
Con�ict Graphs in Mixed-Integer
Linear Programming: Preprocessing,

Heuristics and Cutting Planes

Samuel Souza Brito

Universidade Federal de Ouro Preto

Orientador: Haroldo Gambini Santos

Con�ict Graphs in Mixed-Integer
Linear Programming: Preprocessing,

Heuristics and Cutting Planes

Samuel Souza Brito

Universidade Federal de Ouro Preto

UNIVERSIDADE FEDERAL DE OURO PRETO

Orientador: Haroldo Gambini Santos

Tese submetida ao Programa de Pós-

Graduação em Ciência da Computação do In-

stituto de Ciências Exatas e Biológicas da Uni-

versidade Federal de Ouro Preto, como requi-

sito parcial para obtenção do título de Doutor

em Ciência da Computação.

Ouro Preto, Fevereiro de 2020

Brito, Samuel Souza .
BriConflict graphs in mixed-integer linear programming [manuscrito]:
preprocessing, heuristics and cutting planes. / Samuel Souza Brito. -
2020.
Bri110 f.: il.: color., gráf., tab..

BriOrientador: Prof. Dr. Haroldo Gambini Santos.
BriTese (Doutorado). Universidade Federal de Ouro Preto. Departamento
de Computação. Programa de Ciência da Computação.
BriÁrea de Concentração: Ciência da Computação.

Bri1. Programação linear. 2. Heurística. 3. Programação (Computadores) -
Processamento. 4. Programação heurística. 5. Teoria dos grafos. I.
Santos, Haroldo Gambini. II. Universidade Federal de Ouro Preto. III.
Título.

Bibliotecário(a) Responsável: Celina Brasil Luiz - CRB6-1589

SISBIN - SISTEMA DE BIBLIOTECAS E INFORMAÇÃO

B862c

CDU 004.42

22/06/2020 SEI/UFOP - 0061106 - Folha de aprovação do TCC

https://sei.ufop.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=71425&infra_sistema=100000100&infra_unidade_atual=110000172&infra_hash=c3aa187b88

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE FEDERAL DE OURO PRETO

REITORIA
INSTITUTO DE CIENCIAS EXATAS E BIOLOGICAS

DEPARTAMENTO DE COMPUTACAO

FOLHA DE APROVAÇÃO

Samuel Souza Brito

Conflict Graphs in Mixed-Integer Linear Programming: Preprocessing, Heuristics and Cutting Planes

Membros da banca

Haroldo Gambini Santos - Dr. - UFOP
George Henrique Godim da Fonseca - Dr. - UFOP
Geraldo Robson Mateus - Dr. - UFMG
Marcus Vinicius Soledade Poggi de Aragao - Dr. - PUC-RIO
Tulio Angelo Machado Toffolo - Dr. - UFOP

Versão final
Aprovado em 28 de Fevereiro de 2020

De acordo

Prof. Dr. Haroldo Gambini Santos

Documento assinado eletronicamente por Haroldo Gambini Santos, PROFESSOR DE MAGISTERIO SUPERIOR, em 17/06/2020, às 20:39,
conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015.

A autenticidade deste documento pode ser conferida no site http://sei.ufop.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0 , informando o código verificador 0061106 e o código CRC E241F937.

Referência: Caso responda este documento, indicar expressamente o Processo nº 23109.004484/2020-13 SEI nº 0061106

R. Diogo de Vasconcelos, 122, - Bairro Pilar Ouro Preto/MG, CEP 35400-000
Telefone: 3135591692 - www.ufop.br

http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://sei.ufop.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0

Dedico este trabalho a minha esposa Tamara e a minha mãe Maria, pessoas de suma

importância em minha vida.

iii

Con�ict Graphs in Mixed-Integer Linear

Programming: Preprocessing, Heuristics

and Cutting Planes

Abstract

This thesis addresses the development of con�ict graph-based algorithms for Mixed-

Integer Linear Programming, including: (i) an e�cient infrastructure for the construc-

tion and manipulation of con�ict graphs; (ii) a preprocessing routine based on a clique

strengthening scheme that can both reduce the number of constraints and produce

stronger formulations; (iii) a clique cut separator capable of obtaining dual bounds

at the root node LP relaxation that are 19.65% stronger than those provided by the

equivalent cut generator of a state-of-the-art commercial solver, 3.62 times better than

those attained by the clique cut separator of the GLPK solver and 4.22 times stronger

than the dual bounds obtained by the clique separation routine of the COIN-OR Cut

Generation Library; (iv) an odd-cycle cut separator with a new lifting module to pro-

duce valid odd-wheel inequalities; (v) two diving heuristics capable of generating integer

feasible solutions in restricted execution times. Additionally, we generated a new version

of the COIN-OR Branch-and-Cut (CBC) solver by including our con�ict graph infras-

tructure, preprocessing routine and cut separators. The average gap closed by this new

version of CBC was up to four times better than its previous version. Moreover, the

number of mixed-integer programs solved by CBC in a time limit of three hours was

increased by 23.53%.

Keywords: Mixed-Integer Linear Programming, Con�ict Graphs, Preprocessing, Cut-

ting Planes, Clique Inequalities, Odd-cycle inequalities, Diving Heuristics.

iv

Declaração

Esta tese é resultado de meu próprio trabalho, exceto onde referência explícita é

feita ao trabalho de outros, e não foi submetida para outra defesa nesta nem em outra

universidade.

Samuel Souza Brito

v

Agradecimentos

Agradeço a Deus por me dar saúde, disposição e calma para enfrentar os desa�os

desta caminhada.

Agradeço a minha esposa Tamara pelo carinho, companheirismo e apoio irrestritos.

Por compartilhar alegrias, tristezas, esperanças e medos durante toda esta etapa.

Agradeço a minha mãe Maria pelo apoio incondicional e por ser minha fonte de

incentivo e perseverança. Ao meu pai Elias, pela motivação durante essa jornada. Ao

meu irmão Thalles, pelo apoio contínuo, conversas e palavras de incentivo.

Agradeço ao professor Haroldo pela con�ança, paciência e dedicação. Pela impecável

orientação durante uma década, desde a época da minha graduação, sempre acreditando

em mim e em meu potencial. Por ter me proporcionado, durante todo esse tempo,

um imensurável conhecimento, que vai além da simples formação acadêmica. Agradeço

ainda pelas oportunidades concedidas.

Agradeço a Universidade Federal de Ouro Preto (UFOP), por prover educação

pública, gratuita e de qualidade. Aos professores do Departamento de Computação

(DECOM/UFOP), pelos ensinamentos transmitidos. Ao Departamento de Computação

e Sistemas (DECSI/UFOP), por ter me permitido dedicar exclusivamente ao doutorado

durante um ano. À Fundação de Amparo à Pesquisa do Estado de Minas Gerais

(FAPEMIG), pelo apoio �nanceiro concedido no estágio inicial deste trabalho.

Por �m, agradeço a todos que me ajudaram direta ou indiretamente neste trabalho.

vi

Preface

If we turn from battle because there is little hope for victory, where then would valor be?

Let it ever be the goal that stirs us, not the odds.

Silver Surfer in "The Silver Surfer: Parable",

Stan Lee and Moebius

vii

Contents

List of Figures xi

List of Tables xiii

Nomenclature 1

1 Introduction 2

1.1 Objectives and Contributions . 4

1.1.1 Published Papers and Conference Presentations 5

1.2 Text Organization . 6

2 Background and Literature Review 7

2.1 Combinatorial Optimization . 7

2.2 Mixed-Integer Linear Programming . 8

2.2.1 Preprocessing . 9

2.2.2 Primal Heuristics . 10

2.2.3 Branch-and-bound . 12

2.2.4 Cutting Planes . 13

2.2.5 Branch-and-cut . 15

2.3 Con�ict Graphs in Mixed-Integer Linear Programming 16

viii

2.4 Literature Review . 17

2.5 Instance Sets . 23

3 Building Con�ict Graphs 25

3.1 Probing Technique Based on Feasibility Conditions 25

3.2 Fast Detection of Con�icts . 27

3.2.1 Space E�cient Data Structures 30

3.2.2 Query E�cient Data Structures 32

3.3 Computational Results . 35

3.4 Conclusion . 38

4 Clique Strengthening 40

4.1 Computational Results . 44

4.2 Conclusion . 47

5 Cutting Planes 48

5.1 Clique Inequalities . 49

5.1.1 Bron-Kerbosch Algorithm . 51

5.2 Odd-Cycle Inequalities . 54

5.3 Cut Pool . 58

5.4 Computational Results . 59

5.4.1 Pivoting Rules of Bron-Kerbosch Algorithm 59

5.4.2 Clique Cut Separator Experiments 61

5.4.3 Odd-Cycle Cut Separator Experiments 65

5.5 Conclusion . 67

6 Improving the COIN-OR Branch-and-Cut Solver 68

ix

6.1 Computational Results . 68

6.1.1 Individual Impact of Each Routine 69

6.1.2 Results of the New Version of CBC Solver 71

6.2 Conclusion . 74

7 Diving Heuristics 75

7.1 Con�ict-Based Diving Heuristics . 77

7.1.1 Con�ict Diving . 78

7.1.2 Modi�ed Degree Diving . 81

7.2 Computational Results . 83

7.3 Conclusion . 84

8 Final Considerations 86

8.1 Further Research . 87

Bibliography 89

A Detailed Results of the Computational Experiments 94

x

List of Figures

2.1 Improving the LP relaxation of (2.1) through the inclusion of the valid

inequality x1 + x2 ≤ 4. 14

2.2 An example of a con�ict graph. 17

3.1 Filled data structures for the cliques of Table 3.1. 32

3.2 Execution times and memory usages in the construction of CGs. 37

4.1 Con�ict graph for constraints (4.1) to (4.3). For practical purposes, ver-

tices that have only trivial con�icts were omitted. 43

4.2 Results of the execution of clique strengthening. 46

5.1 Example of a K3 in which the extension module could be applied, trans-

forming it into a K4. 51

5.2 Example of an odd cycle with the inclusion of a wheel center. Vertices

x6, x7 and x8 are connected to all the vertices of the odd cycle formed by

{x1, x2, x3, x4, x5}. 57

5.3 Execution times and gap closed by the clique cut separators. 63

5.4 Average gap closed by each clique cut separator. 64

5.5 Execution times and gap closed by the odd-cycle cut separator. 66

6.1 Results of the new version of CBC when each con�ict-based routine is

individually removed. 70

xi

6.2 Execution times and gap closed by the two versions of CBC solver. . . . 72

6.3 Evolution of the average gap closed over time for each instance set. . . . 73

6.4 Number of instances solved over three hours. 74

7.1 Number of feasible solutions found by each diving heuristic over the time. 85

xii

List of Tables

2.1 All possible logical relations between binary variables xj and xk. 16

2.2 A summary of related works. 22

2.3 Characteristics of the instance sets used in the experiments. 24

3.1 An example of cliques obtained after running Algorithm 3.1 in three con-

straints. 31

3.2 Instances where new con�icts were discovered. 39

5.1 Summarized results of the execution of BK algorithm with di�erent piv-

oting rules. 60

7.1 Summarized results of the con�ict-based diving heuristics. 83

A.1 Instance set characteristics. 94

A.2 Results of the execution of the COIN-OR Branch-and-Cut solver. 101

xiii

List of Algorithms

3.1 Clique Detection . 28

3.2 Checking if two variables are con�icting. 34

3.3 Getting the variables con�icting with xj. 35

4.1 Clique Extension . 41

5.1 Clique Cut Separator . 50

5.2 Bron-Kerbosch algorithm for detecting maximal cliques with weights above

a threshold. 52

5.3 Odd-Cycle Cut Separator . 55

7.1 Generic Diving Heuristic . 76

7.2 Con�ict Diving Heuristic . 81

xiv

Nomenclature

BP Binary Program

B&B Branch-and-bound Algorithm

B&C Branch-and-cut Algorithm

BK Bron-Kerbosch Algorithm

CBC COIN-OR Branch-and-Cut

CG Con�ict Graph

CGL COIN-OR Cut Generation Library

CLP COIN-OR Linear Program

GLPK GNU Linear Programming Kit

LHS Left-hand side

MILP Mixed-Integer Linear Programming

RHS Right-hand side

SAT Boolean Satis�ability Problem

1

Chapter 1

Introduction

Over the last years, Mixed-Integer Linear Programming (MILP) has proven to be a

powerful technique for modeling and solving a wide variety of combinatorial optimiza-

tion problems, most of them with practical interest. Some notable applications in-

clude telecommunication network design (Orlowski et al., 2010), protein structure pre-

diction (Xu et al., 2003) and production planning (Pochet and Wolsey, 2006).

Improvements in computer hardware and the development of several techniques such

as preprocessing (Achterberg et al., 2016; Mészáros and Suhl, 2003; Savelsbergh, 1994),

heuristics (Danna et al., 2005; Fischetti et al., 2005) and cutting planes (Ho�man and

Padberg, 1993; Rebennack, 2009) have contributed toward large-scale MILP models

being solved e�ectively. Preprocessing and cutting planes are part of a mechanism

called automatic reformulation (Van Roy and Wolsey, 1987), which is a key component

of modern MILP solvers. The works of Bixby and Rothberg (2007), Achterberg and

Wunderling (2013), and more recently Achterberg et al. (2016) show that disabling

these features in two state-of-the-art commercial solvers results in large performance

degradation.

An implicit structure used by modern MILP solvers in preprocessing and cut separa-

tion routines is the con�ict graph (Savelsbergh, 1994). Such graphs represent the logical

relations between binary variables. There is a vertex for each binary variable and its

complement, with an edge between two vertices indicating that the variables involved

cannot both be equal to one without violating the constraints.

In this thesis, we present con�ict graph-based algorithms and data structures for

Mixed-Integer Linear Programming problems. Initially, we proposed and implemented

2

Introduction 3

a con�ict graph infrastructure, characterized by the e�cient construction and handling

of such graphs. Our routine for building con�ict graphs is an improved version of the

con�ict extraction algorithm presented by Achterberg (2007), which extracts con�icts

from knapsack constraints. The basis for the improvement is a new step for detecting

additional maximal cliques without increasing the computational complexity of the al-

gorithm. We also developed optimized data structures that selectively store con�icts

pairwise or grouped in cliques to handle dense con�ict graphs without incurring exces-

sive memory usage. The sequence in which similar cliques are discovered is exploited to

store them compactly.

After developing the infrastructure for con�ict graphs, we used the information pro-

vided by this structure to implement a preprocessing routine and two cut separators. The

preprocessing routine is based on the concept of clique merging proposed by Achterberg

et al. (2016) and consists of extending set packing constraints by the inclusion of addi-

tional con�icting variables. A greedy algorithm uses the information from the con�ict

graph to augment the cliques formed by the set packing constraints. After executing the

clique extension algorithm, all constraints that become dominated are removed. Com-

putational results show that our routine was able to reduce the number of constraints

and strengthen the initial dual bounds for a great number of instances.

The two con�ict-based cut separators that we developed are responsible for separating

clique and odd-cycle cuts. Our clique cut separator is capable of obtaining dual bounds

at the root node which are stronger than those provided by the clique cut separation

routine of the COIN-OR Cut Generation Library (CGL)1 and those obtained by the

equivalent cut separators present in a state-of-the-art commercial MILP solver and the

solver of GNU Linear Programming Kit (GLPK)2. The improvements in the dual bounds

obtained by including only odd-cycle cuts were relatively small. However, the execution

of the routine to separate odd-cycle cuts is computationally inexpensive, allowing its use

in a cutting plane strategy without a signi�cant increase in the execution times.

Our con�ict graph infrastructure, preprocessing routine and cut separators were in-

cluded in a new version of the COIN-OR Branch-and-Cut (CBC) solver3. CBC is one

of the fastest open-source MILP solvers nowadays and it is also a fundamental compo-

nent used by Mixed-Integer Nonlinear solvers, such as Bonmin (Belotti et al., 2009) and

Couenne (Bonami et al., 2008). In our experiments, the average gap closed by the new

1https://github.com/coin-or/Cgl
2https://www.gnu.org/software/glpk/
3https://github.com/coin-or/Cbc

https://github.com/coin-or/Cgl
https://www.gnu.org/software/glpk/
https://github.com/coin-or/Cbc

Introduction 4

version of CBC was noticeably better than the previous version of this solver. More-

over, the time spent proving the optimality for the MILP models decreased and more

instances were solved in restricted execution times.

Additionally, we proposed and implemented two con�ict-based diving heuristics.

These heuristics �rst adjust the bounds of the variables which are more likely to cause

infeasibilities. In this case, one heuristic considers the degree and the other uses the

modi�ed degree of the variables at the con�ict graph to implement the variable selection

strategies. Both proposed diving heuristics presented execution times smaller than the

classical diving heuristics that we evaluated in our experiments. Moreover, the heuristic

that uses the modi�ed degree in its variable selection strategy found the greatest number

of feasible solutions among the heuristics evaluated.

1.1 Objectives and Contributions

The present thesis is motivated by the importance of MILP in solving a wide variety of

combinatorial optimization problems. The development of techniques that improve the

performance of MILP solvers contributes directly to solve di�erent classes of problems,

including real-world ones. Given this motivation, the main objective of this thesis is

to develop con�ict graph-based techniques to accelerate the process of solving MILP

models.

The speci�c objectives of this thesis are:

1. Evaluate the performance of con�ict-graph based techniques provided by MILP

solvers, identifying possible improvements;

2. Propose and implement e�ective algorithms and data structures to construct, store

and use con�ict graphs;

3. Investigate, propose and implement automatic reformulation techniques that use

the information provided from con�ict graphs to reduce the MILP model dimen-

sions, produce stronger formulations and accelerate the convergence to optimal

solutions;

4. Explore the logical relations from con�ict graphs to develop algorithms that are

capable of generating integer feasible solutions.

Introduction 5

In order to achieve the objectives, di�erent approaches were developed. Thus, the

main contributions of this thesis are:

1. An e�cient infrastructure to construct, store and handle con�ict graphs. Our

algorithm for building con�ict graphs is able to detect more con�icts than the

state-of-the-art con�ict detection algorithm, with the same worst-case complexity.

Additionally, the data structures that we implemented are e�cient to store and

handle dense con�ict graphs without incurring excessive memory usage.

2. An improved version of the Bron-Kerbosch algorithm for �nding cliques in vertex-

weighted graphs. Our version implements a new pivoting rule, de�nes a pruning

strategy and uses e�cient data structures to reduce the number of recursive calls

and the running time of the algorithm.

3. A clique cut separator that generates a set of violated cliques. This cut separator

obtained better dual bounds than the equivalent cut separators used by CBC,

GLPK and CPLEX solvers.

4. A new strategy for lifting odd-cycle inequalities, which considers the inclusion of

a clique into the center of an odd wheel.

5. A new version of CBC solver that contains our con�ict graph infrastructure, pre-

processing routine and cut separators. The average gap closed by this version was

up to four times better than the previous version. Furthermore, the new version

of CBC is capable of solving more problems than the previous one.

6. Two diving heuristics capable of generating integer feasible solutions in restricted

execution times. These heuristics presented competitive results in comparison with

some classical diving heuristics.

1.1.1 Published Papers and Conference Presentations

This thesis is a continuation of the research addressed by the author in his master's

thesis (Brito, 2015). The following manuscripts, publications and presentations were

derived from the obtained results.

• Brito, S. S.; Santos, H. G.; Poggi, M. A Computational Study of Con�ict Graphs

and Aggressive Cut Separation in Integer Programming. VIII Latin-American Al-

Introduction 6

gorithms, Graphs and Optimization Symposium (LAGOS15). May/2015. Be-

beribe, Brazil. DOI: 10.1016/j.endm.2015.07.059

• Brito, S. S.; Santos, H. G. Improving COIN-OR CBC MIP Solver Using Con�ict

Graphs. 23rd International Symposium onMathematical Programming (ISMP2018).

July/2018. Bordeaux, France.

• Brito, S. S.; Santos, H. G.; Vanden Berghe, G. Machine Learning Based Diving

for Mixed Integer Programming: Decision Trees. 30th European Conference on

Operational Research (EURO2019). June/2019. Dublin, Ireland.

• Brito, S. S.; Santos, H. G. Preprocessing and Cutting Planes with Con�ict Graphs.

Manuscript 4 submitted to Computers & Operations Research. September/2019.

1.2 Text Organization

This thesis is divided into eight chapters. Chapters where algorithms are proposed in-

clude computational experiments and speci�c analysis of these proposals. The remaining

of the text is structured as follows:

Chapter 2: presents the basic concepts employed in this thesis, a literature review and

the instance sets used in computational experiments;

Chapter 3: describes the probing technique for constructing con�ict graphs as well as

our con�ict graph infrastructure;

Chapter 4: presents our con�ict-based preprocessing routine;

Chapter 5: details the implementations of our clique and odd-cycle cut separators;

Chapter 6: presents the results obtained with the integration of our con�ict graph-

based algorithms and data structures in the CBC solver;

Chapter 7: presents the two diving heuristics that we proposed and implemented;

Chapter 8: concludes this thesis and presents possible future research directions.

4https://arxiv.org/pdf/1909.07780.pdf

https://arxiv.org/pdf/1909.07780.pdf

Chapter 2

Background and Literature Review

This chapter presents concepts and techniques for understanding the construction and

use of con�ict graphs in Mixed-Integer Linear Programming. A literature review and

the instance sets used in the computational experiments are also presented.

2.1 Combinatorial Optimization

Combinatorial Optimization is a �eld extensively studied by many researchers of Com-

puter Science and Applied Mathematics. It aims to use combinatorial techniques to

solve discrete optimization problems. A discrete optimization problem consists of �nd-

ing the best possible solution from a �nite set of possibilities. It works with deterministic

models, where the relevant information is assumed to be known (without uncertainty).

Examples of some classical combinatorial optimization problems are the traveling sales-

man problem (Applegate et al., 2006), project scheduling (Araujo et al., 2020), vehicle

routing (Toth and Vigo, 2002) and timetabling problems (Fonseca et al., 2017).

A combinatorial optimization problem is formed by an objective function related to

a set of decision variables. The objective function is a real-valued function that can be

either minimized or maximized. The decision variables are limited by the constraints

imposed on them, generating a discrete set of feasible solutions.

Due to its potential for modeling real-world problems, combinatorial optimization

has signi�cative advances over the last decades. Some techniques that can be used

for solving such problems are Mixed-Integer Linear Programming (Jünger et al., 2009),

7

Background and Literature Review 8

Constraint Programming (Rossi et al., 2006), heuristics (Glover and Laguna, 1997a,b),

approximation algorithms (Kolliopoulos and Young, 2005; Lenstra et al., 1990) and hy-

brid algorithms (e.g., Mixed-Integer Linear Programming combined with heuristic meth-

ods (Ahuja et al., 2002; Boschetti et al., 2009), Constraint Integer Programming (Achter-

berg, 2007), and others). This thesis focus on Mixed-Integer Linear Programming for

solving combinatorial optimization problems.

2.2 Mixed-Integer Linear Programming

Mixed-Integer Linear Programming (MILP) deals with the minimization (or maximiza-

tion) of a linear objective function subject to one or more linear constraints, where at

least one of the decision variables can only assume integer values. A MILP model is

formally de�ned as:

c∗ = min {cTx | Ax ≤ b, l ≤ x ≤ u, x ∈ Rn, xj ∈ Z ∀j ∈ I} (MILP)

where c ∈ Rn represents the objective function coe�cients, A ∈ Rm×n is the constraint

matrix and b ∈ Rm is the right-hand side (RHS) of the constraints. Vectors l ∈ Rn

and u ∈ Rn are the lower and upper bounds for the decision variables, respectively.

Furthermore, N = {1, ..., n} is the index set of the decision variables x and I ⊆ N

contains the indices of the variables that need to be integral in every feasible solution. A

MILP model whose all of its decision variables are binary (i.e., 0 ≤ xj ≤ 1, xj ∈ Z,∀j ∈
N) is also called Binary Program (BP).

A feasible solution of a MILP model is a vector in the set:

X = {x ∈ Rn | Ax ≤ b, l ≤ x ≤ u, xj ∈ Z ∀j ∈ I}

A feasible solution x∗ ∈ X of a MILP model is optimal if its objective value satis�es

cTx∗ = c∗. A lower bound on the optimal solution value of a MILP model can be

obtained by solving its LP relaxation. The LP relaxation of a MILP model is obtained

when the integrality requirements are omitted:

Background and Literature Review 9

č = min {cTx | Ax ≤ b, l ≤ x ≤ u, x ∈ Rn} (LP)

This information is commonly used by the MILP solvers to explore promising nodes of

the branch-and-bound search tree and to prove the optimality of a given solution.

There is extensive research in the �eld of MILP in order to develop e�ective and

e�cient solution methods. Some of the most common solution methods used in the

literature are:

Branch-and-bound: consists of a systematic enumeration of the candidate solutions

by evaluating smaller subproblems of the original problem;

Cutting plane: tries to iteratively re�ne a feasible set or objective function by includ-

ing linear inequalities, referred to as cuts;

Branch-and-cut: combines a branch-and-bound algorithm with cutting planes;

Column generation: uses a decomposition scheme to create a master problem and

subproblems; iteratively solves the subproblems and uses the reduced cost to select

variables to add to the master problem; this process repeats until no more columns

with attractive reduced cost exist;

Branch-and-price: combination of branch-and-bound and column generation;

Heuristics and Metaheuristics: use strategies based on the knowledge of the prob-

lem to quickly �nd feasible, and hopefully good, solutions without ensuring that

an optimal (or even a feasible) solution is found.

2.2.1 Preprocessing

Preprocessing is an essential component in modern MILP solvers that reformulates a

problem in an e�ort to accelerate the solution process. Several preprocessing strate-

gies have been proposed in the literature and one of the precursors was the work of

Brearley et al. (1975), which describes some preprocessing techniques for mathematical

programming systems. Later, these techniques were inserted in the speci�c context of

MILP.

Background and Literature Review 10

A preprocessing component tries to reduce the dimension of a MILP model, strengthen

its LP relaxation and extract information that can be used in other solving steps. The

most common techniques are:

detection of inconsistent constraints: consists of discovering constraints that are

inconsistent with respect to the bounds of the variables, proving the infeasibility

of the problem;

elimination of redundant constraints: refers to the detection of constraints whose

removal from the problem does not change the feasible region;

strengthening the bounds of variables: tries to increase the lower bound or de-

crease the upper bound of the variables.

coe�cient improvement: updates the coe�cients of the constraint matrix, improving

its LP relaxation.

probing: refers to the identi�cation of relationships between some variables by analyz-

ing the impact of �xing them to one of their bounds.

Generally, a modern MILP solver employs some preprocessing techniques before

starting the branch-and-bound algorithm. However, these techniques can also be ap-

plied in internal nodes of the branch-and-bound tree. In this case, the impact of node

preprocessing is limited to its child nodes. Thus, it is important to evaluate whether

the time spent in node preprocessing is worthwhile. The works of Savelsbergh (1994),

Gamrath et al. (2015) and Achterberg et al. (2016) present detailed explanations of

preprocessing techniques.

