ay
s} posojo de8 swiry posoo de8 auwiy posoro de8 auwry posoo de8 auwr} posoro de8
{mppo}- {3xoboyq}- {a3sbro}- 804290 2q° dnoua8 |Sduejsur

‘(penuruon) I0A[OS

mO-pue-puelg YO-NIOD JO UOIINISX Y} I0] SHNSY 7'V 9[qR],

104

Detailed Results of the Computational Experiments

000°0080T OTL LY 000700801 80997 000°0080T 809°9¥% 000°0080T 0Tl LY 000°0080T 809°9¥% qrdru enAR}-TL8L8EF-S0U
000°0080T 000°0 000700801 000°0 000°0080T 000°0 00000801 000°0 000700801 00070 qrdru Amous-p088eeY-soou
000°0080T 8LT'T 000°0080T 8LT'T 000°0080T SLT'T 000°0080T 8LT'T 000°0080T SLT'T qudru INYBI-£G900¢y-S09U
000°0080T £€69°18 000°0080T £€64°18 000°0080T £649°18 000°0080T £649°18 000°0080T £649°18 qrdra EPPIE-08FVSLE-S0U
000°0080T 90¢°0¢€ 000°0080T 168°7¢ 000°0080T L0207 000°0080T 6€C°19 000°0080T yerec qrdru Nawn-8.09¢9¢-s02u
000700801 6C€°L8 00000801 6CE°L8 000°0080T £9€°L8 00000801 6CE°L8 000700801 65€°L8 qrdiw rese-891.L59¢-s0au
000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 00070 qrdru ewRINg-F065gg¢-S0oUu
0TL ¢¥C 000°00T 086°¢€T 000°00T 06L°0€C 000°00T 061°L€T 000°00T 0€Lv€C 000°00T qrdiu urqoq-y6¢c0yE-soau
002°€C 000°00T 067°€G 000°00T 0cs'€c 000°00T 0L8°€T 000°00T 010°€¢T 000°00T qrdru ©eIYMEB-90GT8EE-S02U
000°0080T coL'e 000°0080T coL'g 000°0080T coL'g 000°0080T coL'g 000°0080T coL'g qudrur rrand-1¢691¢g-S09U
000°0080T T1€°€V 000°0080T T1€°€V 000°0080T T1E°EV 000°0080T T1€°€V 000°0080T T1€°€V qrdru Sanw-g199¥0g-s0au
0L8'9 000°00T 0€€"9 000°00T 019'9 000°00T 0979 000°00T ov1°9 000°00T qrdiu $20[-0TEL86E-S00U
000700801 000°0 000700801 000°0 000°0080T 000°0 000°0080T 000°0 000700801 00070 qrdru puUI-€618L6G-S02U
000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 00070 qudrur U00pP-6849Y LG-S09U
000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 00070 qudru BUID-GCGLG9C-S09U
000°0080T 000°GL 000700801 000°GL 000°0080T 000°GL 000°0080T 000°GL 000°0080T 000°GL qrdru C¢GTcg91-soau
062761 000°00T 06S°CSTT 000°00T 07S'8cTl 000°00T 09€°0€T1T 000°00T 061°LL8T 000°00T qrdrw L080T91-sosu
000°0080T 000°GL 000°0080T 000°¢L 000°0080T 000°GL 000°0080T 00¢°L8 000°0080T 000°GL qudrur 0L20T9T1-sosu
0ee'T 000°00T 012’1 000°00T 08T°T 000°00T o1t 000°00T 06T°T 000°00T qrdra VLc6641-s09u
000°0080T ce0'6L 000°0080T GI6°8L 000°0080T OvT°6L 000700801 80164 000°0080T 01064 qrdru 0€5G6GT1-s0aU
0L€°2C 000°00T 01¢°¢¢ 000°00T 0¢€°ce 000°00T 0¢€°¢e 000°00T 0¢c'ce 0007001 qrdiw 0Cpe8¢g1-soau
000°0080T 818°99 000°0080T 818°¢9 000°0080T 818799 000°0080T 818°¢9 000°0080T 818°99 qudru 6L69¢¥1-sosu
000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 00070 qrdra €9LGYVT-s09U
000°0080T 000°00T 000700801 000°00T 000°0080T 000°00T 000°0080T 000°00T 000700801 000°00T qrdiu c607SET-s0au
086°€T 000°00T 099°61¢C 000°00T 08T'8T 000°00T 0CT'8T 000°00T 020°GeT 000°00T qudrur 8Y0T8CT-sosu
0T0°6%709 000°00T 0€9°¢18¢ 000°00T 008°67.L¢ 000°00T 091°208¢ 000°00T 088899 000°00T qrdra 9gAalpgu
000°0080T 000°0 000700801 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 00070 qrdiu boggbasgu
097°6¢ 000°00T 0¥6°€g 000°00T 0TLv¢S 000°00T 01€°29 000°00T 0€7 9% 000°00T qrdiu ZgypAzzma
0€€°80¢ 000°00T 0L2°9%¢C 000°00T 082°0¢€C 000°00T 0¢c'Lce 000°00T 097" G¢¥ 000°00T qudrur TTAZZUT
000°0080T 668°8C 000°0080T 668°8C 000°0080T 668°8¢C 000°0080T 668°8¢ 000°0080T 668°8¢C qrdra iseq-uooaysnut
000°0080T LyS 89 000°0080T eI V9 000°0080T 87479 000°0080T 819°L9 000°0080T £vev9 qrdiu Twnjuswow
000700801 €V3'69 00000801 €¥2°69 000°0080T €V569 00000801 €%¢°69 000700801 €Ve 69 qrdru T-07-GI-9-g1A-O[Imt
0Lc'1¢ 000°00T 0€e’1c 000°00T 060°T¢ 000°00T 0TL'1¢T 000°00T 0TT'1¢C 000°00T qudrur ¥-6¢L-0g-0gg3wt
0L2°Svev 000°00T 0¢8'€9¢L 000°00T 08¢°¢50T 000°00T 0T8°L8EL 000°00T 000°0080T 6€9°9¢ Buriesox gooje] wnipew
0GLL9VT 000°00T 0L7' 796 000°00T 0T0°98C1 000°00T 0T1°9€6 000°00T 000°0080T GL6°0L Butaagsox ¢0ee] wnipaw
s} posojo de8 swiry posoo de8 auwiy posoro de8 auwry posoo de8 auwr} posoro de8
{mppo}- {3xoboyq}- {a3sbro}- 804290 2q° dnoua8 |Sduejsur

‘(penuruon) I0A[OS

mO-pue-puelg YO-NIOD JO UOIINISX Y} I0] SHNSY 7'V 9[qR],

105

Detailed Results of the Computational Experiments

000°0080T L€¢°08 000700801 cov 9L 000°0080T 169708 000°0080T 0€7°C8 000°0080T cov 9L qrdru 8€GTE6-S09U
0v6'8 000°00T 00L°8 000°00T 016°% 000°00T 0987 000°00T 00€°6€C 0007001 qrdru €¢0G16-s09u
000°0080T 02866 000°0080T 02866 000°0080T 028°66 000°0080T 02866 000°0080T 028°66 qudru 0L6TT6-8091
OT8'6TLT 000°00T 029°¥609 000°00T 06 TELT 000°00T 0€9'789T 000°00T 08L°9VL 000°00T qrdra 948506-5091
000°0080T 1€9°86 000700801 1€9°86 000°0080T 1€9°86 000°0080T 1€9°86 000°0080T 1€9°86 qrdru T90€.L8-s09u
08¢ LLT 000°001 010°18 000°00T 02864 000°001 099°18 000°00T 0TS GLT 0007001 qrdiw 00€098-s09u
000°0080T L9V L6 000°0080T LIV L6 000°0080T LI9V'L6 000°0080T L9V°L6 000°0080T L9V L6 qrdru 6848y 8-s09U
0.8°CT 000°00T 0ge LT 000°00T 0Le°€c 000°00T 017°€a 000°00T 0¢T' 1T 000°00T qrdiu GL0Gcg-soau
000°0080T 000°0¥% 000°0080T 000°0 000°0080T 000°0¥% 000°0080T 000°0% 000700801 00070 qrdru 71¢808-s09u
0GT LT 000°00T 000°0080T €€e°€8 080°T¢ 000°00T 0€€°0T 000°00T 000°0080T 0CL 8L qudrur 8EBE6L-S091
0L9°%¢C 000°00T 098°¢¢ 000°00T 092°1¥ 000°00T 0L0°7€ 000°00T 019°¢¥ 000°00T qrdru T¢0T6L-s091
000°0080T 8L6°16 000°0080T ¥.6°06 000°0080T ¢19°06 000700801 706°16 000°0080T 007°06 qrdiu €€6.L8.L-s09U
001°88T 000°00T 0€L°LLT 000°00T 08L°0¢ 000°00T 0¢6°9% 000°00T 0TS 9% 000°00T qrdru 668G8.L-s0au
000°0080T 9LT LG 000°0080T T0C LS 000°0080T 9LT LS 000°0080T 9LT LS 000°0080T 10T LG qudrur 697¢99-s09u
048°c8 000°00T 000°0080T €EEEL 000°0080T £EEEL 000°0080T £EEEL 000°0080T 00070 qudru Y8LIE9-s09U
07€°666 000°00T 000700801 000°0 0S¢ LIET 000°00T 08€°LLET 000°00T 000°0080T 00070 qrdru 0TL1€9-s09U
000°0080T 90479 00000801 90L°%9 000°0080T 90479 ovy gic 000°00T 000700801 00070 qrdrw 60L1€9-s09U
08¢'9 000°00T 0cg'9 000°00T 028°L¢C 000°00T 0999 000°00T 000°0080T 000°0¢ qudrur 7691¢9-s0au
000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T €889 000°0080T 00070 qrdra GETTT9-soau
007°9¢ 000°00T 098°€¢G 000°00T 0T6°LTT 000°00T 0%¢°€c 000°00T 016°80T 000°00T qrdru G18¢9g-soau
000°00801 000°0 000700801 000°0 000°0080T 000°0 00000801 000°0 000700801 00070 qrdiw INWBIU-TEEE61E-S09U
0v1°6706 000°00T 0SL°97¥6 000°00T 00%7°90¢6 000°00T 09€°6068 000°00T 029°€976 000°00T qudru 1833eU-80888TG-S0°U
000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 00070 qrdra NARSBY-gO6V T TE-s09U
096°L¥ 000°00T 01267 000°00T 0c0°Ly 000°00T 010°6% 000°00T 066°L¥ 000°00T qrdiu odesey-26¢L01¢-S09U
000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 00070 qudrur eurerel-,06701g-s09U
000°0080T evL6e 000°0080T gvL 68 000°0080T evL'6e 000°0080T evLT6E 000°0080T evLT6e qrdra wnyeny-Lgee60g-soat
000°0080T 000°0 000700801 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 00070 qrdiu 1ou8Lo-¢0pge0g-sodau
000°0080T 000°0 000700801 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 00070 qrdiu BZUBNO-ECL6Y0G-S09U
000°0080T 8GQ°L9 000°0080T 89¢°L9 000°0080T 8GG°L9 000°0080T 89G¢°L9 000°0080T 89G°L9 qudrur [9319q-g LIV G67-s0°U
000°0080T 08T°T 000°0080T 08T°T 000°0080T 08T'T 000°0080T 08T°T 000°0080T 08T°T qrdra nan803-$gge9.Ly-soou
08€°cE6 000°00T 0€TL16 000°00T 068°6¢6 000°00T 066°626 000°00T 01¢'2a6 000°00T qrdiu 0)RIIR-Z168E LY -S09U
0v1°9109 000°00T 00000801 88€"6V 000°0080T 88€ 6V 016 7LEY 000°00T 000700801 06G°8% qrdru USPPIM-EFBCTLY-SOdU
000°0080T L98°66 000°0080T L98°66 000°0080T L98°66 000°0080T L9866 000°0080T LG8°66 qudrur B1eIn3-0g0Ly9y-soau
000°0080T 806°0 000°0080T 1.6°0 000°0080T <L8'0 000°0080T CL8'0 000°0080T £€96°0 qrdra rem-8ygeegy-soau
0SL76 000°00T 069°L01 000°00T 069°TTT 000°00T 0L2°L0T 000°00T 031°88 000°00T qrdru BLIN}-FTLETYF-SO09U
s} posojo de8 swiry posoo de8 auwiy posoro de8 auwry posoo de8 auwr} posoro de8
{mppo}- {3xoboyq}- {a3sbro}- 804290 2q° dnoua8 |Sduejsur