2.2.2 Primal Heuristics

In the context of MILP, primal heuristics are algorithms used to �nd feasible, and

hopefully good, solutions in short execution times. However, there is no guarantee that

these methods can �nd an optimal solution and, in some cases, even �nding a feasible

solution is a hard task.

Primal heuristics play an important role in a MILP solver, since obtaining a feasible

solution in the early stages of the solving process has many advantages (Achterberg,

2007):

Background and Literature Review 11

• it proves that the model is feasible;

• the solving process can be stopped earlier if one can be satis�ed with the quality

of the solution;

• it helps to prune nodes in the branch-and-bound search tree, improving the per-

formance of this algorithm.

There exists a large variety of heuristics for MILP in the literature. One common

strategy is to use information from the LP relaxation to decide the next step. A way to

classify these methods is dividing them into four categories:

Rouding heuristics: try to round the solution values given by the LP relaxation, aim-

ing to �nd an integer solution that satis�es the constraints of the problem; ex-

amples: Relaxation Enforced Neighborhood Search (RENS) (Berthold, 2006) and

Octane (Balas et al., 2001);

Diving heuristics: iteratively solve the LP relaxation and �x an integer variable to

an integral value. examples: Fractional Diving (Berthold, 2006) and Guided Div-

ing (Danna et al., 2005);

Objective diving heuristics: iteratively solve the LP relaxation and change the ob-

jective value of an integer variable in order to drive this variable to a desired

direction; example: Feasibility Pump (Fischetti et al., 2005);

Improvement heuristics: try to construct a better solution starting from an initial

feasible one; examples: Local Branching (Fischetti and Lodi, 2003) and Relaxation

Induced Neighborhood Search (RINS) (Danna et al., 2005).

In addition to the techniques mentioned above, metaheuristics can be applied to

generate feasible solutions. A metaheuristic is a general framework that provides a set of

strategies to develop heuristic optimization algorithms. Some examples of metaheuristics

are Simulated Annealing (Kirkpatrick et al., 1983), Tabu Search (Glover and Laguna,

1998), Variable Neighborhood Search (Hansen and Mladenovi¢, 1999) and evolutionary

algorithms (Bäck et al., 1997). Instead of their general purpose, it is possible to design

e�ective heuristics based on metaheuristic rules for solving MILP models, such as the

Tabu Search heuristic presented by Lokketangen and Glover (1998) and the Variable

Neighborhood Search heuristic proposed by Hansen et al. (2006).

Background and Literature Review 12

2.2.3 Branch-and-bound

The branch-and-bound (B&B) algorithm was proposed by Land and Doig (1960) and is

used to solve combinatorial optimization problems. It is a recursive divide-and-conquer

approach that consists of conducting a search in the solution space for a given problem,

aiming to �nd an optimal solution. The calculation of upper and lower bounds of the

objective function allows the algorithm to search only a part of the solution space (Lawler

and Wood, 1966).

The term branch refers to the fact that the method partitions the solution space, and

the term bound emphasizes that the proof of optimality of the solution uses valid limits

to prune some nodes of the search tree. This algorithm recursively divides the problem

into smaller subproblems, based on the fact that the subproblems must be easier to solve

than the original problem.

A generic branch-and-bound algorithm for solving a given MILP model with an

objective function of minimization can be de�ned as:

1. Set L =∞.

2. Insert the original problem on the candidate list.

3. Select and remove a problem P from the candidate list.

4. Solve the LP relaxation of P to obtain the bound b(P).

(a) If the LP relaxation of P is infeasible, delete P .

(b) Otherwise, if b(P) ≥ L, delete P .

(c) Otherwise, if b(P) < L and the solution is feasible for the original MILP

model, set L = b(P).

(d) Otherwise, divide P into two or more subproblems and add them to the

candidate list.

5. If the candidate list is empty, the algorithm �nishes. Otherwise, go to step 3.

Three main steps compose a recursive call of a classical B&B algorithm: node se-

lection, production of two or more subproblems (branching) and evaluation of the new

subproblems (bounding). The algorithm maintains the current best integer solution and

updates it whenever a subproblem gives a better integer solution. At each recursive

Background and Literature Review 13

call, a lower bound for the current subproblem is calculated by solving its LP relax-

ation. This subproblem is stored in the candidate list if its lower bound is better than

the best solution. Otherwise, it is discarded. The search ends when there are no more

subproblems to be processed. Thus, the best current solution is the optimal solution to

the problem.

2.2.4 Cutting Planes

Instead of splitting a problem into smaller subproblems, one can try to tighten the LP

relaxation of a problem to obtain a stronger one. The LP relaxation can be tightened by

including linear constraints that are violated by the current solution of the LP relaxation

but do not cut o� feasible solutions from the original problem. These linear constraints

are known as valid inequalities or cuts.

A cutting plane is a method that iteratively tries to generate and insert valid in-

equalities into a problem, allowing to tighten the LP relaxation of a MILP model. A

generic cutting plane algorithm for solving a given MILP model can be de�ned as:

1. Solve the LP relaxation of the problem.

2. If the current LP relaxation is feasible for the original problem and the inte-

grality conditions of the variables are satis�ed, an optimal solution is found.

Stop.

3. Otherwise, generate a linear constraint that is violated by the current LP

relaxation but which does not cut o� any feasible solution of the original

problem. Go to step 1.

The insertion of valid inequalities �cuts� parts of a region that satis�es all constraints

of a problem but does not lead to feasible integer solutions. The process of generating

these inequalities is repeated until the LP relaxation is feasible and integrality constraints

are still violated for one or more variables. When the cutting plane algorithm �nishes,

it returns an optimal solution for the considered MILP model.

As an example, consider the following MILP model:

Background and Literature Review 14

min: − 6x1 − 5x2

subject to: 15x1 + 7x2 ≤ 49

2x1 + 4x2 ≤ 17 (2.1)

x1, x2 ≥ 0

x1, x2 ∈ Z

The gray area of Figure 2.1a corresponds to a feasible region of the LP relaxation of (2.1).

Still, the stars in black and gray represent an optimal solution for the LP relaxation and

for the original problem, respectively. Figure 2.1b shows the impact of adding the valid

inequality x1 + x2 ≤ 4 to (2.1).

1

2

3

4

1 2 3 4

15x1 + 7x2 ≤ 49

2x1 + 4x2 ≤ 17

x1

x2

(a) Initial LP relaxation of (2.1).

1

2

3

4

1 2 3 4

15x1 + 7x2 ≤ 49

2x1 + 4x2 ≤ 17

x1 + x2 ≤ 4

x2

x1

(b) LP relaxation of (2.1) after inserting a cut.

Figure 2.1: Improving the LP relaxation of (2.1) through the inclusion of the valid
inequality x1 + x2 ≤ 4.

The initial LP relaxation of (2.1) is č = −27.109, with x̌1 = 1.674 and x̌2 = 3.413.

The inclusion of the valid inequality x1 +x2 ≤ 4 allows to eliminate a region that do not

contains any integer feasible solution. Thus, the value of the LP relaxation changes to

č = −22.625, with x̌1 = 2.625 and x̌2 = 1.375. These values approximate to the optimal

solution for the considered MILP model, whose objective value c∗ = −22 is obtained

from x∗1 = 2 and x∗2 = 2.

Background and Literature Review 15

2.2.5 Branch-and-cut

Usually, solving MILP models with pure cutting plane methods shows a slow convergence

to the optimal solution. On the other hand, the performance of the branch-and-bound

algorithm can be considerably improved by the inclusion of cutting planes. The combi-

nation of these two approaches generates one of the most successful methods for solving

MILP models: the branch-and-cut (B&C) algorithm. Most modern MILP solvers are

based on this method.

A generic B&C algorithm for solving a given MILP model with an objective function

of minimization can be de�ned as:

1. Set L =∞.

2. Insert the original problem on the candidate list.

3. Select a problem P from the candidate list.

4. Solve the LP relaxation of P to obtain the bound b(P).

(a) If the LP relaxation of P is infeasible, delete P .

(b) Otherwise, if b(P) ≥ L, delete P .

(c) Otherwise, if b(P) < L and the solution is feasible for the original MILP

model, set L = b(P).

(d) Otherwise, try to generate valid inequalities for P .

i. If at least one valid inequality is inserted in the LP relaxation of P ,

go to 4.

ii. Otherwise, create new subproblems and add them to the candidate

list.

5. If the candidate list is empty, the algorithm �nishes. Otherwise, go to step 3.

In a branch-and-cut procedure, the branch-and-bound algorithm selectively explores

the search space with its divide and conquer approach, and the cutting planes strengthen

the bounds of the LP relaxations (step 4d). Heuristics can be performed when an integer

solution is found (step 4c) to improve this solution or before separating cuts (step 4d)

to generate a feasible solution.

The cutting planes can be carried out either at the initial LP relaxation or during

Background and Literature Review 16

the branching phase. Cuts generated by considering branching decisions are valid only

in a local part of the branch-and-bound search tree. These cuts have to be removed from

the LP relaxation after the search leaves the subtree for which they are valid. Globally

cuts can be used during the whole execution of the algorithm. Since several cuts can be

generated, maintain a cut pool is an essential task in the branch-and-cut execution.

The cut generation loop is the process of iteratively generating cuts, inserting them

into the model and resolving the LP relaxation. Many executions of this process can be

computationally expensive. For this reason, MILP solvers frequently de�ne a maximum

number of iterations of the cut generation loop.

2.3 Con�ict Graphs in Mixed-Integer Linear

Programming

A Con�ict Graph (CG) is a structure that stores assignment pairs of binary variables

which cannot occur in any feasible solution. It consists of an undirected graph with a

set of vertices V = {xj, x̄j : j = 1, ..., n} and a set of edges E = {(u, v) : (u, v) ⊂ V 2}.
In such structure, vertex xj represents the assignment of the associated variable to one

(xj = 1), while vertex x̄j corresponds to set the variable to zero (xj = 0). Thus, the

notation x̄j is used to denote the binary complement of variable xj (i.e., x̄j = 1−xj). The
assignment pairs represented by the edges in a CG are used to derive logical relations

and, consequently, the edge inequalities provided in Table 2.1.

Table 2.1: All possible logical relations between binary variables xj and xk.

edge logical relations edge inequality

(xj , xk) xj = 1 =⇒ xk = 0 xj + xk ≤ 1

xk = 1 =⇒ xj = 0

(x̄j , x̄k) xj = 0 =⇒ xk = 1 (1− xj) + (1− xk) ≤ 1

xk = 0 =⇒ xj = 1

(x̄j , xk) xj = 0 =⇒ xk = 0 (1− xj) + xk ≤ 1

xk = 1 =⇒ xj = 1

(xj , x̄k) xj = 1 =⇒ xk = 1 xj + (1− xk) ≤ 1

xk = 0 =⇒ xj = 0

Background and Literature Review 17

An example of a con�ict graph with three variables {x1, x2, x3} is presented in Fig-

ure 2.2. There is an edge linking each variable to its complement since only one must

be equal to one in any feasible solution. Dashed lines in Figure 2.2 denote these trivial

con�icts. The con�ict graph of this �gure generates three edge inequalities:

x1 + x2 ≤ 1

x2 + x̄3 ≤ 1⇒ x2 − x3 ≤ 0

x̄2 + x̄3 ≤ 1⇒ x2 + x3 ≥ 1

x1 x3x2

x2x1 x3

Figure 2.2: An example of a con�ict graph.

Generally, a graph with only a subset of all con�ict edges is constructed, since

building the full CG is NP -hard. Deciding the feasibility of a binary program is NP -

complete (Garey and Johnson, 1979), and this task can be done by constructing and

analyzing the full CG: a binary program is infeasible if and only if its associated CG is

a complete graph.

A clique is an important concept related to con�ict graphs and employed in this

thesis. A clique C of a graph G is a complete subgraph of G, i. e., each pair of vertices

in C is connected by an edge. A maximal clique is a clique to which no more vertices

can be added. In the graph of Figure 2.2, the subset of vertices {x2, x̄2, x̄3} de�nes a
maximal clique of size three.

2.4 Literature Review

The primary use of CGs is in the generation of cutting planes. However, there are

works in the literature that use these structures in di�erent stages of the MILP solving

Background and Literature Review 18

process, such as in preprocessing steps. The following paragraphs present a literature

review regarding the construction and use of con�ict graphs and their variants.

A structure used to manipulate con�icts involving binary variables of MILP models

is the intersection graph, introduced by Padberg (1973). An intersection graph is an

undirected graph with a set of vertices V = {xj : j = 1, ..., n} and a set of edges

E = {(u, v) : (u, v) ⊆ V 2}, constructed from the analysis of set packing constraints

(
∑

j∈C xj ≤ 1, xj ∈ {0, 1} ∀j ∈ C). There is an edge linking two vertices if their

corresponding variables appear together in at least one set packing constraint. From this

de�nition, it is possible to conclude that the concept of con�ict graph is a generalization

of the intersection graph: for a given MILP model, any edge of the intersection graph is

also an edge of the con�ict graph. The author uses these graphs to study and identify

facets of the set packing polyhedron. The �rst set of facets identi�ed for this polyhedron

is formed by cliques, while the second set comprises the odd cycles without chords.

Johnson and Nemhauser (1992) summarize some advances in mathematical program-

ming, including improvements in the MILP methodology. An approach to the detection

of logical relations in knapsack constraints (
∑

j∈C ajxj ≤ b, aj > 0, xj ∈ {0, 1} ∀j ∈ C)
is given. Considering two particular variables xj and xk of a knapsack constraint, a

logical relation xj + xk ≤ 1 is detected if aj + ak > b, where b is right-hand side of this

constraint and aj and ak are the coe�cients of the variables xj and xk. The authors also

point that these logical relations can be used to generate clique inequalities, contributing

to improve the value of the LP relaxation of a MILP model.

Ho�man and Padberg (1993) construct and use intersection graphs for solving the

airline crew scheduling problem. The intersection graphs are constructed similarly as

presented by Padberg (1973). The authors present a branch-and-cut approach that uses

these graphs to preprocess the problems and to generate clique and odd-cycle inequal-

ities. The graph-based preprocessing routine tries to extend the cliques formed by set

partitioning constraints (
∑

j∈C xj = 1, xj ∈ {0, 1} ∀j ∈ C). If the extension is success-

fully performed, then it is possible to remove some variables of the original problem.

Clique inequalities are generated by a routine that combines heuristics and enumeration

schemes. The generation of odd-cycle inequalities is done by a shortest path algorithm

that runs in an auxiliary bipartite graph. Computational results show that the developed

branch-and-cut is able to solve even large-size instances of the airline crew scheduling

problem.

Aiming to improve the representation of MILP models, Savelsbergh (1994) presents

Background and Literature Review 19

a framework for describing preprocessing and probing techniques. This work gives an

overview of simple and advanced preprocessing and probing techniques. Such techniques

are used to derive logical implications between variables and, consequently, to build im-

plication graphs. Di�erent from the concept of logical relation explored before, that

only considers the relation between two binary variables, a logical implication can also

involve the relationship between binary and continuous variables or between binary and

integer variables. The logical implications discovered during the execution of prepro-

cessing and probing techniques are used to eliminate variables and generate clique and

implication inequalities. Computational results demonstrate the e�ectiveness of these

techniques in reducing the integrality gap and the overall e�ort required to solve most

of the considered problem instances.

Bixby and Lee (1998) use information from the con�ict graphs in a branch-and-cut

algorithm for solving the truck dispatching scheduling problem. This problem is modeled

as knapsack equality constraints (
∑

j∈C ajxj = b, aj > 0, xj ∈ {0, 1} ∀j ∈ C), and the

developed branch-and-cut algorithm is based on the ideas of Ho�man and Padberg

(1993). The construction of the con�ict graphs is given by the analysis of knapsack

constraints, considering the same approach presented by Johnson and Nemhauser (1992).

Clique and odd-cycle inequalities are generated from a subgraph induced by the variables

whose values at the solution of the LP relaxation are fractional. Both cut generation

routines are based on greedy heuristics. Experiments indicate that the branch-and-cut

algorithm signi�cantly reduces the total CPU time to solve some hard instances of the

truck dispatching scheduling problem.

Borndorfer (1998) explores the concept of intersection graphs and presents a branch-

and-cut algorithm for the solution of set partitioning problems. One initial application

that uses intersection graphs is a preprocessing routine that eliminates binary variables

by extending set partitioning constraints (the same idea was presented by Ho�man and

Padberg (1993)). The developed cut separation routines work with subgraphs induced

by the variables whose values at the solution of the LP relaxation are fractional. Clique

inequalities are generated by three procedures. The �rst procedure is responsible for

heuristically extending a clique extracted directly from a constraint. The second proce-

dure uses a greedy strategy, which constructs a clique by iteratively selecting variables

in non-decreasing order of their values at the solution of the LP relaxation. The last

clique separator combines a branch-and-bound algorithm with a heuristic, avoiding the

exploration of a large set of nodes. Odd-cycle inequalities are also separated during the

execution of the branch-and-cut algorithm. This separator runs Dijkstra's algorithm in

Background and Literature Review 20

an auxiliary bipartite graph for �nding the shortest paths and, consequently, discover-

ing odd cycles from the intersection graph. Computational experiments show that the

branch-and-cut algorithm is able to solve very large set-partitioning problems. Further-

more, the results demonstrate the importance of combining heuristics, preprocessing and

cut separation routines for solving problems of this nature.

Atamtürk et al. (2000) use con�ict graphs for improving the performance of integer

programming solvers. The authors develop algorithms and data structures that allow

the construction, management and use of dynamically changing con�ict graphs. They

construct con�ict graphs from the detection of generalized upper bound constraints

(
∑

j∈C xj ≤ 1, xj ∈ {0, 1} ∀j ∈ C) and using probing techniques based on feasibility

and optimality considerations. A two-dimensional linked list structure is responsible

for storing generalized upper bound constraints since all variables are con�icting in

this type of constraint. In addition to saving memory, this structure supports fast

checking of whether two variables are con�icting. Edges derived by probing are stored

in a data structure composed of three one-dimensional arrays, which allows for easy

addition of new edges and easy access to the edges incident to a given vertex. Once

constructed and stored, the graphs are used in a preprocessing step to improve the lower

and upper bound of the variables, and in a cut separation routine to generate clique

inequalities. Computational results show that the proposed con�ict graph storage and

management are e�ective and e�cient. Furthermore, the results con�rm the importance

of preprocessing and cut separation routines in solving integer programs.

Achterberg (2007) presents Constraint Integer Programming, a new paradigm that

integrates Constraint Programming and MILP modeling and solving techniques. It is a

generalization of MILP that supports the notion of general constraints as in Constraint

Programming. The author also describes the software SCIP, a solver and framework

for this new paradigm. An algorithm detects logical implications of a constraint integer

program and stores them in an implication graph. Con�icts involving binary variables

are discovered during the presolving step, where cliques are extracted from knapsack

constraints. The clique extraction procedure is faster than the pairwise inspection per-

formed by the probing techniques used by Savelsbergh (1994) and Atamtürk et al. (2000),

since several con�icts are detected just traversing a constraint once. Con�icts involving

several variables simultaneously are stored in a clique table to avoid excessive mem-

ory consumption. The implication graph is used to derive preprocessing and presolving

algorithms, branching strategies and cut generation routines. A cut generation rou-

tine that uses information from the implication graph is the clique separator, which

Background and Literature Review 21

separates clique inequalities in a heuristic fashion. Several computational experiments

are performed to measure the impact of each component in solving constraint integer

programs. Furthermore, the results show that SCIP is almost competitive to current

state-of-the-art commercial MILP solvers.

Santos et al. (2016) present some integer programming techniques to solve the nurse

rostering problem. One of these techniques uses information from con�ict graphs to

generate valid inequalities. The authors construct con�ict graphs by detecting gener-

alized upper bound constraints and performing probing techniques. They also derive

some implications from speci�c constraints of the problem. Then, these graphs are used

to separate clique and odd-cycle cuts. The clique cut separator uses the Bron-Kerbosch

algorithm (Bron and Kerbosch, 1973) with a pivoting rule to separate all violated cliques

in the subgraph induced by the fractional variables. The odd cycles are separated by

constructing an auxiliary bipartite graph and running the Dijkstra's algorithm. Com-

putational experiments show that the clique cut separator plays an important role in

reducing the gap between the LP relaxation and the optimal solution. However, the

insertion of odd-cycle cuts has no signi�cant impact on the reduction of this gap.

Following a similar strategy of the work mentioned before, Araujo et al. (2020) con-

struct con�ict graphs according to the analysis of problem-speci�c constraints. The

authors derive four types of con�icts that appear in a MILP formulation for the resource-

constrained project scheduling problem. Routines for separating con�ict-based cuts are

presented. The clique and odd-cycle cut separators are the same presented by Santos

et al. (2016). They also present a routine that considers con�ict graphs for generating

strengthened Chvátal-Gomory cuts. Results show a considerable improvement in the

LP relaxation bounds, allowing a state-of-the-art MILP solver to �nd optimal solutions

for several open instances of the considered problem.

Table 2.2 presents a summary of the related works discussed above. Columns �pre-

proc�, �heur� and �cut gen� indicate if the related works use con�ict graphs (or their

variants) to implement preprocessing algorithms, heuristics or cut generation routines,

respectively. The last line of Table 2.2 contains information about the use of con�ict

graphs in this thesis.

Background and Literature Review 22

Table 2.2: A summary of related works.

work graph type construction method preproc heur cut gen

Padberg (1973) intersection graph logical relations from set pack-
ing constraints

X

Johnson and Nemhauser (1992) con�ict graph logical relations from knapsack
constraints

X

Ho�man and Padberg (1993) intersection graph logical relations from set pack-
ing constraints

X X

Savelsbergh (1994) implication graph probing techniques X X

Bixby and Lee (1998) con�ict graph logical relations from knapsack
constraints

X X

Borndorfer (1998) intersection graph logical relations from set pack-
ing constraints

X X

Atamtürk et al. (2000) con�ict graph probing techniques X X

Achterberg (2007) implication graph probing techniques and extrac-
tion of cliques from knapsack
constraints

X X

Santos et al. (2016) con�ict graph probing and logical rela-
tions from problem-speci�c
constraints

X

Araujo et al. (2020) con�ict graph logical relations from problem-
speci�c constraints

X

this thesis con�ict graph logical relations from knapsack
constraints

X X X

It is worth mentioning that there is a wide range of works in the literature that use

con�ict graphs in solving MILP models. The main application for con�ict graphs is the

generation of clique and odd-cycle inequalities. In fact, the process of separating these

inequalities always requires the de�nition of an implicit or explicit graph. In general, the

works in the literature that use con�ict graphs employ one of the previously mentioned

forms of construction of these structures.

In this thesis, the con�ict graphs are constructed by extracting cliques from knapsack

constraints. It is used the clique extraction algorithm described by Achterberg (2007)

with the insertion of a new step that enables the detection of additional maximal cliques

without increasing the computation e�ort. Optimized data structures for the con�ict

storage are also designed, allowing to handle dense con�ict graphs without incurring

excessive memory usage.

This thesis also presents con�ict graph-based routines that contribute to solving

MILP models: a preprocessing algorithm, two diving heuristics for obtaining feasible

integer solutions and two cut separation routines. The cut separation routines are im-

proved versions of those presented by Santos et al. (2016) and Araujo et al. (2020): the

Bron-Kerbosch algorithm used in the clique separator has optimized data structures and

Background and Literature Review 23

a di�erent pivoting rule, while the odd-cycle separator has a new lifting module.

2.5 Instance Sets

The instances used in the computational experiments of this thesis consist of 320 mixed

integer programs found in the literature, most of which belong to the current and previ-

ous versions of the Mixed Integer Problem Library (MIPLIB) benchmark set (Gleixner

et al., 2018). MIPLIB is a standard library of tests used to compare the performance of

MILP solvers, containing a collection of challenging real-world instances from academic

and industrial applications.

Our instance set also contains some classical problems of optimization such as Bin

Packing with Con�icts (Sadykov and Vanderbeck, 2013), Nurse Rostering (Haspeslagh

et al., 2014), Bandwidth Multicoloring Problem (Dias et al., 2016) and Educational

Timetabling (Fonseca et al., 2017). Thus, the instances were divided into �ve instance

sets:

bmc: instances of Bandwidth Multicoloring Problem;

bpwc: instances of Bin Packing Problem with Con�icts;

miplib: instances of MIPLIB;

rostering: instances of Nurse Rostering problem;

timetabling: instances of Educational Timetabling.

The objective function of all MILP models considered in this thesis are of minimiza-

tion type. Table 2.3 contains summarized information concerning the instance sets. In

this table, column �size� presents the number of instances of each instance set and �cols�

contains the average number of variables. Columns �int�, �bin� and �con� present, respec-

tively, the average number of integer, binary and continuous variables of each instance

set. Finally, columns �rows� and �nz� detail information with respect to the average

number of constraints and nonzeros coe�cients of each instance set.

Background and Literature Review 24

Table 2.3: Characteristics of the instance sets used in the experiments.

group size cols int bin con rows nz

bmc 9 15,606.33 0.00 15,605.33 1.00 398,899.89 813,363.11

bpwc 20 13,223.40 0.00 13,223.40 0.00 148,569.05 322,656.10

miplib 253 38,603.17 343.98 24,953.26 13,305.94 44,159.98 515,170.28

rostering 22 35,054.77 4.45 35,050.32 0.00 14,082.41 626,280.73

timetabling 16 20,768.25 10,828.75 9,939.50 0.00 40,902.94 159,929.25

We do not consider infeasible instances and instances which do not contain binary

variables. Detailed information about the instance sets is presented in Table A.1 in the

appendix.

Chapter 3

Building Con�ict Graphs

CGs can be constructed using a probing technique based on feasibility considerations.

This technique consists of tentatively setting binary variables to one of their bounds and

checking whether the problem becomes infeasible as a result (Savelsbergh, 1994). Thus,

the edges of CGs can be obtained by analyzing the impact of �xing pairs of variables to

di�erent combinations of values.

This chapter explains the probing technique presented by Atamtürk et al. (2000) and

details a faster approach to construct CGs. For ease of presentation and understanding,

the remainder of this chapter only considers binary programs. Despite this, all of the

techniques presented can be applied to any MILP model containing binary variables.

3.1 Probing Technique Based on Feasibility Condi-

tions

Suppose we are analyzing a constraint with the format:

∑
j∈B

ajxj ≤ b, (3.1)

where B is the index set of binary variables x with non-zero coe�cients in this constraint.

Suppose also that we are investigating the impact of �xing two binary variables xp and

25

Building Con�ict Graphs 26

xq to values v1 and v2, respectively. A valid lower bound for the left-hand side (LHS) of

this constraint considering the assignments xp = v1 and xq = v2 is:

Lxp=v1,xq=v2 = v1 · ap + v2 · aq +
∑

j∈B−\{p,q}

aj,

where B− is the index set of variables with negative coe�cients in the considered con-

straint. In this case, we consider the activation of the variables with negative coe�cients

to decrease the value of Lxp=v1,xq=v2 as much as possible. If Lxp=v1,xq=v2 > b, then there

is a con�ict between the assignments of xp and xq. Thus, we insert the corresponding

edge in the graph.

This computation is performed for each pair of variables in each constraint in order

to obtain a CG. Therefore, given a MILP model with m constraints and n variables,

its associated CG is constructed in O(mn2) steps. For this reason, probing may be

computationally expensive for MILP models with a large number of variables and dense

constraints. Nevertheless, for some constraint types, a large number of con�icts can be

quickly discovered without having to conduct a pairwise inspection. For instance, in

set packing and set partitioning constraints each variable has a con�ict with all others,

explicitly forming a clique. These constraints can be written as:

∑
j∈C

xj ≤ 1, xj ∈ {0, 1} ∀j ∈ C (set packing)∑
j∈C

xj = 1, xj ∈ {0, 1} ∀j ∈ C (set partitioning)

Set packing and set partitioning constraints often appear in MILP models to represent

the choice of at most one (or exactly one) decision over a set of possibilities. As mentioned

in Section 2.4, graphs that are constructed by only considering these constraints are

denoted as intersection graphs.

Depending on the problem instance, intersection graphs can be very sparse, contain-

ing, for example, only trivial con�icts. In these cases, it may be necessary to execute an

algorithm that analyzes other types of constraints and �nds additional con�icts.

Building Con�ict Graphs 27

Considering the importance of CGs in solving MILP models and aiming to accelerate

the process of building these structures, Achterberg (2007) developed a fast algorithm to

extract cliques from constraints. We improved this algorithm by inserting an additional

step that detects a higher number of maximal cliques. Additionally, we designed and

implemented data structures that selectively store con�icts pairwise or grouped in cliques

to handle dense CGs without incurring excessive memory usage. Details of our con�ict

graph infrastructure are given in the following section.

3.2 Fast Detection of Con�icts

One way to accelerate the construction of CGs is detecting con�icts involving several

variables simultaneously without using the pairwise inspection scheme. Following this

idea, Achterberg (2007) developed an algorithm that extracts cliques in less-structured

constraints, that is, constraints that do not form a clique explicitly, by only traversing the

constraint once. In addition to improve the process of building CGs, the early detection

of cliques also allows for more e�cient storage of the con�icts since explicit pairwise

con�ict storage can prove impractical for dense graphs. Thus, one can make use of

special data structures where large cliques are not stored as multiple edges, like the one

proposed by Atamtürk et al. (2000). Alternatively, graph compression techniques such

as GraphZIP (Rossi and Zhou, 2018) could be employed to represent CGs succinctly.

We developed an improved version of the algorithm presented by Achterberg (2007)

to construct CGs. This algorithm exploits the fact that any linear constraint involving

only binary variables can be rewritten as a knapsack constraint similar to (3.1), with

b > 0 and aj > 0 for each j in the index set B of binary variables x. Sometimes,

transformations on the linear constraints are necessary to rewrite them in this format:

for a variable xj with a negative coe�cient aj, we must consider the absolute value |aj|,
replace the variable by its complement x̄j and update the RHS by adding |aj|. For

instance, the linear constraint x1 + x2 − 2x3 ≤ 0 can be rewritten as x1 + x2 + 2x̄3 ≤ 2.

Algorithm 3.1 presents our strategy to detect cliques on a given knapsack constraint.

The �rst step is to sort the index set of variables B in non-decreasing order of their

coe�cients. Next, we check if there are cliques in the constraint, by considering the

activation of the two variables with the largest coe�cients (line 2). If this assignment

does not violate the RHS of the constraint, we can ignore the possibility of the existence

of con�icts and the algorithm �nishes (line 3). Otherwise, we perform a binary search

Building Con�ict Graphs 28

to �nd the smallest k in B such that ajk + ajk+1
> b (line 5). Once we found the value

of k, a clique C involving variables {xjk , xjk+1
, ..., xjn} is detected (line 6). This clique is

then stored in clique set S (line 7) and the algorithm continues.

Algorithm 3.1: Clique Detection
Input: Linear constraint

∑
j∈B ajxj ≤ b.

Output: Set of cliques S.
1 Sort index set B = {j1, ..., jn} by non-decreasing coe�cient value aj1 ≤ ... ≤ ajn ;
2 if ajn−1 + ajn ≤ b then
3 return ∅;
4 S ← ∅;
5 Find the smallest k such that ajk + ajk+1

> b;
6 C ← {xjk , ..., xjn};
7 S ← S ∪ {C};
8 for o = k − 1 downto 1 do
9 Find the smallest f such that ajo + ajf > b;
10 if f exists then
11 A← {xjo} ∪ {xjf , ..., xjn};
12 S ← S ∪ {A};
13 else

14 break;

15 return S;

After �nding C, the algorithm then attempts to detect additional maximal cliques.

The strategy proposed by Achterberg (2007) consists of iteratively trying to replace

the variable with the smallest coe�cient in clique C by one of the variables outside

C, maintaining the clique property. The disadvantage of this approach is that the

additional cliques always di�er in only one variable from the initial clique C. As such,

cliques formed by a subset of variables of C and a variable outside C are not detected

on the current constraint. This situation is solved using our new step for detecting

additional maximal cliques, which occurs at lines 8 to 14 of Algorithm 3.1. For each

variable at position o outside clique C, a binary search is performed to �nd the smallest

f such that the assignment pair (xjo = 1, xjf = 1) violates the constraint. If f exists,

then an additional clique A formed by variable xjo and the subset {xjf , ..., xjn} of C is

detected and stored. The algorithm stops when the binary search �nds no results. The

failure to �nd a position f indicates that there are no additional cliques on the constraint

since the coe�cients are ordered.

Algorithm 3.1 detects and stores cliques in O(n log n) steps on a given constraint with

Building Con�ict Graphs 29

n variables. In this algorithm, sorting a constraint (line 1) is O(n log n), detecting an

initial clique (line 5) is O(log n), storing an initial clique (6 to 7) is O(n), and detecting

and storing additional cliques (lines 8 to 14) is O(n log n). Thus, a con�ict graph for

a MILP model with m constraints and n variables is constructed in O(mn log n) steps,

since we run Algorithm 3.1 for each constraint.

It is important to note that detecting and storing additional cliques would spend

O(n2) steps if we explicitly store all the contents of these cliques. With this approach,

we would have to iterate over all elements of a detected clique to store it. Consequently,

the worst-case complexity of Algorithm 3.1 would be O(n2). However, any additional

clique A that can be found by this algorithm is always formed by a subset C ′ of the �rst

clique C and one variable outside C. For this reason, we implemented data structures

that store only C completely. For each additional clique A, we store a tuple containing

the variable outside C and the �rst position of C where the subset C ′ starts. Therefore,

storing an additional clique is O(1) and, consequently, the loop that extracts additional

cliques (lines 8 to 14 of Algorithm 3.1) is O(n log n). Details about the data structures

used to store con�ict graphs are given in the next subsections.

Discarding the existence of cliques on a constraint at the �rst steps of the algorithm

(lines 2 and 3) does not change its worst-case complexity. However, in practice, the

execution time can be considerably reduced when the algorithm analyzes constraints with

a large set of non-con�icting variables. The same e�ect occurs with the use of a binary

search to detect the �rst clique (line 5), and the early termination of the algorithm when

there are no additional cliques to be detected (lines 13 and 14). These simple mechanisms

also represent a contribution to the algorithm proposed by Achterberg (2007).

The following example illustrates how our algorithm for detecting cliques on con-

straints works and compares the detected con�icts with the ones that could be found by

the approach developed by Achterberg (2007).

Example Consider linear constraints:

−3x1 + 4x2 − 5x3 + 6x4 + 7x5 + 8x6 ≤ 2

x1 + x2 + x3 ≥ 1

Building Con�ict Graphs 30

where all variables are binary. The �rst step involves rewriting the constraints as knap-

sack constraints:

3x̄1 + 4x2 + 5x̄3 + 6x4 + 7x5 + 8x6 ≤ 10 (3.2)

x̄1 + x̄2 + x̄3 ≤ 2 (3.3)

Both constraints are already ordered according to their coe�cients. We begin by an-

alyzing constraint (3.2). First, we check for the existence of cliques in this constraint.

When we activate the two variables with the largest coe�cients (x5 = 1 and x6 = 1),

we obtain a5 + a6 = 7 + 8 = 15 > 10. For this reason, we cannot discard the existence

of cliques in this constraint. As such, we must now determine the smallest k such that

ajk + ajk+1
> 10. In this case, for k = 3 we have a3 + a4 = 5 + 6 = 11. Consequently,

clique C = {x̄3, x4, x5, x6} is detected and stored. The next step consists of �nding

cliques involving variables x̄1 and x2 outside C. For variable x2, we perform a binary

search that returns f = 5 since a2 + a5 = 4 + 7 = 11 > 10. Therefore, clique {x2, x5, x6}
is detected. Finally, for x̄1 the binary search �nds that a1 + a6 = 3 + 8 = 11 > 10,

returning f = 6. Thus, clique {x̄1, x6} is also discovered. It is important to note that if

we used the algorithm proposed by Achterberg (2007), cliques {x2, x5, x6} and {x̄1, x6}
would not have been detected. As the last step, we analyze constraint (3.3). For this

constraint we can discard the existence of cliques, since a2 + a3 = 1 + 1 = 2 ≤ 2.

3.2.1 Space E�cient Data Structures

Data structures that e�ciently store the cliques extracted from constraints are crucial

in our algorithm. As mentioned before, explicitly storing all elements of all cliques

extracted from a constraint increases the computational e�ort to construct CGs.

In Algorithm 3.1, after an initial clique C is found, any additional clique A is al-

ways a subset C ′ ⊂ C plus a variable outside C. Moreover, given a clique C =

{xjk , xjk+1
, ..., xjn}, any subset of C that composes an additional clique A always has the

form C ′ = {xjl , xjl+1
, ..., xjn}, where l > k. Thus, an additional clique A = {xjo∪C ′} can

be represented by a tuple containing variable xjo and the �rst variable xjl of C where

subset C ′ starts.

We use three arrays to store the extracted cliques. A two-dimensional array, referred

Building Con�ict Graphs 31

to here as first, stores the initial cliques extracted from the constraints. Each row in

first stores the elements of a clique. The array entry size[c] contains the size of the

c-th clique of first. The last array, denoted as addtl, stores the additional cliques. In

this array, a clique is represented by a tuple of the form (xo, c, l), which means that it is

composed by variable xo and all variables at positions l to size[c] of the c-th clique of

first.

Additionally, auxiliary arrays are used to store, for each variable, the indexes of

first and addtl that contain cliques involving this variable. These structures are used

to implement queries on the CG. The array entry adjfirst[j] contains the indexes of

cliques stored in first that involve variable xj. The number of cliques in first that

contain xj is stored in sizeaf[j]. Arrays adjaddtl and sizeaa work in a similar way,

but considering the cliques stored in addtl.

Figure 3.1 illustrates how our data structures work. This �gure considers the cliques

presented in Table 3.1, which contains an example of cliques that can be found by

Algorithm 3.1. We start storing the �rst clique {x3, x4, x5, x6} of constraint 1 at the �rst

row of first. Then, the additional cliques of constraint 1 are converted in tuples and

inserted in addtl:

• clique {x2, x5, x6} is converted on tuple (x2, 1, 3), since it is composed by variable

x2 and subset {x5, x6}, which starts at index 3 of the �rst clique of first;

• clique {x1, x6} is converted on tuple (x1, 1, 4), since it is composed by variable x1

and subset {x6}, which starts at index 4 of the �rst clique of first.

Table 3.1: An example of cliques obtained after running Algorithm 3.1 in three con-
straints.

constraint �rst clique additional cliques

1 {x3, x4, x5, x6} {x2, x5, x6}
{x1, x6}

2 {x2, x6, x8}
3 {x4, x6, x8, x9, x10} {x3, x6, x8, x9, x10}

{x2, x6, x8, x9, x10}
{x1, x9, x10}

Building Con�ict Graphs 32

5

(x2, 1, 3)
(x1, 1, 4)
(x3, 3, 2)
(x2, 3, 2)
(x1, 3, 4)

1
2
3
4

addtl

x3 x4 x5 x6

x2 x6 x8

x4 x6 x8 x9 x10

1 2 3 4 5

1
2
3

first

4
3
5

1
2
3

size

0
1
1

1
2
3

2
1
3

4
5
6

0
2
1

7
8
9

110

0
1
1

1
2
3

2
1
3

4
5
6

0
2
1

7
8
9

110

sizeafadjfirst

2
1

1
2
3

1 3
1
1 2 3

4
5
6

3

7
8
9

310

1 2 3

2 3

sizeaa

2
2
1

1
2
3

0
1
4

4
5
6

0
2
3

7
8
9
10 3

adjaddtl

1
3

1
2
3

2 3

4
5
6

4
7
8
9
10

25

4

4 5
4 5

2

1 2 3 4

1
1

3
3
3

4

Figure 3.1: Filled data structures for the cliques of Table 3.1.

Following, clique {x2, x6, x8} of constraint 2 is stored at the second row of first.

This constraint does not have additional cliques. Finally, clique {x4, x6, x8, x9, x10} of
constraint 3 is stored at the third row of first and the three additional cliques of this

constraint are stored in addtl:

• {x3, x6, x8, x9, x10} is stored as (x3, 3, 2);

• {x2, x6, x8, x9, x10} is stored as (x2, 3, 2);

• {x1, x9, x10} is stored as (x1, 3, 4).

3.2.2 Query E�cient Data Structures

The use of the data structures previously presented allows reducing the computational

e�ort required to build CGs. It not only accelerates the construction process but also

Building Con�ict Graphs 33

decreases the memory required to store a graph. However, the cost of making queries

in these data structures increases according to the number of cliques stored by it. For

example, the worst case of a query that returns all variables con�icting with a given

variable occurs when we iterate over all cliques of a graph. The execution of this query

in a graph with a large number of cliques could spend considerable time. This query

would be faster if we use adjacency lists for each variable, explicitly storing all con�icting

variables. In contrast, the use of adjacency lists increases the memory consumption and

the computational e�ort required to build CGs, especially for the dense ones. Hence,

there is a tradeo� between the computational e�ort and memory requirements to build

and store a con�ict graph, and the performance of querying it.

We implemented a hybrid solution that tries to limit the memory consumption of

the con�ict graph without signi�cantly a�ecting the time spent to construct and query

this structure. This solution uses the data structures presented before and maintains

an adjacency list for each vertex. The array of adjacency lists is referred to here as

adjlist and each array entry adjlist[j] contains a set of variables con�icting with

variable xj. The adjacency list of each vertex is kept sorted so that queries in it can be

performed in O(log n). A parameter minClqSize controls how the cliques are stored.

After creating a con�ict graph, we iterate over the cliques in first and addtl and

remove those whose sizes are less than or equal to minClqSize. These small cliques are

now stored as multiple pairs of con�icts in the adjacency lists of the vertices involved.

Thus, large cliques are explicitly stored in first and addtl, while the small cliques are

stored as multiple pairs of con�icts in adjlist.

Checking if two variables are con�icting is a query that frequently appears in con�ict

graph-based routines. Algorithm 3.2 implements this query method. Two variables xj
and xk are con�icting if xk appears in the adjacency list of xj (or vice-versa) or if they

appear together in at least one clique. First, we perform a binary search to test if xk
exists in adjlist[j](lines 1 and 2). If adjlist[j] contains xk, variables xj and xj are

con�icting and the algorithm �nishes. Otherwise, the algorithm iterates over the cliques

of first (lines 3 to 6) and addtl (lines 7 to 15) that contain xj. At each iteration, if

the current clique contains variable xk, then xj and xk are con�icting and the algorithm

�nishes returning TRUE. Otherwise, the algorithm continues iterating over the cliques

that contain xj. After iterating over all these cliques and �nding none of them that also

contains xk, the algorithm return FALSE, indicating that xj and xk are not con�icting.

When iterating over array addtl, the algorithm has to convert each tuple (xo, c, l) in a

clique (lines 10 to 13). This clique is formed by variable xo and the variables in array

Building Con�ict Graphs 34

entries {first[c][l], first[c][l + 1], ..., f irst[c][size[c]]}.

Algorithm 3.2: Checking if two variables are con�icting.
Input: Variables xj and xk.
Output: TRUE if xj and xk are con�icting, or FALSE otherwise.

1 if adjlist[j] contains xk then
2 return TRUE;

3 for i = 1 to sizeaf [j] do
4 p← adjfirst[j][i];
5 if first[p] contains xk then
6 return TRUE;

7 for i = 1 to sizeaa[j] do
8 p← adjaddtl[j][i];
9 (xo, c, l)← addtl[p];
10 A← {xo};
11 while l ≤ size[c] do
12 A← A ∪ {first[c][l]};
13 l← l + 1;

14 if A contains xk then
15 return TRUE;

16 return FALSE;

Another query method that is frequently employed in routines based on CGs is

the one that returns all variables con�icting with a given variable xj. Algorithm 3.3

presents an implementation of this query method considering our data structures. First,

it gets the con�icting variables stored in the adjacency list of xj (line 1). Then, it

uses the auxiliary arrays to iterate over the cliques of first (lines 2 to 6) and addtl

(lines 7 to 15) that contain xj. At each iteration, the elements of the current clique,

except xj, are inserted in Q. The process of decoding a tuple (xo, c, l) is the same as

previously presented for Algorithm 3.2.

Building Con�ict Graphs 35

Algorithm 3.3: Getting the variables con�icting with xj.
Input: Variable xj.
Output: A set Q of variables con�icting with xj.

1 Q← adjlist[j];
2 for i = 1 to sizeaf [j] do
3 c← adjfirst[j][i];
4 for l = 1 to size[c] do
5 if first[c][l] 6= xj then
6 Q← Q ∪ {first[c][l]};

7 for i = 1 to sizeaa[j] do
8 p← adjaddtl[j][i];
9 (xo, c, l)← addtl[p];
10 if xo 6= xj then
11 Q← Q ∪ {xo};
12 while l ≤ size[c] do
13 if first[c][l] 6= xj then
14 Q← Q ∪ {first[c][l]};
15 l← l + 1;

16 return Q;

The queries in our con�ict graph infrastructure are e�cient when most of the cliques

are stored as multiple pairs of con�icts in the adjacency list of the vertices. In fact, for

typical instance problems of MIPLIB (Gleixner et al., 2018), the queries in the con�ict

graphs are faster when we set minClqSize = 512. In these con�ict graphs, just a small

set of con�icts are explicitly stored as cliques.

3.3 Computational Results

A computational experiment was conducted to compare the performance of our al-

gorithm for building CGs, named as ICE, against the pairwise inspection scheme of

Atamtürk et al. (2000), referred to here as PI, and the clique extraction algorithm of

Achterberg (2007), denoted as CE. This experiment was carried out on four computers

with Intel Core i7-4790 3.60 GHz processors and 32 GB of RAM running Ubuntu Linux

version 18.04 64-bit. The source code was developed in C++ programming language

and compiled with g++ version 7.4.0.

The algorithms for building con�ict graphs were evaluated concerning the execution

Building Con�ict Graphs 36

times and memory usages. PI and CE were implemented according to the descriptions

given in their respective works. Since PI only detects pairs of con�icts, we use an

adjacency list for each vertex of the graph. The con�ict storage of CE uses the same

data structures employed in our algorithm.

In this experiment, PI failed to construct graphs for eight instances: eilA101-2,

eilB101.2, eilD76.2, nw04, s100, square41, square47 and supportcase6. PI needed more

than 32 GB of memory to construct and store CGs for these instances. They have

some set packing and set partitioning constraints formed by a large number of variables,

whose pairwise storage of con�icts results in excessive memory consumption. Since

the other algorithms can explicitly store cliques, they did not face memory issues with

respect to these instances. We penalize the cases where PI cannot construct CGs due to

memory limitation, assigning for each a�ected instance a memory usage of 32 GB and

an execution time of 1, 800 seconds.

Figure 3.2 shows the memory usage and time spent in constructing CGs for each

algorithm and each instance set. The algorithms presented similar memory usages in

instances of bmc and timetabling. Although the execution times are less than 1 second

for these instances, CE and ICE obtained values that are smaller than PI. Complete

results of this experiment are available for download at http://professor.ufop.br/

samuelbrito/thesis.

Memory usages and execution times are similar in instance set bpwc, except for

instance uELGN_BPWC_3_2_18. In this instance, ICE found about 8.7 million addi-

tional con�icts. The higher number of con�icts detected implied a greater consumption

of time and memory.

The greatest performance gain with the use of the clique extraction approach and

our data structures was obtained in miplib set. For some instances of this set, several

cliques were detected and explicitly stored, contributing to the signi�cative reduction

of execution time and memory consumption on the construction of CGs. For example,

PI needs more than 32 GB of memory to construct a graph for instance eilD76.2, while

CE and ICE were able to build graphs for the same instance using only 52.10 MB. The

results obtained in instance set rostering also demonstrates that CE and ICE are more

e�cient than PI in terms of memory consumption and time spent to create CGs.

In general, the combination of the strategy to avoid analyzing constraints that would

not lead to the discovery of con�icts with the e�cient clique extraction approach and

the use of our optimized data structures contributed to decrease the amount of time

http://professor.ufop.br/samuelbrito/thesis
http://professor.ufop.br/samuelbrito/thesis

Building Con�ict Graphs 37

●

●

●

●

●

●

PI CE ICE

m
em

or
y

(G
B

)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

●

●

●

●

●

●

PI CE ICE

tim
e

(s
ec

.)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

bmc

●

●

●

PI CE ICE

m
em

or
y

(G
B

)

0

1

2

3

4

5

6

7

8

9

10

11

●

●

●

●

●

PI CE ICE

tim
e

(s
ec

.)

0

5

10

15

20

25

30

35

40

45

bpwc

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●
●
●●

●
●

●●
●●

●

●

●●

●

●

●●●

●

●

●
●

●

●

●

●

●●●

●

●
●
●●

●
●

●●
●●

●

●

●●

●

●

●●●

●

●

●
●

●

●

●

●

PI CE ICE

m
em

or
y

(G
B

)

0

4

8

12

16

20

24

28

32

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●
●●●●●

●

●●

●●●

●

●

●

●●●

●

●

●

●●●●
●
●●●

●

●
●●●●●●●●●●●

●

●●
●●●●

●

●●●●
●●
●

●

●

●●●● ●●●●
●
●●●

●

●
●●●●●●●●●●●

●

●●
●●●●

●

●●●●
●●
●

●

●

●●●●

PI CE ICE

tim
e

(s
ec

.)

0

200

400

600

800

1000

1200

1400

1600

1800

miplib

PI CE ICE

m
em

or
y

(G
B

)

0.00

0.25

0.50

0.75

1.00

1.25

PI CE ICE

tim
e

(s
ec

.)

0

2

4

6

8

10

12

14

16

rostering

●

●

●

●●

●

●●

●

PI CE ICE

m
em

or
y

(G
B

)

0.00

0.05

0.10

0.15

0.20

0.25

0.30
●

●

●
●

●

●

●

●

PI CE ICE

tim
e

(s
ec

.)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

timetabling

Figure 3.2: Execution times and memory usages in the construction of CGs.

Building Con�ict Graphs 38

and memory required to construct CGs. ICE built and stored CGs for all considered

instance problems spending, on average, 252.47 MB of memory and 7.60 seconds. In

comparison with PI, these results represent a decrease of 85.66% in memory consumption

and 87.20% in the execution time.

The execution times and memory consumption of CE and ICE were similar, except

in instances where ICE found more con�icts. Table 3.2 presents 27 instances in which

ICE found more con�icts than CE, quantifying the improvement obtained. The number

of new con�icts refers to the number of new edges that were included in the con�ict

graphs.

Our algorithm detected more con�icts than CE in constraints whose minimum and

maximum coe�cients of the variables are di�erent and the highest coe�cients are close

to the RHS of the constraints. Instances of Bin Packing Problem with Con�icts use

several constraints with this characteristic to model the capacity of the bins. It is the

case of instance uELGN_BPWC_3_2_18, where more than 8.7 million of new edges

were inserted in the associated CG. The highest increase of con�icts, in percentage,

was obtained in instance istanbul-no-cuto�, in which ICE is responsible for detecting

127.78% more con�icts.

3.4 Conclusion

In this chapter, we presented our infrastructure for the e�cient construction, storage

and handling of con�ict graphs. The routine for building these graphs is an improved

version of the state-of-the-art con�ict extraction algorithm. It is capable of detecting

additional maximal cliques without increasing the computational complexity of the al-

gorithm. Our optimized data structures selectively store con�icts pairwise or grouped

in cliques, allowing to handle dense con�ict graphs without incurring excessive memory

usage. In these data structures, the sequence in which similar cliques are discovered is

exploited to store them compactly.

Building Con�ict Graphs 39

Table 3.2: Instances where new con�icts were discovered.

instance group CE ICE new con�icts % increase

n2seq36q miplib 20,653,320 20,653,344 24 < 0.01

p0548 miplib 920 980 60 6.52

istanbul-no-cuto� miplib 72 164 92 127.78

p2756 miplib 5,640 5,732 92 1.63

ua_BPWC_1_9_2 bpwc 13,506 13,718 212 1.57

ta_BPWC_6_9_8 bpwc 13,420 13,868 448 3.34

ta_BPWC_5_7_4 bpwc 12,876 13,474 598 4.64

ta_BPWC_5_7_1 bpwc 12,736 13,440 704 5.53

ua_BPWC_1_8_10 bpwc 48,532 49,798 1,266 2.61

ta_BPWC_5_5_5 bpwc 31,198 33,826 2,628 8.42

tELGN_BPWC_6_8_9 bpwc 28,542 31,598 3,056 10.71

uMIMT_BPPC_2_9_1 bpwc 58,716 64,978 6,262 10.66

neos-631694 miplib 377,746 385,368 7,622 2.02

tELGN_BPWC_6_6_20 bpwc 78,628 87,642 9,014 11.46

uELGN_BPWC_3_9_18 bpwc 253,020 281,838 28,818 11.39

neos-631784 miplib 7,918,996 7,966,118 47,122 0.60

neos-662469 miplib 2,401,182 2,460,118 58,936 2.45

tMIMT_BPPC_6_3_4 bpwc 542,740 629,266 86,526 15.94

supportcase18 miplib 1,913,864 2,023,850 109,986 5.75

tELGN_BPWC_7_6_16 bpwc 1,106,790 1,241,972 135,182 12.21

neos-631709 miplib 18,519,540 18,777,268 257,728 1.39

uMIMT_BPPC_2_5_2 bpwc 2,636,516 2,978,096 341,580 12.96

tMIMT_BPPC_8_7_5 bpwc 3,960,040 4,469,682 509,642 12.87

uMIMT_BPPC_3_7_6 bpwc 4,177,466 4,713,606 536,140 12.83

ta_BPWC_7_1_8 bpwc 5,488,238 6,404,428 916,190 16.69

neos-631710 miplib 129,069,680 130,707,306 1,637,626 1.27

uELGN_BPWC_3_2_18 bpwc 53,896,940 62,638,998 8,742,058 16.22

Chapter 4

Clique Strengthening

Preprocessing is an essential component in MILP solvers that can modify the structure

of a MILP model to produce a stronger formulation. Stronger formulations usually have

tighter dual bounds, which makes the branch-and-bound process more e�ective. Thus,

a preprocessing component may accelerate the solution process and enable the early

detection of infeasible problems.