‘(penuruon) I0A[OS

mO-pue-puelg YO-NIOD JO UOIINISX Y} I0] SHNSY 7'V 9[qR],

106

Detailed Results of the Computational Experiments

000°0080T €8L°¢ 000700801 GcL6'¢ 000°0080T SIT L 000°0080T £€9¢'8 000°0080T e10'% qiprmpueq ¢d
000°0080T ¢66°6 00000801 €L6°6 000°0080T 96L°T1 00000801 91L°C¢ 000700801 LOV'6 yiprapueq vd
000°0080T 931°¢¢ 000°0080T 60981 000°0080T PAS N 000°0080T g6L°VC 000°0080T 807°GT qiprapueq ed
084°0 000°00T 032’1 000°00T 06.4°0 000°00T 0LL°0 000°00T 09T°T 000°00T qrdra 9¢s¢d
096°€LST 000°00T 0Cy g1gt 000°00T 0S€'9L¢8T 000°00T 085°L8CT 000°00T 086°9LGT 000°00T qrdru 28811x00¢d
000700801 06S°S¥ 00000801 6989 000°0080T 628" 1Y 00000801 0ve 9y 000700801 VeL L yiptapueq cd
000°0080T LTLi6S 000°0080T 69¢€°¥C 000°0080T L00°T¢ 000°0080T ¢16°69 000°0080T 080°LT qiprapueq Td
001°0 000°00T 060°0 000°00T 080°0 000°00T 0z1°0 000°00T 0110 000°00T qrdiu 8vgod
088°0 000°00T 0vL0 000°00T 0€L°0 000°00T 0480 000°00T 0€L°0 000°00T qrdru zgcod
0€0°C 000°00T 086°T 000°00T 0T9'T 000°00T 096°T 000°00T 090°¢ 000°00T qudrur 10Z0d
0%0°0 000°00T 0¢0°0 000°00T 090°0 000°00T 0¢0°0 000°00T 0¥0°0 000°00T qrdru €€00d
000°0080T TLT€T 000°0080T TLT€T 000°0080T 0T6°GT 000700801 ¢C6°€cC 000°0080T L et qrdiu ¥s-012z-gwdo
0CT'61¥ 000°00T 090°¢¢c 000°00T ovv 9¢ev 000°00T 0€6°9¢€¥ 000°00T 08g°GT 000°00T qrdru yomu
0T9'6¥% 000°00T ocv ey 000°00T 060°9C 000°00T 068°¢¥ 000°00T 0€e'v9 000°00T Buri9s01 co3urids-payosasinu
000°0080T VL9°LL 000°0080T cvL'89 000°0080T 689°CL 000°0080T 869°8L 000°0080T LV9°0% Buriesox €03UY-WNIPIUW-payosasInu
0€9°26 000°00T 0L€°€6 000°00T 086°76 000°00T 06c°¢8 000°00T 096°76 000°00T qrdru grid-ggnu
000°0080T 0v6°cg 00000801 0¥6°cS 000°0080T 0v6°cg 00000801 076°cS 000700801 876°8¢ qrdrw 919€06su
000°0080T 660°9¢ 000°0080T 660°9¢ 000°0080T 660°9¢ 000°0080T 660°9¢ 000°0080T 660°9¢ qudrur 9€CV68sU
0L1°9468 000°00T 000°0080T 697°€6 06579899 000°00T 0%¢'¢099 000°00T 000°0080T 004768 qrdra £€990¢8TsU
000°0080T L9211 000°0080T I70°0T 000°0080T 66711 000700801 152:3x44 000°0080T L88°0 qrdru ¢6609L1SU
000°00801 ¢6€°1¢ 00000801 ey 8¢c 000°0080T 60c°€¢ 00000801 894¢°Ce 000700801 LYTL qrdiw €809691su
000°0080T 00088 000°0080T 000°08 000°0080T 000°08 000°0080T 000°88 000°0080T V6LGT qudru LYE889TSU
000°0080T 000°00T 092°996 000°00T 000°0080T 000°00T 000°0080T 000°00T 000°0080T 000°00T qrdra 00¥80¢Tsu®
000°0080T LSV 000700801 LGV’ 000°0080T LSV 000°0080T LEV'8 000700801 LSV’ qrdiu §-8-0¢-0¢T-dxau
000°0080T 60V 9% 000°0080T 60V 97 000°0080T 6279V 000°0080T 6CV 9V 000°0080T 687 9V qudrur UOISISAIPIaU
000°0080T 969°9¢ 000°0080T 999°9¢€ 000°0080T 9¢9°9¢ 000°0080T 9¢9°9¢ 000°0080T 9¢9°9¢ qrdra crieu
0L9°¢¥% 000°00T 0L8°'7¥ 000°00T 0TL Sy 000°00T 0LV v¥ 000°00T 029°¢¥ 000°00T qrdiu 8s0au
0¢€'v69C 000°00T 080°€9.L¢ 000°00T 0¢8°6€.LC 000°00T 086°0€.Lc 000°00T 099°1¢¢¢C 000°00T qrdiu gsoau
0T9'8T6T 000°00T 0L0°16¢ 000°00T 0€T'SV.L 000°00T 08T°¢GL 000°00T 000°29T 000°00T qudrur 8Tsoau
09g°vege 000°00T 0ve'v¥9ce 000°00T 0CeLTIvE 000°00T 0L0°0¢ce 000°00T 082°€97¢€ 000°00T qrdra LTsoau
081°¢ 000°00T ov1°g 000°00T 069°¢ 000°00T 00L°€ 000°00T 02¢'c 000°00T qrdiu Tsoau
0L0°18 000°00T 049796 000°00T 0TG'GLE 000°00T 0€6°¢0T 000°00T 097101 000°00T qrdru €CELE6-s09U
0VL'€8LT 000°00T 0L7' 7991 000°00T 0v0°'T6ST 000°00T 09¢°€6¢ST 000°00T 0€€"SV9T 000°00T qudrur ¢hc0g6-soau
000°0080T 99¢°16 000°0080T T61°16 000°0080T ¢8C'16 000°0080T €66°06 000°0080T 692706 qrdra 9VE8Y6-s09U
0LL €8L 000°00T 07G S6L 000°00T 0€L'8TCT 000°00T 0T9°GS¥VT 000°00T 068°LV.LT 000°00T qrdru 1€9v€6-s09U
s} posojo de8 swiry posoo de8 auwiy posoro de8 auwry posoo de8 auwr} posoro de8
{mppo}- {3xoboyq}- {a3sbro}- 804290 2q° dnoua8 |Sduejsur