There are several preprocessing strategies proposed in the literature. One of the

precursors of these strategies was the work of Brearley et al. (1975), which describes

techniques for mathematical programming systems that reduce the problem dimension

by �xing variables, removing redundant rows, replacing constraints by simple bounds

and more. Savelsbergh (1994) presented a framework for describing preprocessing and

probing techniques, providing an overview of simple and advanced techniques to improve

the representation of MILP models. More recently, Gamrath et al. (2015) developed

three preprocessing techniques that were included in the non-commercial solver SCIP,

and Achterberg et al. (2016) described the preprocessing strategies implemented in the

commercial solver Gurobi.

One of the preprocessing strategies developed by Achterberg et al. (2016) and in-

cluded in Gurobi is called clique merging. It consists of combining several set packing

constraints into a single inequality. We based on this algorithm to develop a preprocess-

ing routine that extends set packing constraints instead of combining them. We consider

the whole con�ict graph to extend each one of these constraints. Thus, variables that do

not appear in other set packing constraints can be included in an extended constraint.

First, we create a set C containing all cliques formed by the set packing constraints

40

Clique Strengthening 41

of a given MILP model. Then, we try to extend each clique C in C using Algorithm 4.1.

Algorithm 4.1: Clique Extension
Input: Con�ict graph G = (V,E), clique C and score function S.
Output: Extended clique C ′.

1 Let d be the vertex in C with the smallest degree;

2 L← {k ∈ NG(d) | k /∈ C};
3 C ′ ← C;

4 while L 6= ∅ do
5 Let l be the vertex in L with the largest score S(l);
6 Remove l from L;
7 if ∃l ∈ NG(k) ∀k ∈ C ′ then
8 C ′ ← C ′ ∪ {l};

9 return C ′;

Algorithm 4.1 is based on a greedy strategy that uses the information from a con�ict

graph G = (V,E) and a score function S to add variables in clique C. Initially, a set L

of candidate vertices for inclusion in clique C is constructed by selecting all neighbors

of a vertex d that are not contained in C. Vertex d is the one with the smallest degree

between the vertices of C. Notation NG(d) is used to represent the vertices in graph G

that are adjacent to vertex d. Next, we create a set C ′ that initially contains all vertices

of C. Then, we try to insert additional vertices in C ′ by iteratively selecting the vertex

l ∈ L with the largest score S(l). Vertex l is inserted in C ′ only if it is adjacent to all

vertices in C ′ (lines 7 and 8). The algorithm �nishes when L is empty, returning the

extended clique C ′.

The score function S that is used to select vertices in Algorithm 4.1 can be de�ned

in several ways. We use information from the MILP model or from the con�ict graph

associated with it to implement three variations of this function:

deg: returns the degree of a vertex.

mdg: returns the modi�ed degree of a vertex, which is the sum of its degree and the

degrees of all vertices adjacent to it.

rc: returns the reduced cost of the corresponding variable, which is the amount of

penalty that would be generated if one unit of this variable was introduced into

the solution. This version requires previously solving the LP relaxation of the

considered problem.

Clique Strengthening 42

The choice of the score function is made before the execution of the clique extension

algorithm. Since the variables with the largest score are the best candidates to enter

the clique, version rc of the score function has to be modi�ed to return a value that is

inversely proportional to the reduced cost. Thus, we consider that the variables with

the smallest reduced costs have the largest scores.

After obtaining clique C ′, we generate the corresponding extended set packing con-

straint and insert it into the MILP model. Finally, a dominance checking procedure is

performed to remove all constraints that are dominated by this extended constraint (Achter-

berg et al., 2016). In this context, a constraint i′ dominates another constraint i if the

corresponding clique of i is a subset of the clique formed by i′.

Our clique strengthening routine is especially e�ective when applied to MILP models

that have several constraints expressed by pairs of con�icting variables. However, it can

be computationally expensive, especially for problems with dense CGs and constraints

with a large number of variables. For this reason, we limit the execution of the pre-

processing routine to constraints with at most αmax variables, where αmax is an input

parameter of the algorithm.

The following example illustrates the execution of the clique strengthening process.

Example Consider the following linear constraints:

−4x1 + 4x2 + 5x3 + 6x4 + 7x5 + 10x6 ≤ 6 (4.1)

x2 + x3 + x4 ≤ 1 (4.2)

x2 + x5 ≤ 1 (4.3)

The �rst step is to rewrite constraint (4.1) as a knapsack constraint:

4x̄1 + 4x2 + 5x3 + 6x4 + 7x5 + 10x6 ≤ 10

Now, all the constraints are in the knapsack constraint format and we can run our algo-

rithm for building the CG. Figure 4.1 shows the graph associated with constraints (4.1)

to (4.3).

Clique Strengthening 43

x
1

x
3

x
6

x
4

x
2

x
5

Figure 4.1: Con�ict graph for constraints (4.1) to (4.3). For practical purposes, vertices
that have only trivial con�icts were omitted.

Set C is then created, containing cliques of the constraints (4.2) and (4.3). The clique

strengthening procedure is �rst applied to constraint (4.2), producing the extended con-

straint:

x2 + x3 + x4 + x5 + x6 ≤ 1 (4.4)

Then, we remove constraints (4.2) and (4.3) since they are dominated by the extended

constraint (4.4). There are no more constraints in C to be extended. Thus, the execution
of clique strengthening in constraints (4.1) to (4.3) results in the following constraints:

−4x1 + 4x2 + 5x3 + 6x4 + 7x5 + 10x6 ≤ 6

x2 + x3 + x4 + x5 + x6 ≤ 1

Clique Strengthening 44

4.1 Computational Results

An experiment was conducted for evaluating the ability of our preprocessing routine to

produce strengthened formulations and to reduce the size of MILP models with respect

to the number of constraints. This experiment was carried out on four computers with

Intel Core i7-4790 3.60 GHz processors and 32 GB of RAM running Ubuntu Linux

version 18.04 64-bit. The source code was developed in C++ programming language

and compiled with g++ version 7.4.0.

We ran clique strengthening for all MILP models of the instance sets presented in

Section 2.5, limiting the execution of the algorithm to constraints with at most 128

variables (αmax = 128). This value was de�ned on a preliminary experiment that inves-

tigated the impact of setting di�erent values to αmax, considering the execution times

and the improvements in the LP relaxation of the MILP models.

After performing clique strengthening, we used the COIN-OR Linear Program Solver

(CLP)1 to solve the LP relaxation of the preprocessed MILP models, and then we cal-

culated the gap closed. The percentage of the integrality gap closed is computed as

follows:

gapClosed = 100− 100× bestSol − currentLP
bestSol − firstLP

where bestSol is the best-known solution of the MILP model, firstLP is the objective

value of the root node LP relaxation and currentLP represents the objective value of the

LP relaxation after applying clique strengthening. Therefore, as the percentage of gap

closed increases, the di�erence between the objective value of the best-known solution

and the objective value of the current LP relaxation decreases.

We considered four versions of clique strengthening, whose di�erence is in the clique

extension procedure:

rnd: the clique extension procedure randomly selects the candidate variables.

deg: the clique extension procedure selects, at each iteration, the candidate variable

with the highest degree.

1https://github.com/coin-or/Clp

https://github.com/coin-or/Clp

Clique Strengthening 45

mdg: the clique extension procedure selects, at each iteration, the candidate variable

with the highest modi�ed degree.

rc: the clique extension procedure selects, at each iteration, the candidate variable with

the lowest reduced cost.

Figure 4.2 provides the results regarding the percentage of rows eliminated, exe-

cution times and the percentage of gap closed by executing clique strengthening in

the considered instance sets. The execution times were measured considering the time

spent in performing clique strengthening and solving the LP relaxation of the prepro-

cessed MILP models. Complete results of this experiment are available for download at

http://professor.ufop.br/samuelbrito/thesis.

The four versions presented a similar performance. A more signi�cant di�erence is

seen in some execution times of these approaches, where version rc presented the highest

values. This version requires solving the LP relaxation of the MILP model to compute

the reduced costs of the variables before performing the clique extension procedure,

which increased its execution times.

Solving the LP relaxation of the preprocessed MILP models taken a considerable

part of the execution times presented in Figure 4.2. Disregarding the time spent in

this process, the maximum execution time of clique strengthening was 14.84 seconds.

Furthermore, this routine ran in less than one second for 289 of 320 instances.

Despite the low impact on improving the values of the LP relaxation, there was a

signi�cant reduction in the number of constraints of the MILP models from instance

sets bmc and bpwc. The percentage of constraints eliminated in instances from set bmc

was more than 85% and above 71% in instances from bpwc.

Regardless of the version, the execution of the preprocessing routine did not improve

the linear relaxation neither reduced the number of constraints for 205 of 253 instances

from miplib. These instances were not a�ected by our preprocessing routine because

they have no set packing constraints. For the other 48 instances of this group, our

preprocessing routine was able to close the gap by up to 98.94% and reduce the number of

constraints by up to 99.91%. Instance sorrel3, for example, had its number of constraints

reduced by 95.39% and its integrality gap was closed by 98.94% after performing version

deg of clique strengthening. This instance belongs to the Maximum Independent Set

Problem and contains 169, 162 set packing constraints of size two that are used to model

the edges of a graph.

http://professor.ufop.br/samuelbrito/thesis

Clique Strengthening 46

● ● ● ●

rn
d

de
g

m
dg rc

ga
p

cl
os

ed
 (

%
)

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

2.7

●

●

●

●

●

●

●

●

rn
d

de
g

m
dg rc

tim
e

(s
ec

.)

15

105

195

285

375

465

555

645

rn
d

de
g

m
dg rc

ro
w

s
el

im
in

at
ed

 (
%

)

85

86

87

88

89

90

91

bmc

rn
d

de
g

m
dg rc

ga
p

cl
os

ed
 (

%
)

0

2

4

6

8

10

12

14

16

18

20

●

●

●

●

rn
d

de
g

m
dg rc

tim
e

(s
ec

.)

0

25

50

75

100

125

150

175

200

225

250

275

rn
d

de
g

m
dg rc

ro
w

s
el

im
in

at
ed

 (
%

)

70

75

80

85

90

95

100

bpwc

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

rn
d

de
g

m
dg rc

ga
p

cl
os

ed
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

●

●

●

●

●●●●

●

●

●

●

●●●●●●

●

●

●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●●●●●●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●●●

●

●

●●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

rn
d

de
g

m
dg rc

tim
e

(s
ec

.)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●

●

●

●

●

●

●

rn
d

de
g

m
dg rc

ro
w

s
el

im
in

at
ed

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

miplib

rn
d

de
g

m
dg rc

ga
p

cl
os

ed
 (

%
)

0

10

20

30

40

50

60

70

80

90

●

●

●

●

●

●

●

●

●

●

rn
d

de
g

m
dg rc

tim
e

(s
ec

.)

0

50

100

150

200

250

300

350

400

450

rn
d

de
g

m
dg rc

ro
w

s
el

im
in

at
ed

 (
%

)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

rostering

rn
d

de
g

m
dg rc

ga
p

cl
os

ed
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

●

●

●

●

●

●

●

●

●

●

●

●

rn
d

de
g

m
dg rc

tim
e

(s
ec

.)

0

100

200

300

400

500

600

700

800

900

1000

1100

rn
d

de
g

m
dg rc

ro
w

s
el

im
in

at
ed

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

timetabling

Figure 4.2: Results of the execution of clique strengthening.

Clique Strengthening 47

Several constraints of the instances from set rostering were extended, but few became

dominated. Thus, there was a small reduction in the number of constraints. However,

the execution of clique strengthening in these instances allowed a signi�cant improvement

in the values of LP relaxations, closing the gap by up to 89.09%.

Signi�cant results were also observed in instances of set timetabling. The four versions

of our preprocessing routine were able to reduce the number of constraints of instances

trd445c and trdta0010 in 98.38% and 80.35%, respectively. Moreover, the integrality

gaps in these instances were completely closed. These instances belong to a real Edu-

cational Timetabling problem of a Brazilian university (Gonçalves and Santos, 2008),

containing a large number of set packing constraints that are used to model pairs of

con�icting assignments based on student enrollments.

As the results show, clique strengthening can both reduce the number of constraints

and also produce stronger formulations. It is more e�ective when applied to MILP

models that have several constraints expressed by pairs of con�icting variables. Since

we limited the size of constraints to apply this routine, its execution cost was relatively

low, making possible its integration into MILP solvers. We chose deg as the default

version of clique strengthening since it presented some execution times smaller than the

other versions without decreasing the integrality gap closed.

4.2 Conclusion

This chapter presented a preprocessing routine that extends set packing constraints by

the inclusion of additional con�icting variables. A greedy algorithm uses the information

from a con�ict graph to augment the cliques formed by the set packing constraints

of a MILP model. After extending a constraint, a dominance checking procedure is

performed to remove all constraints that become dominated. Computational results

show that this preprocessing routine can both reduce the number of constraints and also

produce stronger formulations.

Chapter 5

Cutting Planes

A primary application for con�ict graphs is the generation of valid inequalities, also

known as cuts. Cuts are linear constraints aTx ≤ b that are violated by the current

LP solution of a MILP model but do not remove any integer feasible solution. The

addition of such inequalities enables tightening the LP relaxation of a MILP model,

approximating it to the convex hull of integer feasible points. Cutting planes are often

combined with a branch-and-bound scheme, resulting in the branch-and-cut or cut-and-

branch algorithms that are present in modern MILP solvers.

Any feasible solution of a MILP model de�nes a vertex packing in its associated

con�ict graph. A vertex packing in a graph G = (V,E) is a subset P ⊆ V for which all

vj, vk ∈ P satisfy (vj, vk) /∈ E. Based on this concept, one can conclude that any valid

inequality for the vertex packing polytope is also valid for the convex hull of feasible

solutions for this MILP model (Atamtürk et al., 2000). Thus, con�ict graphs can be

used to �nd inequalities that cut o� the current LP solution.

Cliques and odd cycles are some of the most common classes of inequalities derived

from the vertex packing polytope. Generally, the improvement in the value of the LP

relaxation obtained by the inclusion of odd-cycle inequalities is small (Borndorfer, 1998;

Méndez-Díaz and Zabala, 2008). However, the execution of a routine to separate these

inequalities is computationally inexpensive in comparison with other cut separators,

since they can be separated in polynomial time using shortest path algorithms (Grotschel

et al., 1993; Rebennack, 2009).

The following sections present our routines for separating these con�ict-based cuts.

Furthermore, a cut pool structure used to �lter and store cuts is presented. Preliminary

48

Cutting Planes 49

versions of our cut separators were successfully applied to three classical combinato-

rial optimization problems: Capacitated Vehicle Routing (Pecin et al., 2017), Project

Scheduling (Araujo et al., 2020) and Nurse Rostering (Santos et al., 2016). The use of

these routines contributed to the solution of several hard instances for the �rst time in

the literature.

5.1 Clique Inequalities

A clique inequality for a set C of con�icting variables is de�ned as:

∑
j∈C

xj ≤ 1

where C is a subset of the binary variables and their complements. As mentioned earlier,

a clique represents a constraint in which at most one of the involved variables can be

equal to one.

The main goal of the clique separation routine developed in this work is not to �nd

a most violated inequality, but a set of violated inequalities. Previous work has proven

this to be the best strategy. For example, Burke et al. (2012) used an algorithm to

discover a most violated clique, but their computational results motivated the inclusion

of additional cuts found during the separation process. This result is consistent with

reports of the utilization of other cuts applied to di�erent models, such as Chvátal-

Gomory cuts (Fischetti and Lodi, 2007). The option of inserting a large number of valid

inequalities at the same time is also responsible for increasing the importance of Gomory

cuts (Cornuéjols, 2007).

Our clique separation routine is presented in Algorithm 5.1. It consists of using an

LP solution x̌ and a con�ict graph G = (V,E) of a given MILP model to separate and

return a set S of cliques violated by solution x̌. Parameter minV iol is used to control

the minimum violation that a clique must have to enter in S. Our clique separator

executes two main steps: it separates violated cliques in the �rst step (lines 1 to 4) and

extend these cliques in the second step (lines 5 to 12).

We begin generating a subgraph G′ = (V ′, E ′) induced by all variables (and their

Cutting Planes 50

Algorithm 5.1: Clique Cut Separator
Input: LP solution x̌, con�ict graph G = (V,E), minV iol and maxCalls.
Output: Set S of violated cliques.

1 Let G′ = (V ′, E′) be the subgraph of G induced by all variables with fractional values

in x̌;
2 wj ← x̌j , ∀j ∈ V ′;
3 minW ← 1 + minV iol;
4 S ← FindCliques(G′, w,minW,maxCalls);
5 for C ∈ S do

6 Let d be the vertex in C with the smallest degree;

7 L← {k ∈ NG(d) | k /∈ C};
8 while L 6= ∅ do
9 Let l be the vertex in L with the smallest reduced cost in the current LP

relaxation;

10 Remove l from L;
11 if ∃l ∈ NG(k) ∀k ∈ C then

12 C ← C ∪ {l};

13 return S;

respective complements) with fractional values at LP solution x̌. Then, for each vertex

j in subgraph G′, we de�ne the weight wj as the value of its corresponding variable

xj in x̌. The weight of a vertex j̄ that represents the complement of a variable xj is

wj̄ = 1.0 − x̌j. Now we have to search for cliques in G′ whose sum of weights of its

vertices is greater than or equal to 1 +minV iol (line 4). These are the violated cliques.

The separation of violated cliques uses a modi�ed version of the Bron-Kerbosch (BK)

algorithm (Bron and Kerbosch, 1973). Although BK has exponential computational

complexity in the worst case, the use of pivoting and pruning strategies enables e�cient

exploration of the search space. In practice, even for harder instances, maximal cliques

with high weights are found during the �rst stages of the search. To avoid spending too

much time in the clique separation step, we limit the number of recursive calls of BK

by including a parameter called maxCalls. Details about this algorithm are discussed

in Subsection 5.1.1.

After executing the BK algorithm, we have a set of violated cliques stored in S. The
clique extension module (lines 5 to 12) is then performed to extend each clique C ∈ S
by inserting the variables (or their complements) with integer values at the current LP

solution x̌. For this, we use a greedy strategy and con�ict graph G.

First, we create a set L of candidates to enter the clique C. It is built with the

Cutting Planes 51

neighbors of the vertex in C with the smallest degree, excluding those that are already

in C (lines 6 and 7). NG(d) indicates the vertices in G that are adjacent to vertex d.

Then, we try to insert additional vertices in C by iteratively selecting the vertex l ∈ L
with the smallest reduced cost in the current LP relaxation. At each iteration, vertex l

is inserted in C only if it is adjacent to all vertices in C. This process repeats until L is

empty.

Figure 5.1 illustrates the importance of extending clique inequalities. Vertices within

the gray area indicate variables with nonzero values in the solution of the current LP

relaxation. Only vertices x2, x3 and x4 could contribute toward de�ning a most violated

clique inequality. Despite this, subsequent LP relaxations would include three di�erent

K3 cliques, alternating the variable whose value is equal to zero. Reoptimizations of the

LP could be avoided if the inequality of the K4 clique was inserted immediately after

the �rst LP relaxation of the problem. Moreover, a less dense constraint matrix may be

obtained with the insertion of this dominant constraint.

x
1

x
2

x
4

x
3

Figure 5.1: Example of a K3 in which the extension module could be applied, trans-
forming it into a K4.

5.1.1 Bron-Kerbosch Algorithm

The main component of our clique separator is based on the Bron-Kerbosch algorithm,

which is responsible for �nding cliques with weights greater than a certain threshold.

BK is a backtracking-based algorithm that enumerates all maximal cliques in undirected

graphs (Bron and Kerbosch, 1973).

Some strategies to improve this algorithm are present in the literature. For example,

in the same work as they presented the algorithm, Bron and Kerbosch (1973) introduced

Cutting Planes 52

a variation that employs a pivoting strategy to decrease the number of recursive calls.

Tomita et al. (2006) proposed a pivoted version of BK where all maximal cliques are

enumerated in O(3
|V |
3) steps. This strategy makes the pivot a vertex with the highest

number of neighbors in the candidate set.

Following the idea of Tomita et al. (2006), we implemented a pivoted version of BK.

Additionally, a pruning strategy was added to accelerate the discovery of maximal cliques

with weights greater than a threshold. Algorithm 5.2 details our implementation.

Algorithm 5.2: Bron-Kerbosch algorithm for detecting maximal cliques with
weights above a threshold.
1 Function FindCliques(G,w,minW,maxCalls):
2 R← ∅; P ← V ; X ← ∅; S ← ∅;
3 BronKerbosch(G,w,minW,maxCalls,S, R, P,X, 0);
4 return S;
5 Function BronKerbosch(G,w,minW,maxCalls,S, R, P,X, numCalls):
6 numCalls← numCalls + 1;
7 if numCalls > maxCalls then
8 return;

9 if P ∪X = ∅ then
10 if ω(R) ≥ minW then

11 S ← S ∪ {R};
12 return;

13 if ω(R) + ω(P) ≥ minW then

14 choose a pivot vertex u ∈ P ∪X;

15 foreach v ∈ P \NG(u) do
16 BronKerbosch(G,w,minW,S, R ∪ {v}, P ∩NG(v), X ∩NG(v));
17 P ← P \ {v};
18 X ← X ∪ {v};

Our algorithm works with three disjoint vertex sets: R, P and X. Set R is the set of

vertices that are part of the current clique. Meanwhile, sets P and X are the candidate

vertices to enter in R and all the vertices that have already been considered in earlier

steps, respectively.

The algorithm begins with R and X empty, while P contains all the vertices of the

graph. Within each recursive call, if the sets P and X are empty (line 8), then R is a

maximal clique. This clique is stored in the clique set S if its weight ω(R) =
∑

j∈R wj

is greater than or equal to the minimum weight minW (lines 10 to 11).

If R is not yet a maximal clique, the algorithm proceeds and calculates an upper

Cutting Planes 53

bound to the weight that can be achieved by extending this set. This is done by adding

the current weight of R to the weight of candidate vertices P . The upper bound to the

weight of R is computed to avoid exploring sub-trees which would lead to cliques that

do not satisfy the minimum weight minW (line 13).

Then, a pivot vertex u is selected from P ∪X. It is well known that the selection of

the pivot vertex is very in�uential on the overall performance of the method. Thus, we

developed �ve di�erent pivoting rules:

rnd: randomly selects a vertex.

deg: selects the vertex with the highest degree.

wgt: selects the vertex with the highest weight.

mdg: selects the vertex with the highest modi�ed degree.

mwt: selects the vertex with the highest modi�ed weight.

The modi�ed weight of a vertex is computed as the sum of its weight and the weights

of the vertices adjacent to it. To the best of our knowledge, this is the �rst time in the

literature that di�erent pivoting rules are evaluated for the BK algorithm in the context

of clique cut separation.

Next, for each candidate vertex v which is not a neighbor of pivot u (line 15) a

recursive call is made, adding v into clique R and updating sets P and X (line 16). At

this point, sets P and X contain the neighbors of vertex v which are also neighbors of

the other vertices contained in clique R. Using this con�guration, the algorithm �nds

all extensions of R containing v. Once vertex v has been analyzed, it is removed from P

and inserted into X (lines 17 and 18). The algorithm �nishes after �nding all maximal

cliques with weights greater than minW or when a maximum number of recursive calls

maxCalls is reached.

Since the most critical bottlenecks of Algorithm 5.2 are the set operations, we employ

bit strings that exploit bit-level parallelism in hardware for optimizing the calculation of

intersection, union and removal of sets. A bit string is an array that maps elements from

some domain to values in the set {0, 1}. It is frequently used to represent a subset of

a given population set. Each bit maps an element, where a 1-bit indicates the presence

and a 0-bit the absence of an element in the subset. For example, in a population set of

Cutting Planes 54

�ve elements {1, 2, 3, 4, 5} bit string B = 01101 encodes the subset {1, 3, 4}, considering
that the least signi�cant bit is the right-most one.

We encode graph G as an array of bit strings, where each array entry corresponds

to a row of the adjacency matrix of G. The complement graph Ḡ of G is also encoded

as an array of bit strings to allow the implementation of e�cient bitmasks operations

concerning non-neighbor relations. Finally, sets P and X of the BK algorithm are also

encoded as bit strings. With these representations, we can implement the critical set

operations in Algorithm 5.2 as bitmask AND operations (Segundo et al., 2018):

• P ∩NG(v) in line 16: AND operation between bit string P and the v-th row of G.

• X ∩ NG(v) in line 16: AND operation between bit string X and the v-th row of

G.

• P \NG(u) in line 15: AND operation between bit string P and the u-th row of Ḡ.

5.2 Odd-Cycle Inequalities

Odd-cycle inequalities are also derived from the set packing polytope. Given a graph

G = (V,E), a subset O ⊆ V is an odd cycle if the subgraph induced by O is a simple cycle

with an odd number of vertices. In this case, the subgraph must have |O| adjacent edges
such that each vertex is incident to exactly two vertices. Thus, an odd cycle O formed

by a set of binary variables (or their complements) de�nes the odd-cycle inequality:

∑
j∈O

xj ≤
|O| − 1

2

This inequality ensures that at most half of the variables can be activated.

Our odd-cycle separation routine is described in Algorithm 5.3. It is based on the

concepts presented by Rebennack (2009) and returns a set W of tuples containing the

violated odd cycles and their respective wheel centers. First, an auxiliary bipartite

graph G′ = (V ′, E ′) is created from the original con�ict graph G = (V,E). Lines 2 to

4 present the creation of G′. The vertex set V ′ is formed by two subsets V1 and V2. In

this case, for each vertex j ∈ V , two vertices j1 and j2 are created in V ′, where j1 ∈ V1

Cutting Planes 55

and j2 ∈ V2. Additionally, for each edge (j, k) ∈ E, two edges (j1, k2) and (j2, k1) are

inserted into E ′, where j1, k1 ∈ V1 and j2, k2 ∈ V2. The auxiliary graph G′ is bipartite

since there is no edges connecting two vertices of V1 or two vertices of V2.

Algorithm 5.3: Odd-Cycle Cut Separator
Input: LP solution x̌ and con�ict graph G = (V,E).
Output: Set W of tuples containing violated odd cycles and their respective wheel

centers.

1 W ← ∅;
2 V ′ ← {j1, j2 | j ∈ V };
3 E′ ← {(j1, k2), (j2, k1) | (j, k) ∈ E};
4 G′ ← (V ′, E′);
5 for (j, k) ∈ E do

6 w(j1, k2) = (1− x̌j − x̌k)/2;
7 w(j2, k1) = (1− x̌j − x̌k)/2 ;

8 for j ∈ V do

9 P ← ShortestPath(j1, j2, G
′, w);

10 Convert path P to an odd cycle O in the original graph G;

11 Let Ẽ be the edge set of the subgraph of G induced by O;

12 cost← 0;

13 for (j, k) ∈ Ẽ do

14 cost← cost + w(j, k);

15 if cost < 0.5 then

16 C ← ∅;
17 Let d be the vertex in O with the smallest degree;

18 L← {k ∈ NG(d) | k /∈ O, ∃k ∈ NG(j) ∀j ∈ O};
19 while L 6= ∅ do
20 Let l be the vertex that corresponds to the variable with the smallest

reduced cost in L;
21 Remove l from L;
22 if ∃l ∈ NG(k) ∀k ∈ C then

23 C ← C ∪ {l};

24 W ←W ∪ {(O,C)};

25 return W;

The next step is to compute the weight of each edge of G′ (lines 5 to 7), since our cut

separator works with an edge-weighted graph. The weight of each edge in the auxiliary

graph G′ is computed according to the corresponding edge (j, k) of the original graph

G, which is de�ned as:

Cutting Planes 56

w(j, k) =
1− x̌j − x̌k

2

where x̌j and x̌k are the values of variables xj and xk at LP solution x̌. Here, variables

xj and xk are con�icting, which implies that x̌j + x̌k ≤ 1 and, consequently, w(j, k) ≥ 0.

After creating the auxiliary bipartite graph and computing its edge weights, the

search for violated odd cycles begins. For each vertex j ∈ V we run Dijkstra's algorithm

in G′ to �nd the shortest path P from j1 to j2. The shortest path has an odd number

of edges since vertices j1 and j2 are in two di�erent sets of the bipartition. Then,

the corresponding odd-cycle O is constructed from the shortest path P (line 10). The

resulting odd-cycle inequality is violated by the current LP solution x̌ if and only if:

∑
(j,k)∈Ẽ

w(j, k) < 0.5

where Ẽ is the set of edges of the subgraph of G induced by the variables in odd cycle

O. Thus, Algorithm 5.3 tries to �nd one odd-cycle inequality (namely, a most violated

one) for each variable. Odd-cycles of size three are discarded since they correspond to

cliques and could be found by the clique cut separation procedure.

When a violated odd cycle is found, a lifting step is performed (lines 16 to 23). This

step tries to transform the violated odd cycle into an odd wheel. In graph theory, an

odd wheel is an odd cycle that contains an additional vertex that is adjacent to all other

vertices. Thus, an odd wheel can be obtained by inserting a variable into the center of

the odd cycle. An odd-wheel inequality has the following format:

∑
j∈O

xj +
|O| − 1

2
xc ≤

|O| − 1

2

where O is an odd cycle and xc is a variable that has con�ict with all of those in O.

Our lifting step consists of a new approach: we use a greedy strategy that �nds and

inserts a clique C in the center of the odd cycle. In the literature, it is common to

Cutting Planes 57

consider the insertion of only one variable into the center of the odd cycle, such as the

lifting strategy presented by Rebennack (2009). Initially, we select a vertex d with the

smallest degree between the vertices of O. Then, we create a set L of candidates to

compose clique C, containing the neighbors of d that are con�icting with all vertices

in O but are not included in O (lines 17 and 18). Following, we construct clique C

by iteratively selecting the vertex l ∈ L whose corresponding variable has the smallest

reduced cost. A vertex l is inserted in C only if it is adjacent to all vertices in C. This

process repeats until L is empty. Finally, a tuple formed by violated odd-cycle O and

its corresponding wheel center C is inserted in W (line 24).

Figure 5.2 illustrates an odd wheel formed by the inclusion of the clique involving vari-

ables {x6, x7, x8} into the center of the odd cycle formed by variables {x1, x2, x3, x4, x5}.
In this example, each variable in the clique is con�icting with all variables that compose

the odd cycle. The odd-wheel inequality associated with the odd cycle of this �gure is:

x1 + x2 + x3 + x4 + x5 + 2x6 + 2x7 + 2x8 ≤ 2

x
1

x
2

x
4

x
3

x
5

x
6

x
7

x
8

Figure 5.2: Example of an odd cycle with the inclusion of a wheel center. Vertices x6,
x7 and x8 are connected to all the vertices of the odd cycle formed by {x1, x2, x3, x4, x5}.

Cutting Planes 58

5.3 Cut Pool

The execution of our cut generation routines can produce a large number of valid in-

equalities, and the insertion of several valid inequalities can deteriorate the solution

process of the LP relaxation and generate numerical issues. On the other hand, the

insertion of few cuts can deteriorate the dual bound that is used to prove optimality.

We try to solve this tradeo� by using a data structure called cut pool. This structure is

responsible for storing the cuts, maintaining only those that are most promising.

Our cut pool implements methods for removing repeated and dominated cuts and

�ltering the cuts that are stored by this structure. Before inserting a cut into the cut

pool, we use a hash table to verify if it has already been inserted. Thus, repeated cuts

are quickly discarded. The dominance checking method �rst normalizes the right-hand

side of the cuts. Then, a cut with coe�cients a and right-hand side b dominates another

constraint with coe�cients a′ and right-hand side b′ if and only if b ≤ b′ and aj ≥ a′j for

each j ∈ {1, ..., n}. Since the dominance checking is time-consuming, we only perform

this step after generating all cuts of the current cut loop iteration.

A major challenge in developing a cut pool structure is to decide how to �lter cuts,

maintaining a set of the most promising ones. Our �ltering strategy consists of comput-

ing a score S(C) for each cut C that we try to insert into the cut pool and using this

score to decide whether the cut will be stored or discarded. Given a cut C and an LP

solution x̌, the score of this cut is computed as:

S(C) =
viol(C)

actv(C)

where viol(C) is the violation of the cut with respect to x̌ and actv(C) is the number of

variables in C whose values in x̌ are greater than zero.

We use an auxiliary array to identify, for each variable, the cut in the pool with the

best score that contains this variable. The auxiliary array is updated at each successful

insertion of a cut in the cut pool. A cut is only inserted into the cut pool if it has the

best score for at least one variable. Therefore, we limit the maximum number of cuts

that can be stored by our cut pool to the number of the variables of the MILP model

under consideration.

Cutting Planes 59

5.4 Computational Results

We conducted three computational experiments to evaluate the con�ict-based cut sep-

arators proposed in this thesis. The �rst experiment evaluated the pivoting rules im-

plemented in the BK algorithm. The second experiment analyzed the improvements in

the dual bounds obtained by the execution of our clique cut separator and compared

this routine against the clique cut separators available in some MILP solvers. The last

computational experiment evaluated the contribution of our odd-cycle cut separator in

improving the dual bounds and compared the performance of two lifting strategies. All

of these experiments were carried out on four computers with Intel Core i7-4790 3.60

GHz processors and 32 GB of RAM running Ubuntu Linux version 18.04 64-bit. The

source code was developed in C++ programming language and compiled with g++

version 7.4.0.

The metrics used for comparison purposes were the execution times and the gap

closed by the cut separators. The percentage of gap closed is computed as:

gapClosed = 100− 100× bestSol − currentLP
bestSol − firstLP

where bestSol is the best-known solution of the MILP model, firstLP is the objective

value of the root node LP relaxation and currentLP represents the objective value of

the LP relaxation after including the separated cuts into the MILP model. The metric

average gap closed is also employed and is computed as the arithmetic mean of the gap

closed over the problem instances. Complete results of the experiments presented in

this chapter are available for download at http://professor.ufop.br/samuelbrito/

thesis.

5.4.1 Pivoting Rules of Bron-Kerbosch Algorithm

An essential part of our clique cut separator is the BK algorithm. It is responsible for

�nding cliques with weights greater than a certain threshold in a vertex-weighted graph.

The pivoting rule plays an important role in this algorithm, allowing the reduction of

the number of recursive calls made by it.

In this sense, we conducted a computational experiment to evaluate the performance

http://professor.ufop.br/samuelbrito/thesis
http://professor.ufop.br/samuelbrito/thesis

Cutting Planes 60

of the pivoting rules that we implemented in the BK algorithm. First, we generated an

instance set containing several vertex-weighted graphs. We ran our clique cut separator

in the MILP models presented in Section 2.5, stopping this routine when no cut was

separated or after performing three iterations of the cut generation loop. The pivoting

rule of BK was randomly selected at each execution of the algorithm. In each iteration of

the cut generation loop, we used CLP to solve the LP relaxation of the MILP models and

saved the subgraphs induced by the variables with fractional values. After performing

these steps, 438 con�ict graphs were generated.

Following, we ran the BK algorithm to detect the violated cliques in these graphs,

limiting the maximum number of recursive calls to 100, 000 (maxCalls = 100, 000). We

investigated the performance of �ve versions of the BK algorithm that di�er only from

the pivoting rule. These versions are referred to here according to their pivoting rules,

which were presented in Section 5.1.1.

Table 5.1 presents the summarized results of the execution of each version of the BK

algorithm. In this table, column �exact� indicates the number of graphs for which the

algorithm ran completely, without stopping for the maximum number of recursive calls.

Column �avg calls� presents the average number of recursive calls made by the algorithm.

The average and the maximum number of violated cliques found are presented in columns

�avg clqs� and �max clqs�. Finally, columns �avg time� and �max time� present the

average and the maximum time spent, in seconds, by each version of the BK algorithm.

Table 5.1: Summarized results of the execution of BK algorithm with di�erent pivoting
rules.

version exact avg calls avg clqs max clqs avg time max time

rnd 416 12,515.72 370.90 8,940 0.57 35.24

deg 414 13,506.78 356.14 11,559 0.56 26.95

wgt 424 9,759.37 381.66 11,115 0.28 14.80

mdg 413 13,393.91 355.09 11,660 0.49 26.64

mwt 410 13,790.83 357.18 9,076 0.53 34.09

The execution of the BK algorithm was very fast. Regardless of the pivoting rule,

the time spent by this algorithm was less than one second for 94% of the instances.

The instances in which the algorithm spent more than one second have dense con�ict

graphs with many cliques explicitly stored. Consequently, the process of iterating over

Cutting Planes 61

the con�icts to encode the graphs as arrays of bit strings took the largest portion of the

execution times in these instances.

According to the results, the pivoting rule that de�nes the vertex with the highest

weight as the pivot obtained the best results. The number of recursive calls made by

this version is up to 29% less than those made by other versions. The reduction in

the number of recursive calls implied a decrease in the execution time, making wgt the

fastest version among those tested. In addition, wgt ran completely for a greater number

of instances and found more cliques than the other versions. Based on these results, we

de�ned wgt as the default pivoting rule of our implementation of the BK algorithm.

5.4.2 Clique Cut Separator Experiments

After choosing the pivoting rule to be used in the BK algorithm, we evaluated the

ability of our clique cut separator in tightening the LP relaxations. In this experiment,

we considered two versions of our clique cut separator: one version with the lifting

module disabled and other with this module activated. These versions are referred to

here as bkclq and bkclqext, respectively.

We compared the performance of our clique cut separator against the clique cut

separators implemented in three MILP solvers. The �rst clique cut separator that we

compared, referred to here as cglclq, is used by the COIN-OR CBC solver and provided

by the COIN-OR Cut Generation Library (CGL)1. We used the C++ API of CGL to

develop a routine that calls the clique cut separator at each iteration of the cut generation

loop.

The second clique cut separator compared in this experiment, named here as glpclq,

is provided by the open-source solver of the GNU Linear Programming Kit (GLPK)2

version 4.65. We ran GLPK with all presolving, preprocessing, heuristics and other cut

separators turned o�. Thus, we capture only the e�ect of the inclusion of the clique

inequalities. Furthermore, we implemented a callback procedure that computes and

stores the number of cuts separated, the current objective value of the LP relaxation,

the gap closed and the time elapsed at each iteration of the cut generation loop.

The last clique cut separator that we compared was the one included in the commer-

1https://github.com/coin-or/Cgl
2https://www.gnu.org/software/glpk/

https://github.com/coin-or/Cgl
https://www.gnu.org/software/glpk/

Cutting Planes 62

cial solver IBM ILOG CPLEX3 version 12.8, referred to here as cpxclq. We considered

only the �very aggressively� strategy of this cut separator since in preliminary experi-

ments it performed slightly better than the other strategies. We ran CPLEX with all

presolving, preprocessing, heuristics and other cut separators turned o�, according to

the CPLEX User's Manual4. We also implemented a callback procedure that computes

and stores the current objective value of the LP relaxation, the gap closed and the time

elapsed at each iteration of the cut generation loop.

All cut separators were executed at the root node LP relaxation of the instance

problems presented in Section 2.5, considering at most 50 iterations of the cut generation

loop and a time limit of 10, 800 seconds. CLP was employed to solve the LP relaxation

at each iteration of bkclq, bkclqext and cglclq, while glpclq and cpxclq used their own

linear program solvers.

Figure 5.3 presents the execution times and the gap closed by each clique cut sep-

arator. Comparing the two versions of our cut separator, one can observe that the

inclusion of the lifting module contributed to improve the execution times. The inser-

tion of lifted cliques avoided some reoptimizations of the LP relaxations, which saved

some iterations of the cut generation loop and, consequently, the execution time of the

cut separator. Moreover, the version of our clique cut separator that includes the lifting

module produced better dual bounds.

Our clique cut separator improved the LP relaxation for 136 instances. Most in-

stances in which the objective value of the LP relaxation was not changed belong to

instance set miplib. In fact, we analyzed these instances and noted that their associated

CGs have only trivial con�icts or a small set of non-trivial con�icts.

The dual bounds obtained by bkclqext are signi�cantly better than those attained by

cglclq and glpclq in all instance sets. Even in instances with denser con�ict graphs, such

as those in sets bmc and bpwc, cglclq and glpclq had di�culty �nding violated cliques.

Similar results in terms of the percentage of gap closed were obtained by bkclqext

and cpxclq, except in set bpwc. On the instances of this set, cpxclq did not �nd violated

any violated clique, while the cliques separated by bkclqext contributed to close the gap

by up 97.71%. It is worth mentioning that, for some instances, the initial bounds of

the root node LP relaxations computed by CPLEX were already better than the values

calculated by CLP and the linear program solver of GLPK, even with the preprocessing

3https://www.ibm.com/analytics/cplex-optimizer
4https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/

https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/

Cutting Planes 63

●

●

●

●

●

●

●

●

●

●

cg
lc

lq

gl
pc

lq

cp
xc

lq

bk
cl

q

bk
cl

qe
xt

ga
p

cl
os

ed
 (

%
)

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

●

●

●

●

●

●

●

●

●

cg
lc

lq

gl
pc

lq

cp
xc

lq

bk
cl

q

bk
cl

qe
xt

tim
e

(s
ec

.)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

bmc

●

●
●

●

●

●

cg
lc

lq

gl
pc

lq

cp
xc

lq

bk
cl

q

bk
cl

qe
xt

ga
p

cl
os

ed
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

●●● ●

●

●●
●●
●

●

●

●

●

●

●

cg
lc

lq

gl
pc

lq

cp
xc

lq

bk
cl

q

bk
cl

qe
xt

tim
e

(s
ec

.)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

bpwc

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

cg
lc

lq

gl
pc

lq

cp
xc

lq

bk
cl

q

bk
cl

qe
xt

ga
p

cl
os

ed
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●●

●

●

●●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●●●●●●

●

●

●●●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

● ●
●

●

●

●●●

●

●●

●

●

●●

●
●

●
●

●

●

●
●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●

●●
●●●●

●

●

●

●

●●●●

●

●

●●

●

●

●●●

●
●

●
●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●
●●● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

cg
lc

lq

gl
pc

lq

cp
xc

lq

bk
cl

q

bk
cl

qe
xt

tim
e

(s
ec

.)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

miplib

●

●●

●

●

cg
lc

lq

gl
pc

lq

cp
xc

lq

bk
cl

q

bk
cl

qe
xt

ga
p

cl
os

ed
 (

%
)

0

10

20

30

40

50

60

70

80

90
●

●

●

●

cg
lc

lq

gl
pc

lq

cp
xc

lq

bk
cl

q

bk
cl

qe
xt

tim
e

(s
ec

.)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

rostering

●

●

●

●

cg
lc

lq

gl
pc

lq

cp
xc

lq

bk
cl

q

bk
cl

qe
xt

ga
p

cl
os

ed
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

●

●

●

●

●

●

●

●

●

●

●
●

cg
lc

lq

gl
pc

lq

cp
xc

lq

bk
cl

q

bk
cl

qe
xt

tim
e

(s
ec

.)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

timetabling

Figure 5.3: Execution times and gap closed by the clique cut separators.

Cutting Planes 64

routines disabled.

In addition to obtain better dual bounds, the execution of bkclqext was responsible

for completely closing the gap for a greater number of instances. Cut separators bkclqext,

cpxclq and glpclq completely closed the gap for 8, 5 and 2 instances, respectively. Cut

separators bkclq and cglclq were not able to completely close the gap for any instance.

The average gap closed by the clique cut separators at each iteration of the cut

generation loop is presented in Figure 5.4. Di�erences in the performances of the cut

separators can be seen in the earlier steps of the separation process.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20 25 30 35 40 45 50

a
v
e
ra

g
e
 g

a
p

 c
lo

se
d

 (
%

)

iterations

cglclq glpclq cpxclq bkclq bkclqext

Figure 5.4: Average gap closed by each clique cut separator.

After 50 iterations, the average gap closed by the cut separators was 4.33% for cglclq,

5.05% for glpclq, 15.27% for cpxclq and 18.27% for bkclqext. Thus, the average gap closed

by our clique cut separator was 4.22 times better than the clique cut separator of CGL,

3.62 times better than the clique cut separator provided by GLPK and 19.65% better

than the clique cut separator of CPLEX.

Cutting Planes 65

5.4.3 Odd-Cycle Cut Separator Experiments

Following the evaluation of our con�ict-based cut separation routines, we analyzed the

ability of our odd-cycle cut separator in improving the bounds given by the LP relaxation

of a MILP. We also investigated the impact of performing our proposed lifting module,

which consists of inserting a clique into the center of an odd cycle. For this, we ran our

odd-cycle cut separation at the root node LP relaxation of the instances, considering at

most 50 iterations of the cut generation loop and a time limit of 10, 800 seconds. CLP

was employed to solve the LP relaxation at each iteration.

We ran three versions of our cut separator. In the �rst version, named here as o�,

we did not execute the lifting module. In the second version, referred to here as var, we

executed a lifting module that tries to insert one variable into the center of an odd cycle.

Our proposed lifting module was performed in the third version of the cut separator and

is referred to here as clq. The results of this experiment are presented in Figure 5.5.

Regardless of the version of the cut separator, the inclusion of odd-cycle inequalities

had no signi�cant impact on the dual bound improvement. For most instances, no odd

cycles of size greater than three were found. As explained before, odd cycles of size three

are not separated by the odd-cycle cut separator, since they correspond to cliques and

can be separated by the clique cut separator. Even in instances where a considerable

set of odd-cycle cuts were separated, the improvement in the LP relaxation was small.

For example, clq separated 1, 764 odd-cycle cuts in instance br2 of set timetabling, but

the gap closed was 5.03%.

Odd-cycle cuts were separated in 82 of 320 instances, but the improvement in the

objective value of the LP relaxation occurred only in 31 of them. The maximum per-

centage of gap closed by our cut separator was 88.00%, obtained by all separators in

instance neos8. Several odd cycles of size 5, 7 and 9 were separated in this instance.

In general, the time spent in separating odd-cycle cuts was small. Considering all

problem instances, the maximum time spent in this step was 7.42 seconds. The execution

of CLP to solve the LP relaxation of the problems in each iteration of the cut generation

loop was responsible for increasing the execution times.

It was not possible to detect di�erences between the performances of the three ver-

sions of our odd-cycle separator. In fact, there are few cases where the lifting module was

able to insert wheels into the centers of the odd cycles. Regardless of the version of the

lifting module, some odd cycles were transformed into odd wheels only in 11 instances.

Cutting Planes 66

off var clq

ga
p

cl
os

ed
 (

%
)

0

2

4

6

8

10
●

●

●

●

off var clq

tim
e

(s
ec

.)

0

10

20

30

40

50

60

70

80

90

100

110

120

bmc

●

●

●

●

●

●

off var clq

ga
p

cl
os

ed
 (

%
)

0

2

4

6

8

10

12

14

16

18

20
● ●

●

off var clq

tim
e

(s
ec

.)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

bpwc

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

off var clq

ga
p

cl
os

ed
 (

%
)

0

10

20

30

40

50

60

70

80

90

●●
●
●

●

●

●●

●

●

●

●

●●●●●●
●

●

●

●●

●

●
●
●●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●●●●
●

●

●

●●

●

●
●
●●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●●●●●
●

●

●

●●

●

●
●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

off var clq

tim
e

(s
ec

.)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

miplib

off var clq

ga
p

cl
os

ed
 (

%
)

0

2

4

6

8

10

●

●

●

●

●●

●

●

●●

●

●

off var clq

tim
e

(s
ec

.)

0

10

20

30

40

50

60

70

80

90

100

rostering

●

●

●

●

●

●

●

●

●

off var clq

ga
p

cl
os

ed
 (

%
)

0

2

4

6

8

10

12

14

●

●

●

●

●

●

off var clq

tim
e

(s
ec

.)

0

50

100

150

200

250

300

350

400

450

timetabling

Figure 5.5: Execution times and gap closed by the odd-cycle cut separator.

Cutting Planes 67

For these instances, the average gap closed by clq was 3.84% better than var.

5.5 Conclusion

This chapter presented two cut separation routines and a data structure for storing the

cuts. The proposed cut pool is responsible for removing repeated and dominated cuts

as well as �ltering the cuts in order to maintain only those that are most promising.

Our clique cut separator uses the BK algorithm for separating a set of violated clique

inequalities. It was capable of obtaining dual bounds at the root node LP relaxation

which are even stronger than the ones provided by the clique cut separator of CPLEX

solver. Our odd-cycle cut separator has a new lifting module that tries to insert cliques

in the centers of the odd cycles. The improvements in the dual bounds obtained by

including only odd-cycle cuts were relatively small.

Chapter 6

Improving the COIN-OR

Branch-and-Cut Solver

The con�ict graph-based algorithms and data structures proposed in this thesis were

included in the source code of the COIN-OR Branch-and-Cut (CBC) solver. CBC is a

MILP solver written in C++, and it is one of the fastest open-source alternatives nowa-

days. It is also a fundamental component used by Mixed-Integer Nonlinear solvers, such

as Bonmin (Belotti et al., 2009) and Couenne (Bonami et al., 2008). The new version

of CBC containing our contributions can be downloaded from the GitHub repository1.

This version will be released as CBC 3.0.

In this new version, a con�ict graph is constructed after the execution of the prepro-

cessing routines of CBC, followed by the execution of the clique strengthening routine.

Our con�ict-based cut separators are performed during the execution of the branch-and-

cut algorithm. The clique and odd-cycle cut separators of CGL, included in the previous

version of CBC, were replaced by our cut separators. The following section investigates

the performance of the new version of CBC.

6.1 Computational Results

Two experiments were performed to evaluate the new version of CBC that includes our

con�ict graph-based algorithms and data structures. The �rst experiment analyzed the

individual contribution of our preprocessing and cut separation routines in the solving

1https://github.com/coin-or/Cbc

68

https://github.com/coin-or/Cbc

Improving COIN-OR Branch-and-Cut Solver 69

process of CBC. The second computational experiment compared the new version of

CBC against its previous version. Both experiments were carried out on four computers

with Intel Core i7-4790 3.60 GHz processors and 32 GB of RAM running Ubuntu Linux

version 18.04 64-bit, considering the instances described in Section 2.5. The source code

was developed in C++ programming language and compiled with g++ version 7.4.0.

For comparison purposes, we used the execution times and the gap closed by CBC

in solving the MILP models. The percentage of gap closed is computed as:

gapClosed = 100− 100× bestSol − lastLP
bestSol − firstLP

where bestSol is the best-known solution of the MILP model, firstLP is the objective

value of the root node LP relaxation and lastLP represents the lower bound obtained

by CBC at the end of its execution. The metric average gap closed is also employed and

is computed as the arithmetic mean of the percentage of gap closed over the problem

instances.

6.1.1 Individual Impact of Each Routine

The �rst experiment investigated the individual performance impact of our preprocess-

ing and cut separation routines in CBC solver. To this end, we �rst executed the new

version of CBC and then individually removed each routine, generating additional con-

�gurations. The default parameters of CBC for heuristics, preprocessing, branching

rules and cuts separators were used in all executions. We only turned o� the clique and

odd-cycle cut separators of CBC, since we are using our cut separators. Each con�gura-

tion was executed for all instances of the sets described in Section 2.5 with a time limit

of 10, 800 seconds.

The box plots of Figure 6.1 show the results of this experiment. In this �gure, con-

�guration �cbc+cg� refers to the new version of CBC including all of our routines. Con-

�guration �-{clqstr}� represents the new version of CBC without performing our clique

strengthening routine. Finally, con�gurations �-{bkclqext}� and �-{oddw}� contain the

results of the execution of the new version of CBC without including our clique and

odd-cycle cut separators, respectively. Detailed results of this experiment is presented

in Table A.2 in the appendix.

Improving COIN-OR Branch-and-Cut Solver 70

cb
c+

cg

−
{c

lq
st

r}

−
{b

kc
lq

ex
t}

−
{o

dd
w

}

ga
p

cl
os

ed
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

●

●

cb
c+

cg

−
{c

lq
st

r}

−
{b

kc
lq

ex
t}

−
{o

dd
w

}

tim
e

(s
ec

.)

9800

9900

10000

10100

10200

10300

10400

10500

10600

10700

10800

bmc

●●● ●●● ●●●

cb
c+

cg

−
{c

lq
st

r}

−
{b

kc
lq

ex
t}

−
{o

dd
w

}

ga
p

cl
os

ed
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

cb
c+

cg

−
{c

lq
st

r}

−
{b

kc
lq

ex
t}

−
{o

dd
w

}

tim
e

(s
ec

.)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

bpwc
cb

c+
cg

−
{c

lq
st

r}

−
{b

kc
lq

ex
t}

−
{o

dd
w

}

ga
p

cl
os

ed
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

cb
c+

cg

−
{c

lq
st

r}

−
{b

kc
lq

ex
t}

−
{o

dd
w

}

tim
e

(s
ec

.)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

miplib

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

cb
c+

cg

−
{c

lq
st

r}

−
{b

kc
lq

ex
t}

−
{o

dd
w

}

ga
p

cl
os

ed
 (

%
)

20

30

40

50

60

70

80

90

100

cb
c+

cg

−
{c

lq
st

r}

−
{b

kc
lq

ex
t}

−
{o

dd
w

}

tim
e

(s
ec

.)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

rostering

●

●

●

●

●

●

●

●

cb
c+

cg

−
{c

lq
st

r}

−
{b

kc
lq

ex
t}

−
{o

dd
w

}

ga
p

cl
os

ed
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

●●●

cb
c+

cg

−
{c

lq
st

r}

−
{b

kc
lq

ex
t}

−
{o

dd
w

}

tim
e

(s
ec

.)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

timetabling

Figure 6.1: Results of the new version of CBC when each con�ict-based routine is
individually removed.