‘(penuruon) I0A[0S In))-pue-ypueig HO-NIOD) JO UOIINILXS 9} I10] SHNSAY 7Y 9[RL,

107

Detailed Results of the Computational Experiments

0c8°c6¥ 000°00T 0ge Lay 000°00T 0€0°€8¥ 000°00T 0CL'6T9 000°00T 0L9°GLIT 000°00T qrdru 000€1101
000700801 VLL'89 000700801 VLG9V 000°0080T 1€6°89 000700801 1€6°89 000700801 TLG9% qrdru guoreydegiox
08€°¢¥6 000°00T 09€°2S8 000°00T 06.L°L68 000°00T 091°016 000°00T 088°0¢6 000°00T qridru pugeydregrox
077886 000°00T 0€L°'7L6 000°00T 057786 000°00T 099796 000°00T 0€T 186 000°00T qrdiu 000T00-0T{D020201
000°0080T €V6°VL 000700801 EV6 VL 000°0080T €V6°vL 000700801 €V6° VL 000°0080T €V6 VL qrdru 000TT0-0Tg020201
000°0080T we'e 000700801 LT€C 000700801 0SL°c 000700801 861°19 000700801 160°¢c qrdru T1-G-1[204
000°0080T ¥07°0 000°0080T vov°0 000°0080T ¥0¥°0 000°0080T vov°0 000°0080T ¥0¥°0 qrdru TI-p-1001
000°0080T 000°0 000°0080T 000°0 000°0080T 00070 000700801 cecce 000°0080T 00070 qrdru g¢d-pQg1reuns
0687V 1 000°00T 0L6°GVT 000°00T 0LT°0ST 000°00T 09L°GVT 000°00T 080°SV 1 000°00T qrdru 01d-00TI3eUWL
069°0L.LT 000°00T 0677509 000°00T 0LL6TTS 000°00T 09¢€°€90¢ 000°00T 0LT°€08¢ 000°00T qridru L93P01q31
000°0080T 1116 000°0080T 11216 000°0080T T1C°16 000°0080T 1116 000°0080T 11216 qrdru GTT¥P0[qa1
000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000700801 000°0 000°0080T 000°0 qrdrux 1g-osnda-pa
000°0080T 128799 000°0080T L€0°99 000°0080T cS1°99 000700801 926799 000700801 9¢6°99 qrdru 8-[sp-gTxp ues
006°918% 000°00T 069°9€9% 000°00T 0C6°608¢ 000°00T 0TS 69LY 000°00T 0L€7668¢ 000°00T qridru Logyrer
000°0080T €00°0 000°0080T €00°0 000°0080T €00°0 000°0080T €00°0 000°0080T €00°0 qrdrm correr
000°0080T 62079 000700801 119°€9 000°0080T 9cev9 000°0080T 62079 000°0080T ay6°€9 qrdru TorreRT
000°0080T <¢0€°96 000°0080T c0€°¢6 000°0080T ¢0€°¢6 000700801 c0€°¢6 000°0080T ¢0€°¢6 qrdru ¢0-0T-Opwuorjerpes
000°0080T 0€°16 000°0080T v0e' 16 000°0080T ¥0€°16 000°0080T v0e'16 000°0080T ¥0€'16 qridru G¢0-¢T-gTwuoneIper
0%6°8CT 000°00T 0TL 8L 000°00T 0CT'8L 000°00T 060°66 000°00T 0T¥'66 000°00T qrdiw ordeb
000°0080T €V6°6¢ 000700801 €v6°¢e 000°0080T €76°¢¢ 000700801 €76°G¢ 000°0080T €76°¢¢ qrdru gd1Tx11gg TuSI1sapurejoxd
000700801 ¥8.L°ce 000700801 v8Lce 000°0080T ¥8.L'ce 000700801 ¥8.L°Ce 000700801 ¥8L'¢ce qrdiw 6dg1gzyTg rusdisepureoad
001°9¢ 000°00T 096°9¢ 000°00T 096°¢¢ 000°00T 0c1°9¢ 000°00T 089°LC 000°00T qridru 13d
0T6°816 000°00T 0647488 000°00T 008°0¢¢ 000°00T 006°LT6 000°00T 04¥'9649 000°00T qrdiu Lg-ynozadid
06G°89¢ 000°00T 0v9°cLS 000°00T 08G"9L¢ 000°00T 00G°6S¢g 000°00T 00S°67¢ 000°00T qrdiu 80-1nosadrd
0CT TV 000°00T 09¢°0% 000°00T 0LZ 0¥ 000°00T ogL’Le 000°00T 0c1'6¢ 000°00T qrydrue z-gpayosuenisiyd
000°0080T 9€9°€6 000°0080T 8C8'C6 000°0080T ¥00°v6 000°0080T ce6'€6 000°0080T 191°¢6 qrdru g-gpayosuenisiyd
00T°ZETT 000°00T 061°061¢ 000°00T 01470912 000°00T 0T9"LTLT 000°00T 07<'991¢ 000°00T qrdrux ve ¢8d
ovIvy 000°00T 066°7¢ 000°00T 0€T°G¢¥ 000°00T 00€ 7Y 000°00T 097" G¢¥ 000°00T qrdru 3d
000°0080T 9€9°L6 000°0080T €81°76 000°0080T ¢09°96 000°0080T L60°L6 000°0080T g98°¢6 qridru royonysipd
000°0080T L99° TV 000°0080T 688°8¢ 000°0080T 688°8¢ 000°0080T L99° TV 000°0080T €ee°ee qrdru jrunuou-duris-qd
000°0080T vLL€ 000700801 Ge8'1 000°0080T 61L°€ 000700801 928°¢€ 000°0080T €89°T qipmmpueq 6d
000°0080T Lcl 69 000700801 69€°VC 000°0080T L00°T¢ 000700801 G16°6¢9 000700801 080°LT qipmmpueq 8d
000°0080T 800°8 000°0080T QCh L 000°0080T 9VL’8 000°0080T 6298 000°0080T 099'9 qiprmpueq Ld
000°0080T GTe'L6 000°0080T 709°L6 000°0080T 1€9°L6 000°0080T ge9'L6 000°0080T VevL6 qrdru qod
0S8°T186 000°00T 000700801 TLGV 000°0080T eyve 11 08¢°'6166 000°00T 000°0080T 16€¥ qipmmpueq 9d
s} posojo de8 swiry posoo de8 auwiy posoro de8 auwry posoo de8 auwr} posoro de8
{mppo}- {3xebroyq}- {a3sbo}- 354090 292 dnoas |sdouejsur