Improving COIN-OR Branch-and-Cut Solver 71

The most signi�cant impact occurred when our clique cut separator was removed.

In this case, the average gap closed by CBC decreased by 69.54% in instance set bmc,

14.51% in bpwc, 5.59% in miplib, 4.79% in rostering and 3.38% in timetabling. The

removal of this routine also resulted in an increase in the average execution times. For

example, the average execution time for instance set bpwc increased in 53.78%. More-

over, the total number of instances whose optimality was proven decreased in 12.40%.

6.1.2 Results of the New Version of CBC Solver

As the second experiment, we investigated the performance improvement of the new ver-

sion of CBC against its previous version. The default parameters of CBC for heuristics,

preprocessing, branching rules and cuts separators were used in both versions. We ran

each version of CBC on all MILP models of the sets described in Section 2.5, considering

a time limit of 10, 800 seconds. The new version of CBC is denoted here as cbc+cg, while

the previous version of this solver is referred to as cbc. Figure 6.2 shows the results of

this experiment. Detailed results are presented in Table A.2 in the appendix.

The inclusion of our con�ict graph-based algorithms and data structures in CBC

contributed signi�cantly to improve the dual bounds obtained by this solver. As observed

in Figure 6.2, the median gap closed by the new version of CBC is greater than the values

obtained by the previous version of this solver in all instance sets. The percentage of

gap closed by cbc+cg was greater than or equal to that obtained by cbc in all 320

instances. Consequently, the average gap closed by CBC increased from 58.86% to

68.76%, representing an improvement of 16.82%. Reductions in the execution times

were observed in several instances.

In order to better visualize the results, we computed the evolution of the average

gap closed by each version of CBC over the execution time for each instance set. The

results are presented in Figure 6.3. The most signi�cative improvements were obtained

in instance sets bmc, bpwc and rostering. In instances of these three sets, the clique

strengthening routine considerably reduced the number of rows of these instances, while

the clique cut separator inserted strong valid inequalities.

At the end of the executions, the average gap closed by cbc+cg was four times better

than the one obtained by cbc in instance set bmc. Furthermore, the average gap closed

by the new version of CBC was 54.01% better in instance set bpwc, and 66.45% better

in rostering.

Improving COIN-OR Branch-and-Cut Solver 72

cbc cbc+cg

ga
p

cl
os

ed
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

●

cbc cbc+cg

tim
e

(s
ec

.)

9800

9900

10000

10100

10200

10300

10400

10500

10600

10700

10800

bmc

●●●

cbc cbc+cg

ga
p

cl
os

ed
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

cbc cbc+cg

tim
e

(s
ec

.)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

bpwc

cbc cbc+cg

ga
p

cl
os

ed
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

cbc cbc+cg

tim
e

(s
ec

.)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

miplib

●

●

●

●

cbc cbc+cg

ga
p

cl
os

ed
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

cbc cbc+cg

tim
e

(s
ec

.)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

rostering

●● ●

●

cbc cbc+cg

ga
p

cl
os

ed
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

●

●

cbc cbc+cg

tim
e

(s
ec

.)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

timetabling

Figure 6.2: Execution times and gap closed by the two versions of CBC solver.

Improving COIN-OR Branch-and-Cut Solver 73

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5 6 7 8 9 10 11

a
v
e
ra

g
e
 g

a
p
 c

lo
se

d
 (

%
)

time (x 103 seconds)

bmc

cbc
cbc+cg

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5 6 7 8 9 10 11

a
v
e
ra

g
e
 g

a
p
 c

lo
se

d
 (

%
)

time (x 103 seconds)

bpwc

cbc
cbc+cg

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8 9 10 11

a
v
e
ra

g
e
 g

a
p
 c

lo
se

d
 (

%
)

time (x 103 seconds)

miplib

cbc
cbc+cg

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11

a
v
e
ra

g
e
 g

a
p
 c

lo
se

d
 (

%
)

time (x 103 seconds)

rostering

cbc
cbc+cg

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5 6 7 8 9 10 11

a
v
e
ra

g
e
 g

a
p
 c

lo
se

d
 (

%
)

time (x 103 seconds)

timetabling

cbc
cbc+cg

Figure 6.3: Evolution of the average gap closed over time for each instance set.

Improvements in the average gap closed of instance sets miplib and timetabling were

slightly smaller. In timetabling, the average gap closed by CBC increased in 14.74%. The

smallest improvement in the average gap closed was 8.95%, obtained in the instances of

miplib. As observed in the previous experiments, the con�ict graphs of several instances

of this set have only trivial con�icts or a small set of non-trivial con�icts. Thus, con�ict-

based routines have di�culties to improve the dual bounds.

We also investigated the evolution of the number of instances solved by each version

of CBC over time. These results are provided in Figure 6.4. The previous version of

CBC was able to prove the optimality for 102 instances, while the new version proved

the optimality for 126 instances. This result represents an increase of 23.53% in the

number of instances solved. Moreover, the use of our con�ict graph-based algorithms

Improving COIN-OR Branch-and-Cut Solver 74

and data structures not only increased the number of instances solved but also decreased

the execution time necessary for doing so. Considering the 24 instances in which cbc+cg

proved the optimality and cbc stopped by time limit, almost half of them were solved in

less than 1, 000 seconds.

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5 6 7 8 9 10 11

in
st

a
n
ce

s
so

lv
e
d

time (x 103 seconds)

cbc
cbc+cg

Figure 6.4: Number of instances solved over three hours.

6.2 Conclusion

The integration of our con�ict graph-based algorithms and data structures in the CBC

solver was presented in this chapter. The average gap closed by the new version of

CBC containing our contributions was up to four times better than its previous version.

Moreover, the number of MILP models solved by CBC in a time limit of three hours was

increased by 23.53%. Considering the individual impact of each routine on the solution

of MILP models by CBC, the most signi�cant contribution was given by our clique cut

separator.

Chapter 7

Diving Heuristics

In e�ective branch-and-bound algorithms, subproblems are frequently discarded for in-

feasibility or bounding. Considering an objective function of minimization, a subproblem

whose lower bound exceeds or equals the global upper bound is discarded because it can-

not lead to a better solution. Therefore, branch-and-bound algorithms bene�t directly

from obtaining an integer feasible solution as early as possible. An integer solution can

be obtained from primal heuristics (Fischetti and Lodi, 2011) or directly from the LP

relaxation of a subproblem when the integrality conditions of the variables are satis�ed.

A special type of primal heuristics is called diving heuristics (Berthold, 2006). A div-

ing heuristic can be seen as a depth-�rst-search in the branch-and-bound tree whose main

goal is to construct integer feasible solutions from fractional solutions. Algorithm 7.1

illustrates a generic diving procedure. It starts constructing a set D containing all inte-

ger variables whose values in LP solution x̌ are fractional. While the stopping criteria

are not satis�ed, a variable xj with the best score sj is chosen from D, and one of its

bounds is updated depending on the rounding direction dj. The process of replacing a

lower bound lj by dx̌je is called bounding up the variable xj, while replacing an upper

bound uj by bx̌jc is referred to as bounding down the variable xj. The LP relaxation of

the modi�ed problem is then solved, and if it is infeasible, the algorithm �nishes without

obtaining an integer solution. Otherwise, the set D is updated, and if it is empty, an

integer feasible solution is found and returned.

75

Diving Heuristics 76

Algorithm 7.1: Generic Diving Heuristic
Input: LP solution x̌, rounding function ρ and score function φ.
Output: An integer feasible solution or NULL.

1 D ← {j ∈ I | x̌j /∈ Z};
2 while stopping criteria are not satis�ed do

3 for j ∈ D do

4 dj ← ρ(j);
5 sj ← φ(j);

6 Let j be the index of the candidate variable with the best score sj;
7 Let lj and uj be the lower and upper bounds of xj, respectively;
8 if dj = up then
9 lj ← dx̌je;

10 else

11 uj ← bx̌jc;
12 if LP relaxation of the modi�ed problem is infeasible then
13 return NULL;

14 else

15 x̌← new LP solution;
16 D ← {j ∈ I | x̌j /∈ Z};
17 if D = ∅ then
18 return x̌;

19 return NULL;

The diving process terminates when one of the following conditions holds:

• an integer feasible solution is found;

• the LP relaxation is infeasible after some �xations;

• some stopping criterion (e.g. time limit or iteration limit) is reached.

It is noteworthy that the algorithm can be modi�ed to continue the search when an

integer solution is found, aiming to �nd solutions with better quality. It is also possible

to use a backtracking scheme to try di�erent paths in the tree, thus preventing the search

from stopping at the �rst infeasibility found.

There are several ways to de�ne the score function φ. Generally, the rounding func-

tion ρ consists of bounding a variable to the direction where the best score is obtained.

The combination of a rounding function and score function de�nes the variable selection

Diving Heuristics 77

strategy and, consequently, the diving heuristic. Some of the most common strategies

are:

Coe�cient Diving: selects the variable with the smallest number of potentially vio-

lated rows;

Fractional Diving: selects the variable with the lowest fractionality;

Linesearch Diving: selects the variable with the greatest di�erence between the �rst

LP solution and the current LP solution;

Vectorlength Diving: selects the variable with the smallest ratio of potential objective

change and number of a�ected constraints.

More details about diving heuristics are presented in the work of Berthold (2006).

The following section presents two diving heuristics that we proposed and imple-

mented. These heuristics consider the information extracted from con�ict graphs to

de�ne their variable selection strategies.

7.1 Con�ict-Based Diving Heuristics

Some diving heuristics use the concept of down-locks and up-locks to de�ne their variable

selection strategy. The number of down-locks of a variable corresponds to the number

of constraints that this variable appears with negative coe�cients (Berthold, 2006). On

the other hand, the number of constraints in which a variable appears with positive

coe�cients de�nes its up-locks.

Given these de�nitions, a variable with zero up-locks (down-locks) can always be

bounded up (bounded down) without increasing the current violation of any constraint.

However, bounding up (bounding down) a variable whose number of up-locks (down-

locks) is greater than zero might increase the current violation of the constraints. There-

fore, a variable lock is a value that indicates the risk of increasing the constraint violations

when bounding a variable in a certain direction.

Coe�cient diving is an example of a diving heuristic that employs the concept of

locks. It selects, at each iteration, the variable with the smallest number of locks and

de�nes the rounding direction as the direction that this minimum value is obtained.

Diving Heuristics 78

Contrary to this idea, we proposed and implemented two con�ict-based diving heuris-

tics that prefer selecting the variables with the highest risk of generating infeasibilities.

A strategy that considers taking the most critical decisions �rst is called fail fast strat-

egy (Berthold, 2014). In the context of primal heuristics, fail fast strategies have two

advantages. Firstly, it is probably easier to repair infeasibility when there are a small

number of �xed variables. Secondly, the failure of a heuristic caused by an early decision

may avoid spending much running time.

An example of a diving heuristic that employs the fail fast strategy is proposed by

Witzig and Gleixner (2019). Whenever an infeasibility is detected during the diving

process, it is analyzed, the corresponding con�ict constraint is stored and the algorithm

performs 1-level backtracking. With this mechanism, several con�ict constraints are

dynamically discovered during the diving iterations. This information is then used to

develop a con�ict diving heuristic, which consists of selecting the variable that most

appears in the con�ict constraints. Unlike this approach, our diving heuristics considers

the con�icts provided from the con�ict graph.

7.1.1 Con�ict Diving

The �rst diving heuristic that we proposed analyzes the number of con�icts (i.e., the

degree) of the variables with respect to the con�ict graph. For this, we consider the

con�ict locks of the variables. The number of con�ict up-locks of a variable corresponds

to the degree of its corresponding vertex in the con�ict graph. On the other hand, the

number of con�ict down-locks of a variable is related to the degree of the vertex that

corresponds to the complement of this variable. In this case, con�ict locks estimate the

risk of generating infeasibility when bounding a variable in a certain direction.

The rounding function ρcnf of Con�ict Diving prefers the direction that is more likely

to lead to infeasibilities. Thus, the rounding direction of a given variable xj is de�ned

as:

Diving Heuristics 79

ρ(j)cnf =

down if ζ
j
> ζj,

up if ζj > ζ
j
,

down if ζj = ζ
j
and fj < 0.5,

up if ζj = ζ
j
and fj ≥ 0.5,

where ζ
j
and ζj are the number of con�ict down-locks and con�ict up-locks of xj, re-

spectively. When the number of con�ict up-locks and con�ict down-locks are equal, we

consider the fractional part fj = x̌j −bx̌jc of variable xj in the current LP solution x̌ to

choose the rounding direction.

In Con�ict Diving, the score function φcnf prefers variables that have a large number

of locks on the chosen rounding direction. The score φcnf (j) for a variable xj is given

by:

φ(j)cnf =

ζj if ρ(j) = down,

ζj if ρ(j) = up.

Thus, the diving candidates are explored in the non-increasing order of their con�ict

locks.

It is important to note that the score function φcnf always returns zero for general in-

teger variables since con�ict graphs are composed only by binary variables. Furthermore,

φcnf always returns one for variables that have only trivial con�icts. As a consequence,

in some cases, the best score of the diving candidates can be less than or equal to one,

indicating that Con�ict Diving does not have su�cient information to choose the vari-

able that will be bounded. In this situation, we use the variable selection strategy of

Linesearch Diving (Berthold, 2008).

The rounding direction of a variable xj considering Linesearch Diving is de�ned as:

Diving Heuristics 80

ρ(j)lns =

down if x̌j < x̌Rj ,

up if x̌j > x̌Rj ,

down if x̌j = x̌Rj and fj < 0.5,

up if x̌j = x̌Rj and fj ≥ 0.5,

were x̌R is the solution of the root node LP relaxation and x̌ is the LP solution of the

current node. When x̌j are equal to x̌Rj , we consider the fractional part fj = x̌j−bx̌jc of
variable xj in the current LP solution x̌ to choose the rounding direction. In Linesearch

Diving, the score function φlns prefers the variables that have the greatest di�erence

between the solution of the root node LP relaxation and the current LP solution on the

chosen rounding direction. Therefore, the score φlns(j) for a variable xj is given by:

φ(j)lns =

x̌j−bx̌jc
x̌Rj −x̌j

if ρ(j) = down,

dx̌je−x̌j
x̌j−x̌Rj

if ρ(j) = up.

Algorithm 7.2 presents the proposed Con�ict Diving Heuristic. It starts constructing

a set D containing all integer variables whose values in LP solution x̌ are fractional. In

each iteration of the algorithm, the best score sbest of the variables in D is computed,

considering the score function φcnf (lines 4 to 9). If sbest is less than or equal to one,

the algorithm uses rounding function ρlns and score function φlns of Linesearch Diving

(lines 10 to 13). Then, the variable with the best score is chosen and one of its bounds

is updated according to the rounding direction (lines 14 to 19). After changing the

bound of a binary variable (i.e., �xing it), it is possible to propagate this change by

using the information from the con�ict graph (line 20). The propagation of the bound

change reduces the number of diving iterations and, consequently, decreases the running

time of the heuristic. The LP relaxation of the modi�ed problem is then solved. If it

is infeasible, the algorithm �nishes without obtaining an integer solution. Otherwise,

solution x̌ and set D are updated. If D is empty, an integer feasible solution is found

and returned. Otherwise, another iteration of the algorithm is performed.

Diving Heuristics 81

Algorithm 7.2: Con�ict Diving Heuristic

Input: Con�ict graph G, LP solution x̌R of the root node, rounding function
ρcnf , rounding function ρlns, score function φcnf and score function φlns.

Output: An integer feasible solution or NULL.
1 x̌← x̌R;
2 D ← {j ∈ I | x̌j /∈ Z};
3 while stopping criteria are not satis�ed do

4 sbest ← 0;
5 for j ∈ D do

6 dj ← ρcnf (j);
7 sj ← φcnf (j);
8 if sj > sbest then
9 sbest ← sj;

10 if sbest ≤ 1 then
11 for j ∈ D do

12 dj ← ρlns(j);
13 sj ← φlns(j);

14 Let j be the index of the candidate variable with the best score sj;
15 Let lj and uj be the lower and upper bounds of xj, respectively;
16 if dj = up then
17 lj ← dx̌je;
18 else

19 uj ← bx̌jc;
20 Propagate this bound change using con�ict graph G;
21 if LP relaxation of the modi�ed problem is infeasible then
22 return NULL;

23 else

24 x̌← new LP solution;
25 D ← {j ∈ I | x̌j /∈ Z};
26 if D = ∅ then
27 return x̌;

28 return NULL;

7.1.2 Modi�ed Degree Diving

The second con�ict-based diving heuristic that we proposed and implemented is called

Modi�ed Degree Diving. In this heuristic, the de�nition of con�ict locks is related to the

modi�ed degree of the variables. The number of con�ict up-locks of a variable is the

modi�ed degree of its corresponding vertex in the con�ict graph. On the other hand,

Diving Heuristics 82

the number of con�ict down-locks of a variable is related to the modi�ed degree of the

vertex that corresponds to the complement of this variable.

The rounding function ρmdg of Modi�ed Degree Diving prefers the direction that

has the highest modi�ed degree. Thus, the rounding direction of a given variable xj is

de�ned as:

ρ(j)mdg =

down if ξ
j
> ξj,

up if ξj > ξ
j
,

down if ξj = ξ
j
and fj < 0.5,

up if ξj = ξ
j
and fj ≥ 0.5,

where ξ
j
and ξj are the number of con�ict down-locks and con�ict up-locks of xj, re-

spectively. When the number of con�ict up-locks and con�ict down-locks are equal, we

consider the fractional part fj = x̌j −bx̌jc of variable xj in the current LP solution x̌ to

choose the rounding direction.

The score function φmdg of Modi�ed Degree Diving prioritizes the variables that

have a large number of locks on the chosen rounding direction. The score φmdg(j) for a

variable xj is given by:

φ(j)mdg =

ξj if ρ(j) = down,

ξj if ρ(j) = up.

Similar to Con�ict Diving, the diving candidates in Modi�ed Degree Diving are explored

in the non-increasing order of their con�ict locks.

The score function φmdg always returns zero for general integer variables and two for

variables that have only trivial con�icts (both variable and its complement have their

degrees equal to one). When the best score of the diving candidates is less than or equal

to two, we use the variable selection strategy of Linesearch Diving in the same way as

used in Con�ict Diving. The algorithm of Modi�ed Degree Diving can be obtained by

replacing the rounding function ρcnf by ρmdg and the score function φcnf by φmdg in

Algorithm 7.2.

Diving Heuristics 83

7.2 Computational Results

We evaluated our con�ict-based diving heuristics concerning the ability to generate fea-

sible integer solutions. For this, we ran Con�ict Diving and Modi�ed Degree Diving for

each instance problem presented in Section 2.5, stopping the executions when one of the

following conditions holds:

• an integer feasible solution is found;

• the LP relaxation is infeasible;

• execution time reached 10, 800 seconds.

For comparison purposes, we implemented four of the most common diving heuris-

tics: Fractional Diving, Coe�cient Diving, Linesearch Diving and Vectorlength Div-

ing (Berthold, 2006). These heuristics only require an initial LP relaxation and the

general structure of the MILP model itself to be executed.

All the diving heuristics were implemented in C++ programming language and com-

piled with g++ version 7.4.0. The experiment was carried out on four computers with

Intel Core i7-4790 3.60 GHz processors and 32 GB of RAM running Ubuntu Linux version

18.04 64-bit. Table 7.1 presents the results obtained in this experiment. Detailed results

are available for download at http://professor.ufop.br/samuelbrito/thesis.

Table 7.1: Summarized results of the con�ict-based diving heuristics.

strategy solution found best solution only solution avg time

coe�cient 112 69 16 823.26

fractional 87 53 2 728.87

linesearch 140 81 14 383.03

vectorlength 117 52 1 508.20

con�ict 137 71 3 352.79

modi�ed degree 150 83 14 370.75

There were 68 instances for which all the diving heuristics found a feasible solu-

tion. The diving heuristic that found the greatest number of feasible solutions was the

Modi�ed Degree Diving, which was able to produce by up 72.41% more solutions than

http://professor.ufop.br/samuelbrito/thesis

Diving Heuristics 84

the other heuristics. In each iteration of this heuristic, when the fractional variables

have only trivial con�icts, the variable selection strategy of Linesearch was performed

and contributed to generate feasible solutions for several instances. On the other hand,

when the fractional variables also have non-trivial con�icts, the variable selection strat-

egy that considers the modi�ed degree was executed and could guide the heuristic in the

process of �nding feasible solutions. Even though this heuristic does not consider the

objective coe�cient of the variables, it found the best solutions for 83 instances.

The number of feasible solutions obtained by Con�ict Diving is slightly less than

Linesearch Diving. For some instances, selecting the variables with the highest degrees

generated infeasibilities in the early diving iterations.

Con�ict Diving and Modi�ed Degree Diving obtained the best execution times. In

instances with dense con�ict graphs, performing a con�ict propagation after changing the

bound of a variable can considerably reduce the number of diving iterations, decreasing

the running time of the heuristics. In addition, choosing the most con�icting variable

can generate infeasibilities in the �rst diving iterations. These results corroborate with

the idea that taking the most critical decisions �rst is a good strategy for solving MILP

models (Berthold, 2014).

The relation between the number instances where a feasible solution was found and

the execution time of the heuristics is presented in Figure 7.1. In this �gure it is possible

to observe that Modi�ed Degree Diving generated a greater number of feasible solutions,

spending smaller execution times when compared with the other diving heuristics.

Most of the feasible solutions found by the diving heuristics were discovered in the

earlier execution times. For example, the feasible solutions for 125 of 150 instances found

by Modi�ed Degree diving were generated in less than 100 seconds.

As the results show, the con�ict-based diving heuristics proved to be reasonable

algorithms to �nd feasible solutions. Hence, they can be inserted into a MILP solver to

provide initial solutions after running the branch-and-cut algorithm.

7.3 Conclusion

We have shown in this chapter two diving heuristics that use information from con�ict

graphs to generate feasible solutions for MILP models. These heuristics employ the

concept of fail fast strategy, �rst adjusting the bounds of the variables that are more

Diving Heuristics 85

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3 4 5 6 7 8 9 10

fe
a
si

b
le

 s
o
lu

ti
o
n
s

time (x 103 seconds)

coef
frac
line

vect
conf

mdeg

Figure 7.1: Number of feasible solutions found by each diving heuristic over the time.

likely to cause infeasibilities. Both proposed diving heuristics presented execution times

smaller than the classical diving heuristics that we evaluated in our experiments. More-

over, the heuristic that uses the modi�ed degree in its variable selection strategy found

the greatest number of feasible solutions among the diving heuristics evaluated.

Chapter 8

Final Considerations

This thesis presented con�ict graph-based algorithms for Mixed-Integer Linear Program-

ming problems. We developed a con�ict graph infrastructure, characterized by the ef-

�cient construction and storage of such graphs. Our algorithm for building con�ict

graphs is an improved version of a state-of-the-art con�ict detection algorithm that

extracts cliques from MILP model constraints. We included an additional step in this

algorithm that detects additional maximal cliques without changing the worst-case com-

plexity. Optimized data structures that selectively store con�icts pairwise or grouped

in cliques were also developed. Our con�ict graph infrastructure was able to construct

graphs even for instances with a large number of con�icts.

Con�ict graphs were then used in the implementation of a preprocessing algorithm

and two cut separators. The preprocessing algorithm is based on a clique merging pro-

cedure that combines several set packing constraints into a single constraint. Signi�cant

improvements with respect to the dual bounds of the problems were obtained, especially

for MILP models with several constraints expressed by a small number of con�icting

variables. Our preprocessing routine was responsible for reducing the number of con-

straints, strengthening the initial dual bounds and for accelerating the process of proving

optimality for a great number of instances.

The two con�ict-based cut separators that we developed are responsible for separating

cliques and odd cycles. Our clique cut separator obtained better dual bounds than

those provided by the equivalent cut generators of CBC, GLPK and CPLEX solvers.

As previous works shows, the inclusion of odd cycle cuts had no signi�cant impact on

the dual bound improvement. However, the cost for separating these cuts is low, which

86

Final Considerations 87

means that it can be included in a cutting plane strategy without a signi�cant increase

in execution time.

A new version of the CBC solver was generated, including our con�ict graph infras-

tructure, preprocessing routine and cut separators. Experiments with this new version

revealed an improvement in the average gap closed of 16.88% in comparison to the pre-

vious version of the CBC solver. Furthermore, time spent to prove optimality for the

instances decreased, while the number of instances solved increased from 102 to 126. For

instance sets containing MILP models of Bin Packing with Con�icts, Nurse Rostering,

Bandwidth Multicoloring and Educational Timetabling, the average gap closed by the

new version of CBC was up to four times better than its previous version.

Two con�ict-based diving heuristics were also proposed and developed in this thesis.

These heuristics tend to select �rst the variables that are most likely to produce infeasi-

bilities. One heuristic considers the degree and the other uses the modi�ed degree of the

variables at the con�ict graph. Both diving heuristics presented execution times smaller

than the classical diving heuristics that we compared in our experiments. Moreover,

the heuristic that uses the modi�ed degree in its variable selection strategy found the

greatest number of feasible solutions among those considered in the experiments.

8.1 Further Research

Regarding the construction and use of con�ict graphs explored in this thesis, some

aspects may be further investigated:

• the number of con�icts in the graphs could be augmented by using constraint

propagation techniques;

• other exact algorithms and heuristics could be employed to develop new clique cut

separation routines, in order to compare them with the performance of the BK

algorithm;

• con�ict graphs could be used to strengthen other families of cuts, such as knapsack

inequalities;

• machine learning techniques could be used to decide when to activate or deactivate

the preprocessing and cut separators since for some cases they cannot improve dual

bounds;

Final Considerations 88

• node selection strategies based on the con�ict graphs could be designed, in order

to accelerate the process of solving MILP models;

• machine learning techniques could be used to choose the best diving heuristic for

a given problem;

• logical relations of con�ict graphs could be used to develop improvement heuristics;

these heuristics could be performed during some steps of branch-and-cut in order

to improve the incumbent solution.

Bibliography

Achterberg, T.: 2007, Constraint Integer Programming, PhD thesis, Technische Univer-
sitat Berlin, Berlin, Germany.

Achterberg, T., Bixby, R. E., Gu, Z., Rothberg, E. and Weninger, D.: 2016, Presolve re-
ductions in mixed integer programming, Technical Report 16-44, Zuse Institute Berlin,
Berlin.

Achterberg, T. and Wunderling, R.: 2013, Mixed integer programming: Analyzing
12 years of progress, Facets of Combinatorial Optimization: Festschrift for Martin
Grötschel, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 449�481.

Ahuja, R. K., Özlem Ergun, Orlin, J. B. and Punnen, A. P.: 2002, A survey of very
large-scale neighborhood search techniques, Discrete Applied Mathematics 123(1), 75
� 102.

Applegate, D. L., Bixby, R. E., Chvatal, V. and Cook, W. J.: 2006, The traveling
salesman problem: a computational study, Princeton university press.

Araujo, J. A., Santos, H. G., Gendron, B., Jena, S. D., Brito, S. S. and Souza, D. S.:
2020, Strong bounds for resource constrained project scheduling: Preprocessing and
cutting planes, Computers & Operations Research 113, 104782.

Atamtürk, A., Nemhauser, G. L. and Savelsbergh, M. W.: 2000, Con�ict graphs in
solving integer programming problems, European Journal of Operational Research
121(1), 40 � 55.

Bäck, T., Fogel, D. B. and Michalewicz, Z.: 1997, Handbook of evolutionary computation,
CRC Press.

Balas, E., Ceria, S., Dawande, M., Margot, F. and Pataki, G.: 2001, Octane: A new
heuristic for pure 0�1 programs, Operations Research 49(2), 207�225.

Belotti, P., Lee, J., Liberti, L., Margot, F. and Wächter, A.: 2009, Branching and bounds
tightening techniques for non-convex minlp, Optimization Methods and Software 24(4-
5), 597�634.

Berthold, T.: 2006, Primal heuristics for mixed integer programs, diploma thesis, Tech-
nische Universitat Berlin, Berlin, Germany.

89

BIBLIOGRAPHY 90

Berthold, T.: 2008, Heuristics of the branch-cut-and-price-framework scip, Operations
Research Proceedings 2007, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 31�36.

Berthold, T.: 2014, Heuristic algorithms in global MINLP solvers, PhD thesis, Technis-
che Universitat Berlin, Berlin, Germany.

Bixby, R. E. and Lee, E. K.: 1998, Solving a truck dispatching scheduling problem using
branch-and-cut, Operations Research 46(3), 355�367.

Bixby, R. and Rothberg, E.: 2007, Progress in computational mixed integer
programming�a look back from the other side of the tipping point, Annals of Oper-
ations Research 149(1), 37�41.

Bonami, P., Biegler, L. T., Conn, A. R., Cornuéjols, G., Grossmann, I. E., Laird,
C. D., Lee, J., Lodi, A., Margot, F., Sawaya, N. and Wächter, A.: 2008, An algorith-
mic framework for convex mixed integer nonlinear programs, Discrete Optimization
5(2), 186�204.

Borndorfer, R.: 1998, Aspects of Set Packing, Partitioning, and Covering, PhD thesis,
Technische Universitat Berlin, Berlin, Germany.

Boschetti, M. A., Maniezzo, V., Ro�lli, M. and Bolufé Röhler, A.: 2009, Matheuristics:
Optimization, simulation and control, inM. J. Blesa, C. Blum, L. Di Gaspero, A. Roli,
M. Sampels and A. Schaerf (eds), Hybrid Metaheuristics, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 171�177.

Brearley, A. L., Mitra, G. and Williams, H. P.: 1975, Analysis of mathematical program-
ming problems prior to applying the simplex algorithm, Mathematical Programming
8(1), 54�83.

Brito, S. S.: 2015, Con�ict graphs: Construction and applications in integer program-
ming problems (in portuguese), Master's thesis, Universidade Federal de Ouro Preto,
Ouro Preto, Brazil.

Bron, C. and Kerbosch, J.: 1973, Algorithm 457: �nding all cliques of an undirected
graph, Commun. ACM 16(9), 575�577.

Burke, E. K., Mare£ek, J., Parkes, A. J. and Rudová, H.: 2012, A branch-and-cut
procedure for the udine course timetabling problem, Annals of Operations Research
194(1), 71�87.

Cornuéjols, G.: 2007, Revival of the gomory cuts in the 1990's, Annals of Operations
Research 149(1), 63�66.

Danna, E., Rothberg, E. and Pape, C. L.: 2005, Exploring relaxation induced neighbor-
hoods to improve mip solutions, Mathematical Programming 102(1), 71�90.

Dias, B., de Freitas, R., Maculan, N. and Michelon, P.: 2016, Constraint and integer
programming models for bandwidth coloring and multicoloring in graphs, Proceedings
of the XLVIII Brazilian Symposium on Operations Research, pp. 4116�4127.

BIBLIOGRAPHY 91

Fischetti, M., Glover, F. and Lodi, A.: 2005, The feasibility pump, Mathematical Pro-
gramming 104(1), 91�104.

Fischetti, M. and Lodi, A.: 2003, Local branching, Mathematical Programming
98(1), 23�47.

Fischetti, M. and Lodi, A.: 2007, Optimizing over the �rst chvátal closure, Mathematical
Programming B 110(1), 3�20.

Fischetti, M. and Lodi, A.: 2011, Heuristics in mixed integer programming, Wiley En-
cyclopedia of Operations Research and Management Science, Vol. 8, John Wiley &
Sons, pp. 738�747.

Fonseca, G. H., Santos, H. G., Carrano, E. G. and Stidsen, T. J.: 2017, Integer pro-
gramming techniques for educational timetabling, European Journal of Operational
Research 262(1), 28 � 39.

Gamrath, G., Koch, T., Martin, A., Miltenberger, M. and Weninger, D.: 2015, Progress
in presolving for mixed integer programming, Mathematical Programming Computa-
tion 7(4), 367�398.

Garey, M. R. and Johnson, D. S.: 1979, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman & Co., New York.

Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M., Berthold, T.,
Christophel, P., Jarck, K., Koch, T., Linderoth, J., Lübbecke, M., Mittelmann, H. D.,
Ozyurt, D., Ralphs, T. K., Salvagnin, D. and Shinano, Y.: 2018, MIPLIB 2017.
http://miplib.zib.de.

Glover, F. and Laguna, M.: 1997a, General purpose heuristics for integer programming�
part i, Journal of Heuristics 2(4), 343�358.

Glover, F. and Laguna, M.: 1997b, General purpose heuristics for integer programming�
part ii, Journal of Heuristics 3(2), 161�179.

Glover, F. and Laguna, M.: 1998, Tabu Search, Springer US, Boston, MA, pp. 2093�
2229.

Gonçalves, L. C. N. I. and Santos, H. G.: 2008, Optimization in mass higher education
institutions: a tactical approach using aps concepts (in portuguese), Anais do XLIII
Simpósio Brasileiro de Pesquisa Operacional, pp. 692�703.

Grotschel, M., Lovasz, L. and Schrijver, A.: 1993, Geometric Algorithms and Combina-
torial Optimization, Springer.

Hansen, P. and Mladenovi¢, N.: 1999, An Introduction to Variable Neighborhood Search,
Springer US, Boston, MA, pp. 433�458.

http://miplib.zib.de

BIBLIOGRAPHY 92

Hansen, P., Mladenovi¢, N. and Uro²evi¢, D.: 2006, Variable neighborhood search and
local branching, Computers & Operations Research 33(10), 3034 � 3045. Part Special
Issue: Constraint Programming.

Haspeslagh, S., De Causmaecker, P., Schaerf, A. and Stølevik, M.: 2014, The �rst inter-
national nurse rostering competition 2010, Annals of Operations Research 218(1), 221�
236.

Ho�man, K. and Padberg, M.: 1993, Solving airline crew scheduling problems by branch-
and-cut, Management Science 39(6), 657�682.

Johnson, E. L. and Nemhauser, G. L.: 1992, Recent developments and future directions
in mathematical programming, IBM Systems Journal 31(1), 79�93.

Jünger, M., Liebling, T. M., Naddef, D., Nemhauser, G. L., Pulleyblank, W. R., Reinelt,
G., Rinaldi, G. and Wolsey, L. A.: 2009, 50 Years of integer programming 1958-2008:
From the early years to the state-of-the-art, Springer Science & Business Media.

Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P.: 1983, Optimization by simulated
annealing, Science 220(4598), 671�680.

Kolliopoulos, S. G. and Young, N. E.: 2005, Approximation algorithms for cover-
ing/packing integer programs, Journal of Computer and System Sciences 71(4), 495
� 505.

Land, A. H. and Doig, A. G.: 1960, An automatic method of solving discrete program-
ming problems, Econometrica: Journal of the Econometric Society pp. 497�520.

Lawler, E. L. and Wood, D. E.: 1966, Branch-and-bound methods: A survey, Operations
Research 14(4), 699�719.

Lenstra, J. K., Shmoys, D. B. and Tardos, E.: 1990, Approximation algorithms for
scheduling unrelated parallel machines, Mathematical programming 46(1-3), 259�271.

Lokketangen, A. and Glover, F.: 1998, Solving zero-one mixed integer programming
problems using tabu search, European Journal of Operational Research 106(2), 624 �
658.

Méndez-Díaz, I. and Zabala, P.: 2008, A cutting plane algorithm for graph coloring,
Discrete Applied Mathematics 156, 159�179.

Mészáros, C. and Suhl, U. H.: 2003, Advanced preprocessing techniques for linear and
quadratic programming, OR Spectrum 25(4), 575�595.

Orlowski, S., Wessäly, R., Pióro, M. and Tomaszewski, A.: 2010, Sndlib 1.0 survivable
network design library, Networks 55(3), 276�286.

Padberg, M.: 1973, On the facial structure of set packing polyhedra, Mathematical
Programming 5(1), 199�215.

BIBLIOGRAPHY 93

Pecin, D., Pessoa, A., Poggi, M. and Uchoa, E.: 2017, Improved branch-cut-and-price for
capacitated vehicle routing, Mathematical Programming Computation 9(1), 61�100.

Pochet, Y. and Wolsey, L. A.: 2006, Production planning by mixed integer programming,
Springer Science & Business Media.

Rebennack, S.: 2009, Stable set problem: Branch & cut algorithms, in C. A. Floudas
and P. M. Pardalos (eds), Encyclopedia of Optimization, Springer US, pp. 3676�3688.

Rossi, F., Van Beek, P. and Walsh, T.: 2006, Handbook of constraint programming,
Elsevier.

Rossi, R. A. and Zhou, R.: 2018, Graphzip: a clique-based sparse graph compression
method, Journal of Big Data 5(1), 10.

Sadykov, R. and Vanderbeck, F.: 2013, Bin packing with con�icts: A generic branch-
and-price algorithm, INFORMS Journal on Computing 25(2), 244�255.

Santos, H. G., To�olo, T. A. M., Gomes, R. A. M. and Ribas, S.: 2016, Integer pro-
gramming techniques for the nurse rostering problem, Annals of Operations Research
239(1), 225�251.

Savelsbergh, M. W. P.: 1994, Preprocessing and probing techniques for mixed integer
programming problems, ORSA Journal on Computing 6(4), 445�454.

Segundo, P. S., Artieda, J. and Strash, D.: 2018, E�ciently enumerating all maximal
cliques with bit-parallelism, Computers & Operations Research 92, 37�46.

Tomita, E., Tanaka, A. and Takahashi, H.: 2006, The worst-case time complexity for
generating all maximal cliques and computational experiments, Theoretical Computer
Science 363(1), 28 � 42. Computing and Combinatorics.

Toth, P. and Vigo, D.: 2002, An Overview of Vehicle Routing Problems, Society for
Industrial and Applied Mathematics, pp. 1�26.

Van Roy, T. J. and Wolsey, L. A.: 1987, Solving mixed integer programming problems
using automatic reformulation, Operations Research 35(1), 45�57.

Witzig, J. and Gleixner, A.: 2019, Con�ict-driven heuristics for mixed integer program-
ming, Technical Report 19-08, Zuse Institute Berlin, Berlin, Germany.

Xu, J., Li, M., Kim, D. and Xu, Y.: 2003, Raptor: Optimal protein threading by linear
programming, Journal of Bioinformatics and Computational Biology 01(01), 95�117.

Appendix A

Detailed Results of the

Computational Experiments

Table A.1 presents the characteristics of the mixed-integer linear programs used in the

computational experiments. Columns �set� and �cols� present the instance set and the

number of variables of each instance, respectively. Columns �int�, �bin� and �con� con-

tain the number of integer, binary and continuous variables of each problem instance.

Columns �rows� and �nz� detail information with respect to the number of constraints

and nonzeros coe�cients of each instance. Finally, column �cgρ� presents the density of

the con�ict graph constructed by our algorithm for each instance.

Table A.1: Instance set characteristics.

name set cols int bin con rows nz cgρ (×100)

30n20b8 miplib 18,380 62 18,318 0 576 109,706 0.85

50v-10 miplib 2,013 183 1,464 366 233 2,745 0.03

air03 miplib 10,757 0 10,757 0 124 91,028 13.87

air04 miplib 8,904 0 8,904 0 823 72,965 1.34

air05 miplib 7,195 0 7,195 0 426 52,121 2.44

app1-1 miplib 2,480 0 1,225 1,255 4,926 18,275 0.04

app1-2 miplib 26,871 0 13,300 13,571 53,467 199,175 0.00

assign1-5-8 miplib 156 0 130 26 161 3,720 1.16

atlanta-ip miplib 48,738 106 46,667 1,965 21,732 257,532 0.00

b1c1s1 miplib 3,872 0 288 3,584 3,904 11,408 0.17

bab1 miplib 61,152 0 61,152 0 60,680 854,392 0.08

bab2 miplib 147,912 0 147,912 0 17,245 2,027,726 0.00

bab3 miplib 393,800 0 393,800 0 23,069 3,301,838 0.01

bab5 miplib 21,600 0 21,600 0 4,964 155,520 0.03

bab6 miplib 114,240 0 114,240 0 29,904 1,283,181 0.00

beasleyC3 miplib 2,500 0 1,250 1,250 1,750 5,000 0.04

binkar10_1 miplib 2,298 0 170 2,128 1,026 4,496 0.29

blp-ar98 miplib 16,021 0 15,806 215 1,128 200,601 0.03

94

Detailed Results of the Computational Experiments 95

Table A.1: Instance set characteristics (continued).

name set cols int bin con rows nz cgρ (×100)

blp-ic98 miplib 13,640 0 13,550 90 717 191,947 0.04

bnatt400 miplib 3,600 0 3,600 0 5,614 21,698 0.04

bppc4-08 miplib 1,456 0 1,454 2 111 23,964 1.29

br1 timetabling 1,344 0 1,344 0 3,243 12,904 0.17

br2 timetabling 4,284 0 4,284 0 9,248 42,584 0.10

br3 timetabling 6,368 0 6,368 0 12,056 61,408 0.08

br5 timetabling 19,468 0 19,468 0 28,981 221,123 0.11

brazil3 timetabling 23,968 94 23,874 0 14,646 133,184 0.06

chromaticindex1024-7 miplib 73,728 0 73,728 0 67,583 270,324 0.00

chromaticindex512-7 miplib 36,864 0 36,864 0 33,791 135,156 0.01

cm�sp50-24-8-8 miplib 16,392 0 1,392 15,000 3,520 158,622 0.07

CMS750_4 miplib 11,697 0 7,196 4,501 16,381 44,903 0.01

co-100 miplib 48,417 0 48,417 0 2,187 1,995,817 6.26

cod105 miplib 1,024 0 1,024 0 1,024 57,344 9.45

comp07-2idx timetabling 17,264 109 17,155 0 21,235 86,577 0.01

comp21-2idx timetabling 10,863 71 10,792 0 14,038 57,301 0.01

cost266-UUE miplib 4,161 0 171 3,990 1,446 12,312 0.59

csched007 miplib 1,758 0 1,457 301 351 6,379 0.64

csched008 miplib 1,536 0 1,284 252 351 5,687 0.61

cvs16r128-89 miplib 3,472 0 3,472 0 4,633 12,528 0.08

d_BPWC_2_4_10 bpwc 22,824 0 22,824 0 287,902 620,453 0.18

da_BPWC_2_8_6 bpwc 6,475 0 6,475 0 83,612 179,175 0.24

da_BPWC_2_8_9 bpwc 6,475 0 6,475 0 82,878 177,707 0.24

dano3_3 miplib 13,873 0 69 13,804 3,202 79,655 0.73

dano3_5 miplib 13,873 0 115 13,758 3,202 79,655 0.44

drayage-100-23 miplib 11,090 0 11,025 65 4,630 41,550 0.48

drayage-25-23 miplib 11,090 0 11,025 65 4,630 41,550 0.48

ds miplib 67,732 0 67,732 0 656 1,024,059 3.44

dws008-01 miplib 11,096 0 6,608 4,488 6,064 56,400 0.26

eil33-2 miplib 4,516 0 4,516 0 32 44,243 23.62

eilA101-2 miplib 65,832 0 65,832 0 100 959,373 20.90

eilA76 miplib 1,422 0 1,422 0 75 10,967 11.60

eilB101 miplib 2,818 0 2,818 0 100 24,120 12.87

eilB101.2 miplib 53,444 0 53,444 0 100 577,946 17.39

eilB76 miplib 1,060 0 1,060 0 75 6,296 8.15

eilC76 miplib 1,644 0 1,644 0 75 14,673 13.40

eilC76.2 miplib 28,599 0 28,599 0 75 314,837 18.38

eilD76 miplib 1,898 0 1,898 0 75 19,111 15.02

eilD76.2 miplib 30,588 0 30,588 0 75 381,749 20.08

enlight_hard miplib 200 100 100 0 100 560 0.50

exp-1-500-5-5 miplib 990 0 250 740 550 1,980 0.60

fast0507 miplib 63,009 0 63,009 0 507 409,349 0.00

fastxgemm-n2r6s0t2 miplib 784 0 48 736 5,998 19,376 1.05

�ball miplib 34,219 258 33,960 1 3,707 104,792 0.02

germanrr miplib 10,813 5,251 5,323 239 10,779 175,547 0.01

glass-sc miplib 214 0 214 0 6,119 63,918 0.23

glass4 miplib 322 0 302 20 396 1,815 0.80

gmu-35-40 miplib 1,205 0 1,200 5 424 4,843 0.41

gmu-35-50 miplib 1,919 0 1,914 5 435 8,643 0.46

graph20-20-1rand miplib 2,183 0 2,183 0 5,587 19,277 0.30

graphdraw-domain miplib 254 20 180 54 865 2,600 0.70

h80x6320d miplib 12,640 0 6,320 6,320 6,558 31,521 0.32

hypothyroid-k1 miplib 2,602 1 2,601 0 5,195 433,884 0.84

ic97_potential miplib 728 73 450 205 1,046 3,138 0.11

Detailed Results of the Computational Experiments 96

Table A.1: Instance set characteristics (continued).

name set cols int bin con rows nz cgρ (×100)

icir97_tension miplib 2,494 573 262 1,659 1,203 22,333 0.19

irish-electricity miplib 61,728 0 9,888 51,840 104,259 523,257 0.01

irp miplib 20,315 0 20,315 0 39 98,254 14.05

istanbul-no-cuto� miplib 5,282 0 30 5,252 20,346 71,477 6.33

k1mushroom miplib 8,211 1 8,210 0 16,419 1,697,946 0.42

keller4cpart miplib 9,606 0 9,606 0 327,198 663,660 0.30

keller4cpartpp miplib 9,601 0 9,601 0 41,648 386,003 0.30

l152lav miplib 1,989 0 1,989 0 97 9,922 3.24

lectsched-5-obj miplib 21,805 416 21,389 0 38,884 239,608 0.00

leo1 miplib 6,731 0 6,730 1 593 131,218 0.08

leo2 miplib 11,100 0 11,099 1 593 219,959 0.08

long_early01 rostering 52,729 0 52,729 0 17,241 1,012,492 0.23

long_early02 rostering 52,803 0 52,803 0 17,241 1,012,566 0.22

long_hidden01 rostering 63,205 0 63,205 0 28,370 1,065,275 0.16

long_hidden02 rostering 63,205 0 63,205 0 28,370 1,065,275 0.16

long_late01 rostering 63,005 0 63,005 0 27,875 1,063,670 0.16

long_late02 rostering 63,005 0 63,005 0 27,875 1,063,670 0.16

long_late04 rostering 63,005 0 63,005 0 27,875 1,063,670 0.16

lotsize miplib 2,985 0 1,195 1,790 1,920 6,565 0.08

mad miplib 220 0 200 20 51 2,808 1.62

map10 miplib 164,547 0 146 164,401 328,818 549,920 0.34

map16715-04 miplib 164,547 0 146 164,401 328,818 549,920 0.34

markshare_4_0 miplib 34 0 30 4 4 123 1.69

markshare2 miplib 74 0 60 14 7 434 0.84

mas74 miplib 151 0 150 1 13 1,706 0.33

mas76 miplib 151 0 150 1 12 1,640 0.33

mc11 miplib 3,040 0 1,520 1,520 1,920 6,080 0.03

mcsched miplib 1,747 0 1,745 2 2,107 8,088 0.09

medium_early02 rostering 30,309 0 30,309 0 8,668 622,471 0.42

medium_hidden01 rostering 37,415 0 37,415 0 16,070 635,725 0.27

medium_hidden02 rostering 37,415 0 37,415 0 16,070 635,725 0.27

medium_hidden05 rostering 37,415 0 37,415 0 16,070 635,725 0.27

medium_late01 rostering 34,850 0 34,850 0 14,062 623,360 0.31

medium_late02 rostering 34,814 0 34,814 0 14,062 623,352 0.31

medium_late03 rostering 29,486 0 29,486 0 8,872 603,434 0.43

mik-250-20-75-4 miplib 270 175 75 20 195 9,270 0.67

milo-v12-6-r2-40-1 miplib 2,688 0 840 1,848 5,628 14,604 0.10

momentum1 miplib 5,174 0 2,349 2,825 42,680 103,198 0.49

mushroom-best miplib 8,468 118 8,237 113 8,580 188,735 0.01

mzzv11 miplib 10,240 251 9,989 0 9,499 134,603 0.13

mzzv42z miplib 11,717 235 11,482 0 10,460 151,261 0.08

n2seq36q miplib 22,480 0 22,480 0 2,565 183,292 1.02

n3div36 miplib 22,120 0 22,120 0 4,484 340,740 0.01

neos-1281048 miplib 739 0 739 0 522 8,808 1.07

neos-1354092 miplib 13,702 420 13,282 0 3,135 187,187 0.02

neos-1445765 miplib 20,617 0 2,150 18,467 2,147 40,230 0.02

neos-1456979 miplib 4,605 180 4,245 180 6,770 36,440 0.76

neos-1582420 miplib 10,100 100 10,000 0 10,180 24,814 0.01

neos-1595230 miplib 490 0 490 0 1,750 3,885 1.03

neos-1599274 miplib 4,500 0 4,500 0 1,237 46,800 0.58

neos-1620770 miplib 792 0 792 0 9,296 19,292 1.45

neos-1620807 miplib 231 0 231 0 1,340 2,860 2.49

neos-1622252 miplib 828 0 828 0 9,695 20,125 1.41

neos-2657525-crna miplib 524 378 146 0 342 1,690 0.68

Detailed Results of the Computational Experiments 97

Table A.1: Instance set characteristics (continued).

name set cols int bin con rows nz cgρ (×100)

neos-2746589-doon miplib 50,936 224 50,704 8 31,530 271,072 0.10

neos-2978193-inde miplib 20,800 0 64 20,736 396 41,600 0.79

neos-2987310-joes miplib 27,837 0 3,051 24,786 29,015 580,291 0.03

neos-3046615-murg miplib 274 16 240 18 498 1,266 0.42

neos-3216931-puriri miplib 3,555 0 3,268 287 5,989 91,691 0.50

neos-3381206-awhea miplib 2,375 1,900 475 0 479 4,275 0.11

neos-3402294-bobin miplib 2,904 0 2,616 288 591,076 2,034,888 0.14

neos-3555904-turama miplib 37,461 0 37,461 0 146,493 793,605 0.73

neos-3627168-kasai miplib 1,462 0 535 927 1,655 5,158 0.09

neos-3656078-kumeu miplib 14,870 4,455 9,755 660 17,656 59,292 0.02

neos-3754480-nidda miplib 253 0 50 203 402 1,488 1.01

neos-4300652-rahue miplib 33,003 0 20,900 12,103 76,992 183,616 0.00

neos-4338804-snowy miplib 1,344 42 1,260 42 1,701 6,342 0.04

neos-4387871-tavua miplib 4,004 0 2,000 2,004 4,554 23,496 0.13

neos-4413714-turia miplib 190,402 0 190,201 201 2,303 761,756 0.03

neos-4532248-waihi miplib 86,842 0 86,841 1 167,322 525,339 0.16

neos-4647030-tutaki miplib 12,600 0 7,000 5,600 8,382 3,953,388 0.02

neos-4722843-widden miplib 77,723 20 73,349 4,354 113,555 311,529 0.00

neos-4738912-atrato miplib 6,216 5,096 1,120 0 1,947 19,521 0.06

neos-4763324-toguru miplib 53,593 0 53,592 1 106,954 266,805 0.11

neos-4954672-berkel miplib 1,533 0 630 903 1,848 8,007 0.08

neos-5049753-cuanza miplib 242,736 0 8,304 234,432 322,248 1,440,672 0.01

neos-5052403-cygnet miplib 32,868 0 32,868 0 38,268 4,898,304 0.00

neos-5093327-huahum miplib 40,640 0 64 40,576 51,840 784,768 0.79

neos-5104907-jarama miplib 345,856 0 9,520 336,336 489,818 2,053,548 0.01

neos-5107597-kakapo miplib 3,114 0 2,976 138 6,498 19,392 0.02

neos-5114902-kasavu miplib 710,164 0 14,560 695,604 961,170 4,240,376 0.01

neos-5188808-nattai miplib 14,544 0 288 14,256 29,452 133,686 0.55

neos-5195221-niemur miplib 14,546 0 9,792 4,754 42,256 176,586 0.02

neos-565815 miplib 1,276 0 1,276 0 15,413 124,071 2.44

neos-611135 miplib 6,400 0 6,400 0 5,277 769,300 3.06

neos-631694 miplib 3,725 0 3,725 0 3,996 18,523 0.71

neos-631709 miplib 45,150 0 45,150 0 46,496 225,148 0.23

neos-631710 miplib 167,056 0 167,056 0 169,576 834,166 0.12

neos-631784 miplib 22,725 0 22,725 0 23,996 113,023 0.39

neos-662469 miplib 18,235 328 17,907 0 1,085 200,055 0.19

neos-785899 miplib 1,320 0 1,320 0 1,653 17,180 1.26

neos-787933 miplib 236,376 0 236,376 0 1,897 298,320 0.00

neos-791021 miplib 9,448 0 9,448 0 3,694 29,708 0.14

neos-799838 miplib 20,844 0 20,844 0 5,976 57,888 0.03

neos-808214 miplib 1,308 0 1,308 0 640 22,530 1.21

neos-825075 miplib 800 0 800 0 328 5,480 0.92

neos-848589 miplib 550,539 0 747 549,792 1,484 1,101,078 0.07

neos-860300 miplib 1,385 0 1,384 1 850 384,329 5.23

neos-873061 miplib 175,288 0 87,644 87,644 93,360 350,576 0.00

neos-905856 miplib 686 0 686 0 403 6,601 1.43

neos-911970 miplib 888 0 840 48 107 3,408 0.74

neos-912023 miplib 686 0 686 0 623 14,728 1.52

neos-931538 miplib 7,920 0 7,920 0 5,964 33,480 0.10

neos-934531 miplib 1,082 0 1,082 0 47,078 136,119 2.06

neos-948346 miplib 57,855 0 57,855 0 1,570 540,443 0.20

neos-950242 miplib 5,760 240 5,520 0 34,224 104,160 0.08

neos-957323 miplib 57,756 0 57,756 0 3,757 499,656 0.19

neos1 miplib 2,112 0 2,112 0 5,020 21,312 0.17

Detailed Results of the Computational Experiments 98

Table A.1: Instance set characteristics (continued).