‘(penuruon) I0A[OS

m-pue-puelg YO-NIOD JO UOIINISXS 1) I0] SHNSY

¢’V 9I98L

108

Detailed Results of the Computational Experiments

000°0080T €89°¢ 000700801 86¢°¢ 000°0080T €89°¢ 000°0080T €89°¢ 000°0080T €0L'¢€ qrdru LTLTY
00L°9¢€¥ 000°00T 081°¢v¥y 000°00T 0T0"S¥¥ 000°00T 028'8¢¥ 000°00T 0LE 1V¥ 0007001 qridru gyrems
09%°96 000°00T 08g'¥6 000°00T 026°%6 000°00T 0T€"L6 000°00T 02L 90T 000°00T qudru Tyjems
0L2°691¢C 000°00T 06L°8T1¢C 000°00T 0LT°$¥0C 000°00T 089°¢c0¢C 000°00T 061°891¢ 000°00T qrdra Loseojroddns
000°0080T 89¢°0¥% 000°0080T 1L€°9¢ 000°0080T TLE°9¢ 000°0080T AR 47 000°0080T 1L€°9¢ qrdru gasenjzoddns
000700801 LI8'V6 00000801 81¢°€6 000°0080T €3€°96 00000801 ¢y 96 000700801 €L6°G6 qrdru opasedojroddns
000°0080T LIC'VS 000°0080T PAY A4 000°0080T LICVS 000°0080T PAYa4Y 000°0080T LT1CVS qrdru ggaseojroddns
089°926C 000°00T 010°6L0¢€ 000°00T 0TL 1€0€ 000°00T 027 '819¢€ 000°00T 066°GL7E 000°00T qudra 9gasenjzoddns
000°0080T 70°0 000°0080T 70°0 000°0080T 70°0 000°0080T 70°0 000700801 70°0 qrdru grasedsjzoddns
000°0080T G018 000°0080T L9T°8 000°0080T L8T'8 000°0080T L8T'8 000°0080T g¢80°8 qudrur oTesedsyroddns
000°0080T 1€6°'76 000°0080T yev g6 000°0080T €C1°L6 000°0080T 90T°L6 000°0080T 0¢e g6 Surqejeury dz9z9opis
000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000700801 000°0 000°0080T 00070 qrdiu Lyarenbs
000700801 900°0 000700801 900°0 000°0080T 900°0 000°0080T 900°0 000700801 90070 qrdru Tye1enbs
0T6°09 000°00T 042709 000°00T 000°9¢ 000°00T 0¥8°L¢ 000°00T 08S'€9¥T 000°00T Buri9s01 zoeyel juiads
00€°L0T 000°00T 00€°¢0T 000°00T 0Cy'61T 000°00T 0TO'%0T 000°00T 080°0¢88 000°00T Buriesox T00%e[jurxds
09L° Ly 000°00T 0€1°c¢ 000°00T 000°6¢ 000°00T 086°6% 000°00T 06G°9¢¥ 000°00T Butaagsox zoueppry jurrds
009°¢01 000°00T 009°10¢ 000°00T OLT'€TT 000°00T 04¢°00¢ 000°00T 0T 18801 000°00T Buiagsox Toueppry jurxds
09¥°L¢ 000°00T 0ge've 000°00T 0¢9°L¢ 000°00T 0LV've 000°00T 0co'TgCT 000°00T Buriaysox zoArree qurrds
080°2¢ 000°00T 097°¢¢€ 000°00T 0€8°1¢C 000°00T 08¥°¢¢ 000°00T 0L€°T9¢ 000°00T Buriesox T0Aree jurads
000°0080T 890°0 000°0080T 890°0 000°0080T 890°0 000700801 890°0 000°0080T 89070 qrdru T31901ds
000°0080T I8V°LL 00000801 18V LL 000°0080T I8V°LL 00000801 18%°LL 000700801 I8V LL qrdiw regpds
000°0080T 96767 000°0080T 967°6V 000°0080T 96767 000°0080T 9676V 000°0080T 967°6V qudru 1e6ds
000°0080T 110°96 000°0080T 110°¢6 000°0080T 1107496 000°0080T ce6'v6 000°0080T T10°46 qrdra PooEX0gTds
000°0080T 08266 000700801 9L1°66 000°0080T 74566 000°0080T 0¢2°66 000700801 90L°69 qrdiu €l[e110s
000°0080T 1.6°86 000°0080T CL6°86 000°0080T T,6°86 000°0080T T.6°86 000°0080T T,6°86 qudrur $0T1-¥00-¢0-dus
000°0080T 8EL'TL 000°0080T CIL 0L 000°0080T T98°0L 000°0080T TcT gL 000°0080T ¥9g'69 qrdra pySuts
000°0080T 604709 000°0080T 60L°29 000°0080T 60L°G9 000°0080T 60L°29 000°0080T 60L°G9 qrdiu 9zeSurs
0S6°TEL 000°00T 0LL9€L 000°00T 000°S¥.L 000°00T 000°7¥ L 000°00T 06L°GV.L 000°00T qrdiu Tanowdas
000°0080T 6¥6°CS 000°0080T 676°CS 000°0080T 6V6°0S 000°0080T 676°CS 000°0080T 6V6°0S qudrur anourfas
000°0080T 619°69 000°0080T 619769 000°0080T 6T9°69 000°0080T 679°69 000°0080T 619°69 qrdra c3os
000°0080T 000°0 000700801 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 00070 qrdiu Tpaydsaes
000700801 000°0 000700801 000°0 000700801 000°0 000700801 000°0 000700801 00070 qrdru $J-09-gS931[[d3es
000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 00070 qudrur 0v-gsal[[eles
000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 000°0 000°0080T 00070 qrdra 0TI0¢CS
000°0080T TL8°6L 000700801 TL8°6L 000°0080T TL86L 000°0080T 9¢1°¢8 000°0080T TL8°6L qrdru 00T1s
s} posojo de8 swiry posoo de8 auwiy posoro de8 auwry posoo de8 auwr} posoro de8
{mppo}- {3xoboyq}- {a3sbro}- 804290 2q° dnoua8 |Sduejsur

‘(penuruon) I0A[OS

mO-pue-puelg YO-NIOD JO UOIINISX Y} I0] SHNSY 7'V 9[qR],

109

Detailed Results of the Computational Experiments

008°T 000°00T 0L8°T 000°00T 098°¢ 000°00T 006°'T 000°00T 0€8'¢ 000°00T Suppedurq T 6 ¢ Oddd LINIAR
000°0080T | @L8°96 000°00801 | 09°09 000°0080T | GL8'96 000°0080T | 896 000°0080T | 629'F% Suppedurq z ¢ ¢ Oddd LININD
08¢g°2L 000°00T 0L0'8 000°00T 06L°TT 000°00T 0Lg°2L 000°00T 0gL'8¥ 000°00T Suppedurq 81 6 € omdd NOTAN
000°0080T | 120°0 000°0080T | 1%0°0 000°0080T | 1%0°0 000°0080T | 1%0°0 000°0080T | 1%0°0 Suppedurq 81 ¢ € pmdd NDTAn
000°0080T | ¥9€°19 000°0080T | SCT'LS 000°0080T | L18°G9 000°0080T | TTT°G9 000°0080T | L¥¥'LS qudru qoxdqns-3on
000°00801 | 659 000°00801 | 6.S°9 000°00801 | 659 000°0080T | 6.5°9 000°0080T | 6489 qrdru 6ose0on
000°0080T | €L.°S6 000°0080T | €.1°S6 000°0080T | €..°¢6 000°0080T | €..°S6 000°0080T | €..°S6 qrdru gTeseoon
0€0°T 000°00T 0S0°T 000°00T 00%°'T 0007001 0v0°'T 000°00T 02e'T 000°00T Suppoedurq z 6 T OMdd en
08L°31 000°00T 08¥°ST 000°00T 08€°L¢ 000°00T 008°€1 000°00T 019'6%% 000°00T Suppedurq 0T 8 T Omdd en
000°0080T | €S6'0¢ 000°0080T | L68°0% 000°0080T | €IT'T¢ 000°0080T | LS6°0¢ 000°0080T | STT'TS qrdru TojeTy
V€ €9LT 000°00T 086'166¢ 000°00T 0v1°210¢ 000°00T 000°0080T | 099'66 000°0080T | L.£'66 Surqejewry 0Gg6118IPTY
000°0080T | 9TT'68 000°0080T | 92£'98 000°0080T | 088°6% 000°0080T | LLT'68 000°0080T | L¥¥'c8 Surqejawry 6631}
080°9€1 000°00T 000°0080T | 901'¢6 016°9€C 000°00T 0506671 000°00T 000°0080T | TTT'¥8 Surqeewry 29g8RIPI}
06C°61 000°00T 088°9L 000°00T 029°6% 000°00T 091°€2 000°00T 0L VST 000°00T Surqesewry 67711y
011°6 000°00T 0€8'8T 000°00T 0€0°LT 000°00T 0v¥'6 000°00T 088°€€VT 000°00T Surqejewry 0T00®IPI}
000°0080T | €6L°6C 000°0080T | 09T'6T 000°0080T | €G6°Ca 000°0080T | €16°CC 000°0080T | T06'6T Surqejewry 8T2UPI}
000°00801T | €€6'6 000°0080T | 000°0 000°0080T | 000°0 000°0080T | 000°0 000°0080T | 000°0 Surqeewry SUI00IopI}
089°%¥ 000°00T 0£6°8¢ 000°00T [iaaliz 000°00T 09g°9¥ 000°00T 000°0080T | 1%0°0 Surqesewry oGTYPI}
000°0080T | 000°0 000°0080T | 000°0 000°0080T | 000°0 000°0080T | 000°0 000°0080T | 00070 qudru geouR)sUTIIRTY
000°0080T | 000°0 000°0080T | 000°0 000°0080T | 000°0 000°0080T | 000°0 000°0080T | 000°0 qrrdrur gooueysuTUIRT)
000°0080T | 9SL'¥L 000°0080T | 9S94°VL 000°0080T | 9S4'%2 000°0080T | 994°V2 000°0080T | 9SL'V. qudiu 08-2143
0LE°€EV 000°00T 000°0080T | 88¢'16 02€°€L29 000°00T 087°6€8 000°00T 000°0080T | 06.'9 Suppedurq ¢ .78 pddd LININ3
000°0080T | 000°0 000°0080T | 000°0 000°0080T | 000°0 000°0080T | 000°0 000°0080T | 000°0 Suppedurq v € 9 pddd ILININ?
000°0080T | 98€°¢8 000°0080T | S19°¢8 000°0080T | 699°¢8 000°0080T | 699°¢8 000°0080T | 98€'¢8 qrrdru Tqejwry
000°0080T | ¥6%'¥C 000°0080T | ¥¢g'1e 000°0080T | €0%'LC 000°0080T | L%9'9% 000°0080T | %% 1% qrrdrur AeppQgIoy’
086°0% 000°00T 000°0080T | 629'88 067°90% 000°00T 0,928 000°00T 000°0080T | 6.T°CT Suppedurq 91" 9~ L omdd NOTAI
069°¢ 000°00T 061°9 000°00T 0zL'¢ 000°00T 0L0°2 000°00T 0099 000°00T Suppedurq 6 8 9 OMJI NDTAI
000°0080T | ¥€8°06 000°0080T | ¥£8°06 000°0080T | ¥€8°06 0£€°€69 000°00T 000°0080T | 99988 Suppoedurq 0z 9 9 Oomdd NDTA?
0z 98e 000°00T 0£6°87¢ 000°00T 008°67¢ 000°00T 0L8°'16¢€ 000°00T 029'€v€ 000°00T qrdrur sromyau-diqy
000°0080T | 000°0 000°0080T | 000°0 000°0080T | 000°0 000°0080T | 000°0 000°0080T | 000°0 Suppedurq 8 1 L pmdd e
0gLa 000°00T 09L°¢ 000°00T 0LT'¥ 000°00T 09L°¢ 000°00T 00z ¥ 000°00T Suppoedurq 8 6 9 OMdd ®}
088'T 000°00T 0L6°T 000°00T 08¢'c 000°00T 000'% 000°00T 0£0°c 000°00T Suppedurq v L ¢ OomMmdd ®
008'T 000°00T 08L'T 000°00T 0v0'c 000°00T 09L°1T 000°00T 00T'% 000°00T Suppedurq 7L ¢ omdd e
088°61 000°00T 0799 000°00T 0gh' LS 000°00T 0€9°2% 000°00T 0g1'9¢ 000°00T Suppedurq ¢ ¢ ¢ omdd =
000°0080T | L9€°CT 000°0080T | SI6'¥I 000°0080T | L9€°CT 000°0080T | L9€'CT 000°0080T | &WL'¥T qrdrur [dIAE]
s} posojo de8 swiry posoo de8 auwiy posoro de8 auwry posoo de8 auwr} posoro de8
{mppo}- {3xoboyq}- {a3sbo}- 8o+42qp 2qo dnoa3 @ouw}sul

‘(penuruon) I0A[OS

mO-pue-puelg YO-NIOD JO UOIINISX Y} I0] SHNSY 7'V 9[qR],

110

Detailed Results of the Computational Experiments

000°0080T €0L°€9 000°0080T 08T vy 000°0080T €0L°€9 000°0080T €0L°€9 000°0080T 9TL'GT qrdiu yI-66Mw-pQTu-bum
066°L779 000°00T 02€'c8¢9 000°00T 086°99¢8 000°00T 0c0'vveEv 000°00T 000°91¢¢ 000°00T qrdru uerdyoem
000°0080T 6L6°99 000°0080T 6.6°99 000°0080T 6L6°99 000°0080T 6.6°99 000°0080T 616799 qudrur gfguwi-Aroweeurs-1ea
0.8°88¢8 000°00T 068°6598 000°00T 080°€L6L 000°00T 0¢9°9L6L 000°00T 0v0"S6¥8 000°00T qrdra L Teojrun
000°0080T 186°68 000700801 cER6Y 000°0080T 186768 000°0080T 186°68 000°0080T 87 1¢ Suppedurq 9 L ¢ Dddd LININR
s} posojo de8 swiry posoo de8 auwiy posoro de8 auwry posoo de8 auwr} posoro de8
{mppo}- {3xoboyq}- {a3sbro}- 804290 2q° dnoua8 |Sduejsur

‘(penuruon) I0A[OS

mO-pue-puelg YO-NIOD JO UOIINISX Y} I0] SHNSY 7'V 9[qR],

	8388a8ccfbacd7781891360fbde0380fe0a1e5a2347b4517f04d695f022e7546.pdf
	8388a8ccfbacd7781891360fbde0380fe0a1e5a2347b4517f04d695f022e7546.pdf
	8388a8ccfbacd7781891360fbde0380fe0a1e5a2347b4517f04d695f022e7546.pdf
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Objectives and Contributions
	1.1.1 Published Papers and Conference Presentations

	1.2 Text Organization

	2 Background and Literature Review
	2.1 Combinatorial Optimization
	2.2 Mixed-Integer Linear Programming
	2.2.1 Preprocessing
	2.2.2 Primal Heuristics
	2.2.3 Branch-and-bound
	2.2.4 Cutting Planes
	2.2.5 Branch-and-cut

	2.3 Conflict Graphs in Mixed-Integer Linear Programming
	2.4 Literature Review
	2.5 Instance Sets

	3 Building Conflict Graphs
	3.1 Probing Technique Based on Feasibility Conditions
	3.2 Fast Detection of Conflicts
	3.2.1 Space Efficient Data Structures
	3.2.2 Query Efficient Data Structures

	3.3 Computational Results
	3.4 Conclusion

	4 Clique Strengthening
	4.1 Computational Results
	4.2 Conclusion

	5 Cutting Planes
	5.1 Clique Inequalities
	5.1.1 Bron-Kerbosch Algorithm

	5.2 Odd-Cycle Inequalities
	5.3 Cut Pool
	5.4 Computational Results
	5.4.1 Pivoting Rules of Bron-Kerbosch Algorithm
	5.4.2 Clique Cut Separator Experiments
	5.4.3 Odd-Cycle Cut Separator Experiments

	5.5 Conclusion

	6 Improving the COIN-OR Branch-and-Cut Solver
	6.1 Computational Results
	6.1.1 Individual Impact of Each Routine
	6.1.2 Results of the New Version of CBC Solver

	6.2 Conclusion

	7 Diving Heuristics
	7.1 Conflict-Based Diving Heuristics
	7.1.1 Conflict Diving
	7.1.2 Modified Degree Diving

	7.2 Computational Results
	7.3 Conclusion

	8 Final Considerations
	8.1 Further Research

	Bibliography
	A Detailed Results of the Computational Experiments