name set cols int bin con rows nz cgρ (×100)

neos17 miplib 535 0 300 235 486 4,931 0.17

neos18 miplib 3,312 0 3,312 0 11,402 24,614 0.04

neos5 miplib 63 0 53 10 63 2,016 0.95

neos8 miplib 23,228 4 23,224 0 46,324 313,180 0.01

net12 miplib 14,115 0 1,603 12,512 14,021 80,384 0.08

netdiversion miplib 129,180 0 129,180 0 119,589 615,282 0.00

nexp-150-20-8-5 miplib 20,115 0 17,880 2,235 4,620 42,465 0.01

ns1208400 miplib 2,883 0 2,880 3 4,289 81,746 0.61

ns1688347 miplib 2,685 0 2,685 0 4,191 66,908 3.23

ns1696083 miplib 7,982 0 7,982 0 11,063 384,129 2.47

ns1760995 miplib 17,956 0 17,822 134 615,388 1,854,012 0.38

ns1830653 miplib 1,629 0 1,458 171 2,932 100,933 0.95

ns894236 miplib 9,666 0 9,666 0 8,218 41,067 0.26

ns903616 miplib 21,582 0 21,582 0 18,052 91,641 0.21

nu25-pr12 miplib 5,868 36 5,832 0 2,313 17,712 0.01

nursesched-medium-hint03 rostering 34,248 78 34,170 0 14,062 622,800 0.32

nursesched-sprint02 rostering 10,250 20 10,230 0 3,522 204,000 1.20

nw04 miplib 87,482 0 87,482 0 36 636,666 22.12

opm2-z10-s4 miplib 6,250 0 6,250 0 160,633 371,240 0.21

p0033 miplib 33 0 33 0 16 98 2.52

p0201 miplib 201 0 201 0 133 1,923 1.18

p0282 miplib 282 0 282 0 241 1,966 0.44

p0548 miplib 548 0 548 0 176 1,711 0.17

P1 bmc 11,824 0 11,823 1 304,432 620,645 0.07

P2 bmc 11,656 0 11,655 1 288,525 588,663 0.07

p200x1188c miplib 2,376 0 1,188 1,188 1,388 4,752 0.04

p2756 miplib 2,756 0 2,756 0 755 8,937 0.04

P3 bmc 8,842 0 8,841 1 227,468 463,735 0.10

P4 bmc 9,388 0 9,387 1 232,257 473,859 0.08

P5 bmc 8,317 0 8,316 1 213,918 436,110 0.10

P6 bmc 7,582 0 7,581 1 187,451 382,441 0.11

p6b miplib 462 0 462 0 5,852 11,704 1.48

P7 bmc 23,668 0 23,667 1 610,120 1,243,865 0.04

P8 bmc 11,824 0 11,823 1 304,432 620,645 0.07

P9 bmc 47,356 0 47,355 1 1,221,496 2,490,305 0.02

pb-simp-nonunif miplib 23,848 0 23,848 0 1,451,912 4,366,648 0.00

pdistuchoa miplib 500 0 500 0 26,314 52,628 5.37

pg miplib 2,700 0 100 2,600 125 5,200 0.50

pg5_34 miplib 2,600 0 100 2,500 225 7,700 0.50

physiciansched3-3 miplib 79,555 0 72,141 7,414 266,227 1,062,479 0.00

physiciansched6-2 miplib 111,827 0 109,346 2,481 168,336 480,259 0.00

piperout-08 miplib 10,399 130 10,245 24 14,589 44,959 0.33

piperout-27 miplib 11,659 121 11,514 24 18,442 54,662 0.26

pk1 miplib 86 0 55 31 45 915 0.92

proteindesign121hz512p9 miplib 159,145 91 159,054 0 301 629,449 0.38

proteindesign122trx11p8 miplib 127,326 78 127,248 0 254 503,427 0.45

qap10 miplib 4,150 0 4,150 0 1,820 18,200 0.23

radiationm18-12-05 miplib 40,623 11,247 14,688 14,688 40,935 96,149 0.01

radiationm40-10-02 miplib 172,013 47,213 62,400 62,400 173,603 406,825 0.00

rail01 miplib 117,527 0 117,527 0 46,843 392,086 0.00

rail02 miplib 270,869 0 270,869 0 95,791 756,228 0.00

rail507 miplib 63,019 0 63,009 10 509 468,878 0.00

ran14x18-disj-8 miplib 504 0 252 252 447 10,277 0.20

rd-rplusc-21 miplib 622 0 457 165 125,899 852,384 2.83

Detailed Results of the Computational Experiments 99

Table A.1: Instance set characteristics (continued).

name set cols int bin con rows nz cgρ (×100)

reblock115 miplib 1,150 0 1,150 0 4,735 13,724 0.22

reblock67 miplib 670 0 670 0 2,523 7,495 0.35

rmatr100-p10 miplib 7,359 0 100 7,259 7,260 21,877 0.50

rmatr200-p5 miplib 37,816 0 200 37,616 37,617 113,048 0.25

rocI-4-11 miplib 6,839 1,016 5,192 631 10,883 27,383 0.02

rocII-5-11 miplib 11,523 0 11,341 182 26,897 303,291 0.45

rococoB10-011000 miplib 4,456 136 4,320 0 1,667 16,517 0.02

rococoC10-001000 miplib 3,117 124 2,993 0 1,293 11,751 0.03

roi2alpha3n4 miplib 6,816 0 6,642 174 1,251 878,812 0.02

roi5alpha10n8 miplib 106,150 0 105,950 200 4,665 2,370,224 0.00

roll3000 miplib 1,166 492 246 428 2,295 29,386 0.52

s100 miplib 364,417 0 364,417 0 14,733 1,777,917 0.96

s250r10 miplib 273,142 0 273,139 3 10,962 1,318,607 0.14

satellites2-40 miplib 35,378 0 34,324 1,054 20,916 283,668 0.01

satellites2-60-fs miplib 35,378 0 34,324 1,054 16,516 125,048 0.01

savsched1 miplib 328,575 0 252,731 75,844 295,989 1,770,507 0.00

sct2 miplib 5,885 0 2,872 3,013 2,151 23,643 0.03

seymour miplib 1,372 0 1,372 0 4,944 33,549 0.04

seymour1 miplib 1,372 0 451 921 4,944 33,549 0.15

sing326 miplib 55,156 0 40,010 15,146 50,781 268,173 0.01

sing44 miplib 59,708 0 43,524 16,184 54,745 281,260 0.01

snp-02-004-104 miplib 228,350 167 167 228,016 126,512 463,941 0.30

sorrell3 miplib 1,024 0 1,024 0 169,162 338,324 8.12

sp150x300d miplib 600 0 300 300 450 1,200 0.17

sp97ar miplib 14,101 0 14,101 0 1,761 290,968 0.03

sp98ar miplib 15,085 0 15,085 0 1,435 426,148 0.04

splice1k1 miplib 3,253 1 3,252 0 6,505 1,761,016 2.69

sprint_early01 rostering 10,460 0 10,460 0 3,522 204,210 1.15

sprint_early02 rostering 10,458 0 10,458 0 3,522 204,208 1.15

sprint_hidden01 rostering 10,421 0 10,421 0 3,814 202,591 1.14

sprint_hidden02 rostering 10,421 0 10,421 0 3,814 202,591 1.14

sprint_late01 rostering 11,863 0 11,863 0 5,032 208,583 0.89

sprint_late02 rostering 10,423 0 10,423 0 3,804 202,783 1.14

square41 miplib 62,234 37 62,197 0 40,160 13,566,426 11.03

square47 miplib 95,030 43 94,987 0 61,591 27,329,856 11.19

stdc6262p timetabling 16,415 0 16,415 0 27,334 95,471 0.01

supportcase10 miplib 14,770 0 14,770 0 165,684 555,082 0.02

supportcase18 miplib 13,410 0 13,410 0 240 28,920 0.29

supportcase26 miplib 436 0 396 40 870 2,492 0.13

supportcase33 miplib 20,203 101 20,102 0 20,489 211,915 0.36

supportcase40 miplib 16,440 0 2,000 14,440 38,192 104,420 0.26

supportcase6 miplib 130,052 1 130,051 0 771 584,976 5.61

supportcase7 miplib 138,844 14 451 138,379 6,532 2,845,545 0.22

swath1 miplib 6,805 0 2,306 4,499 884 34,965 0.02

swath3 miplib 6,805 0 2,706 4,099 884 34,965 0.02

t1717 miplib 73,885 0 73,885 0 551 325,689 0.64

t1722 miplib 36,630 0 36,630 0 338 133,096 0.72

ta_BPWC_5_5_5 bpwc 945 0 945 0 4,664 10,979 1.00

ta_BPWC_5_7_1 bpwc 591 0 591 0 2,186 5,315 1.05

ta_BPWC_5_7_4 bpwc 591 0 591 0 2,290 5,523 1.05

ta_BPWC_6_9_8 bpwc 834 0 834 0 2,542 6,273 0.56

ta_BPWC_7_1_8 bpwc 28,038 0 28,038 0 205,356 465,793 0.21

tbfp-network miplib 72,747 0 72,747 0 2,436 215,837 0.83

tELGN_BPWC_6_6_20 bpwc 1,645 0 1,645 0 4,980 12,771 0.84

Detailed Results of the Computational Experiments 100

Table A.1: Instance set characteristics (continued).

name set cols int bin con rows nz cgρ (×100)

tELGN_BPWC_6_8_9 bpwc 918 0 918 0 1,569 4,495 0.99

tELGN_BPWC_7_6_16 bpwc 9,142 0 9,142 0 108,815 234,919 0.38

thor50dday miplib 106,261 0 53,131 53,130 53,360 212,060 0.00

timtab1 miplib 397 94 77 226 171 829 0.65

tMIMT_BPPC_6_3_4 bpwc 5,899 0 5,899 0 26,108 63,535 0.46

tMIMT_BPPC_8_7_5 bpwc 21,816 0 21,816 0 332,209 706,047 0.24

tr12-30 miplib 1,080 0 360 720 750 2,508 0.14

traininstance2 miplib 12,890 2,602 5,278 5,010 15,603 41,531 1.14

traininstance6 miplib 10,218 2,056 4,154 4,008 12,309 32,785 1.48

trd445c timetabling 1,431 0 1,431 0 96,133 195,080 3.84

trdcrooms timetabling 174,915 170,303 4,612 0 338,305 1,176,743 0.02

trdnc18 timetabling 10,930 828 10,102 0 3,850 48,103 0.09

trdta0010 timetabling 5,759 121 5,638 0 6,367 29,756 0.31

trdta449 timetabling 14,741 1,293 13,448 0 23,268 73,966 0.03

trdta8265 timetabling 9,151 89 9,062 0 19,484 126,610 0.11

trdta99 timetabling 9,613 175 9,438 0 26,881 157,258 0.12

trdtatl9220 timetabling 5,778 177 5,601 0 9,378 40,800 0.12

trento1 miplib 7,687 0 6,415 1,272 1,265 93,571 0.01

ua_BPWC_1_8_10 bpwc 1,548 0 1,548 0 9,257 21,131 0.55

ua_BPWC_1_9_2 bpwc 834 0 834 0 2,663 6,515 0.55

uccase12 miplib 62,529 0 9,072 53,457 121,161 419,447 0.01

uccase9 miplib 33,242 0 8,064 25,178 49,565 332,316 0.01

uct-subprob miplib 2,256 0 379 1,877 1,973 10,147 0.15

uELGN_BPWC_3_2_18 bpwc 114,957 0 114,957 0 1,348,796 2,925,507 0.12

uELGN_BPWC_3_9_18 bpwc 3,638 0 3,638 0 9,337 23,951 0.55

uMIMT_BPPC_2_5_2 bpwc 15,185 0 15,185 0 192,758 414,887 0.33

uMIMT_BPPC_2_9_1 bpwc 1,388 0 1,388 0 2,696 7,169 0.88

uMIMT_BPPC_3_7_6 bpwc 20,725 0 20,725 0 260,763 560,977 0.28

unitcal_7 miplib 25,755 0 2,856 22,899 48,939 127,595 0.02

var-smallemery-m6j6 miplib 5,608 0 5,606 2 13,416 850,621 0.03

wachplan miplib 3,361 1 3,360 0 1,553 89,361 0.35

wnq-n100-mw99-14 miplib 10,000 0 10,000 0 656,900 1,333,400 0.33

Table A.2 presents the detailed results of the experiments with the new version of the

CBC solver. Con�guration �cbc+cg� refers to the new version of CBC including all of

our routines, while �cbc� represents the previous version of this solver. Con�guration �-

{clqstr}� represents the new version of CBC without performing our clique strengthening

routine. Finally, con�gurations �-{bkclqext}� and �-{oddw}� contain the results of the

execution of the new version of CBC without including our clique and odd-cycle cut

separators, respectively.

Detailed Results of the Computational Experiments 101
T
ab
le
A
.2
:
R
es
ul
ts

of
th
e
ex
ec
ut
io
n
of

th
e
C
O
IN

-O
R
B
ra
nc
h-
an
d-
C
ut

so
lv
er
.

in
s
t
a
n
c
e

g
r
o
u
p

c
b
c

c
b
c
+
c
g

-{
c
lq
s
t
r
}

-{
b
k
c
lq
e
x
t
}

-{
o
d
d
w
}

g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e

3
0
n
2
0
b
8

m
ip
li
b

8
3
.6
9
0

1
0
8
0
0
.0
0
0

8
3
.6
9
0

1
0
8
0
0
.0
0
0

8
3
.6
9
0

1
0
8
0
0
.0
0
0

8
3
.6
9
0

1
0
8
0
0
.0
0
0

8
3
.6
9
0

1
0
8
0
0
.0
0
0

5
0
v
-1
0

m
ip
li
b

6
3
.8
1
1

1
0
8
0
0
.0
0
0

6
3
.8
1
1

1
0
8
0
0
.0
0
0

6
3
.8
1
1

1
0
8
0
0
.0
0
0

6
3
.8
1
1

1
0
8
0
0
.0
0
0

6
3
.8
1
1

1
0
8
0
0
.0
0
0

a
ir
0
3

m
ip
li
b

1
0
0
.0
0
0

1
.1
2
0

1
0
0
.0
0
0

2
.6
8
0

1
0
0
.0
0
0

2
.5
4
0

1
0
0
.0
0
0

2
.7
4
0

1
0
0
.0
0
0

2
.5
8
0

a
ir
0
4

m
ip
li
b

1
0
0
.0
0
0

6
4
.6
4
0

1
0
0
.0
0
0

5
8
.0
3
0

1
0
0
.0
0
0

5
3
.8
4
0

1
0
0
.0
0
0

1
4
4
.4
6
0

1
0
0
.0
0
0

5
3
.6
9
0

a
ir
0
5

m
ip
li
b

1
0
0
.0
0
0

3
3
.7
1
0

1
0
0
.0
0
0

3
4
.7
8
0

1
0
0
.0
0
0

3
2
.5
9
0

1
0
0
.0
0
0

2
3
.9
2
0

1
0
0
.0
0
0

3
4
.0
7
0

a
p
p
1
-1

m
ip
li
b

1
0
0
.0
0
0

1
7
.0
2
0

1
0
0
.0
0
0

1
6
.9
5
0

1
0
0
.0
0
0

1
7
.3
4
0

1
0
0
.0
0
0

1
6
.4
5
0

1
0
0
.0
0
0

1
7
.0
9
0

a
p
p
1
-2

m
ip
li
b

1
0
0
.0
0
0

3
5
2
3
.2
4
0

1
0
0
.0
0
0

3
6
3
1
.7
8
0

1
0
0
.0
0
0

3
5
2
3
.5
9
0

1
0
0
.0
0
0

3
5
4
1
.5
0
0

1
0
0
.0
0
0

3
4
9
6
.8
3
0

a
ss
ig
n
1
-5
-8

m
ip
li
b

4
5
.1
8
1

1
0
8
0
0
.0
0
0

4
5
.1
8
1

1
0
8
0
0
.0
0
0

4
5
.1
8
1

1
0
8
0
0
.0
0
0

4
5
.1
8
1

1
0
8
0
0
.0
0
0

4
5
.1
8
1

1
0
8
0
0
.0
0
0

a
tl
a
n
ta
-i
p

m
ip
li
b

1
.2
4
4

1
0
8
0
0
.0
0
0

1
7
.3
0
3

1
0
8
0
0
.0
0
0

0
.9
3
6

1
0
8
0
0
.0
0
0

0
.9
1
0

1
0
8
0
0
.0
0
0

0
.9
5
9

1
0
8
0
0
.0
0
0

b
1
c
1
s1

m
ip
li
b

6
0
.2
8
8

1
0
8
0
0
.0
0
0

6
0
.2
8
8

1
0
8
0
0
.0
0
0

6
0
.2
8
8

1
0
8
0
0
.0
0
0

6
0
.2
8
8

1
0
8
0
0
.0
0
0

6
0
.2
8
8

1
0
8
0
0
.0
0
0

b
a
b
1

m
ip
li
b

6
5
.6
0
3

1
0
8
0
0
.0
0
0

6
5
.6
0
3

1
0
8
0
0
.0
0
0

6
5
.6
0
3

1
0
8
0
0
.0
0
0

6
5
.6
0
3

1
0
8
0
0
.0
0
0

6
5
.6
0
3

1
0
8
0
0
.0
0
0

b
a
b
2

m
ip
li
b

8
1
.2
7
5

1
0
8
0
0
.0
0
0

8
7
.5
2
1

1
0
8
0
0
.0
0
0

8
1
.2
7
5

1
0
8
0
0
.0
0
0

8
1
.2
7
5

1
0
8
0
0
.0
0
0

8
7
.5
2
1

1
0
8
0
0
.0
0
0

b
a
b
3

m
ip
li
b

6
9
.8
1
2

1
0
8
0
0
.0
0
0

9
3
.7
8
4

1
0
8
0
0
.0
0
0

6
9
.8
1
2

1
0
8
0
0
.0
0
0

6
9
.8
1
2

1
0
8
0
0
.0
0
0

9
3
.7
8
4

1
0
8
0
0
.0
0
0

b
a
b
5

m
ip
li
b

6
9
.6
5
3

1
0
8
0
0
.0
0
0

9
3
.9
1
1

1
0
8
0
0
.0
0
0

6
9
.6
5
3

1
0
8
0
0
.0
0
0

6
9
.6
5
3

1
0
8
0
0
.0
0
0

9
3
.9
1
1

1
0
8
0
0
.0
0
0

b
a
b
6

m
ip
li
b

8
2
.3
7
0

1
0
8
0
0
.0
0
0

8
6
.7
2
4

1
0
8
0
0
.0
0
0

8
3
.2
3
5

1
0
8
0
0
.0
0
0

8
1
.7
7
1

1
0
8
0
0
.0
0
0

8
2
.8
2
2

1
0
8
0
0
.0
0
0

b
e
a
sl
e
y
C
3

m
ip
li
b

8
5
.1
0
7

1
0
8
0
0
.0
0
0

8
5
.1
0
7

1
0
8
0
0
.0
0
0

8
5
.1
0
7

1
0
8
0
0
.0
0
0

8
5
.1
0
7

1
0
8
0
0
.0
0
0

8
5
.1
0
7

1
0
8
0
0
.0
0
0

b
in
k
a
r1
0
_
1

m
ip
li
b

1
0
0
.0
0
0

1
1
7
.3
6
0

1
0
0
.0
0
0

1
1
6
.6
1
0

1
0
0
.0
0
0

1
1
0
.6
8
0

1
0
0
.0
0
0

1
1
0
.3
6
0

1
0
0
.0
0
0

1
1
8
.6
2
0

b
lp
-a
r9
8

m
ip
li
b

8
7
.1
1
4

1
0
8
0
0
.0
0
0

8
7
.1
1
4

1
0
8
0
0
.0
0
0

8
7
.1
1
4

1
0
8
0
0
.0
0
0

8
7
.1
1
4

1
0
8
0
0
.0
0
0

8
7
.1
1
4

1
0
8
0
0
.0
0
0

b
lp
-i
c
9
8

m
ip
li
b

7
6
.2
7
2

1
0
8
0
0
.0
0
0

7
6
.2
7
2

1
0
8
0
0
.0
0
0

7
6
.2
7
2

1
0
8
0
0
.0
0
0

7
6
.2
7
2

1
0
8
0
0
.0
0
0

7
6
.2
7
2

1
0
8
0
0
.0
0
0

b
n
a
tt
4
0
0

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

b
p
p
c
4
-0
8

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

b
r1

ti
m
e
ta
b
li
n
g

7
5
.0
1
6

1
0
8
0
0
.0
0
0

8
7
.1
6
3

1
0
8
0
0
.0
0
0

8
7
.1
3
5

1
0
8
0
0
.0
0
0

8
0
.7
6
1

1
0
8
0
0
.0
0
0

8
7
.4
6
9

1
0
8
0
0
.0
0
0

b
r2

ti
m
e
ta
b
li
n
g

8
1
.4
3
9

1
0
8
0
0
.0
0
0

8
2
.2
9
8

1
0
8
0
0
.0
0
0

8
2
.0
4
8

1
0
8
0
0
.0
0
0

8
1
.0
0
8

1
0
8
0
0
.0
0
0

8
1
.0
6
1

1
0
8
0
0
.0
0
0

b
r3

ti
m
e
ta
b
li
n
g

9
1
.3
6
1

1
0
8
0
0
.0
0
0

9
3
.5
9
1

1
0
8
0
0
.0
0
0

9
4
.1
4
0

1
0
8
0
0
.0
0
0

9
2
.8
0
0

1
0
8
0
0
.0
0
0

9
3
.9
3
9

1
0
8
0
0
.0
0
0

b
r5

ti
m
e
ta
b
li
n
g

8
0
.0
0
3

1
0
8
0
0
.0
0
0

8
5
.5
8
2

1
0
8
0
0
.0
0
0

8
4
.9
7
4

1
0
8
0
0
.0
0
0

8
2
.2
7
3

1
0
8
0
0
.0
0
0

8
3
.2
5
5

1
0
8
0
0
.0
0
0

b
ra
z
il
3

ti
m
e
ta
b
li
n
g

8
6
.3
6
4

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

1
0
8
0
0
.0
0
0

9
5
.4
5
5

1
0
8
0
0
.0
0
0

9
0
.9
0
9

1
0
8
0
0
.0
0
0

9
5
.4
5
5

1
0
8
0
0
.0
0
0

ch
ro
m
a
ti
c
in
d
e
x
1
0
2
4
-7

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

ch
ro
m
a
ti
c
in
d
e
x
5
1
2
-7

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

c
m
�
sp
5
0
-2
4
-8
-8

m
ip
li
b

4
0
.9
4
8

1
0
8
0
0
.0
0
0

4
0
.9
4
8

1
0
8
0
0
.0
0
0

4
0
.9
4
8

1
0
8
0
0
.0
0
0

4
0
.9
4
8

1
0
8
0
0
.0
0
0

4
0
.9
4
8

1
0
8
0
0
.0
0
0

C
M
S
7
5
0
_
4

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

c
o
-1
0
0

m
ip
li
b

1
2
.4
6
1

1
0
8
0
0
.0
0
0

4
6
.1
5
6

1
0
8
0
0
.0
0
0

1
9
.0
7
8

1
0
8
0
0
.0
0
0

1
9
.0
7
8

1
0
8
0
0
.0
0
0

1
9
.3
6
8

1
0
8
0
0
.0
0
0

c
o
d
1
0
5

m
ip
li
b

3
7
.2
3
9

1
0
8
0
0
.0
0
0

3
7
.0
8
3

1
0
8
0
0
.0
0
0

3
7
.1
9
1

1
0
8
0
0
.0
0
0

3
7
.0
8
0

1
0
8
0
0
.0
0
0

3
7
.2
0
7

1
0
8
0
0
.0
0
0

c
o
m
p
0
7
-2
id
x

ti
m
e
ta
b
li
n
g

1
0
0
.0
0
0

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

8
5
0
1
.0
4
0

1
0
0
.0
0
0

8
9
3
1
.7
2
0

1
0
0
.0
0
0

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

2
4
4
4
.1
4
0

c
o
m
p
2
1
-2
id
x

ti
m
e
ta
b
li
n
g

5
7
.1
9
1

1
0
8
0
0
.0
0
0

6
5
.2
5
9

1
0
8
0
0
.0
0
0

6
3
.5
5
4

1
0
8
0
0
.0
0
0

6
0
.1
3
9

1
0
8
0
0
.0
0
0

6
4
.0
4
9

1
0
8
0
0
.0
0
0

c
o
st
2
6
6
-U
U
E

m
ip
li
b

7
2
.4
8
1

1
0
8
0
0
.0
0
0

7
2
.5
8
5

1
0
8
0
0
.0
0
0

7
2
.5
8
5

1
0
8
0
0
.0
0
0

7
2
.4
8
1

1
0
8
0
0
.0
0
0

7
2
.5
8
5

1
0
8
0
0
.0
0
0

Detailed Results of the Computational Experiments 102
T
ab
le
A
.2
:
R
es
ul
ts

fo
r
th
e
ex
ec
ut
io
n
of

C
O
IN

-O
R
B
ra
nc
h-
an
d-
C
ut

so
lv
er

(c
on
ti
nu
ed
).

in
s
t
a
n
c
e

g
r
o
u
p

c
b
c

c
b
c
+
c
g

-{
c
lq
s
t
r
}

-{
b
k
c
lq
e
x
t
}

-{
o
d
d
w
}

g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e

c
sc
h
e
d
0
0
7

m
ip
li
b

4
6
.2
0
7

1
0
8
0
0
.0
0
0

4
6
.2
0
7

1
0
8
0
0
.0
0
0

4
6
.2
0
7

1
0
8
0
0
.0
0
0

4
6
.2
0
7

1
0
8
0
0
.0
0
0

4
6
.2
0
7

1
0
8
0
0
.0
0
0

c
sc
h
e
d
0
0
8

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

c
v
s1
6
r1
2
8
-8
9

m
ip
li
b

2
8
.8
6
8

1
0
8
0
0
.0
0
0

2
8
.8
6
8

1
0
8
0
0
.0
0
0

2
8
.8
6
8

1
0
8
0
0
.0
0
0

2
8
.8
6
8

1
0
8
0
0
.0
0
0

2
8
.8
6
8

1
0
8
0
0
.0
0
0

d
_
B
P
W
C
_
2
_
4
_
1
0

b
in
p
a
ck
in
g

0
.0
0
1

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

8
0
.8
9
0

1
0
0
.0
0
0

1
4
0
7
.2
3
0

8
5
.1
0
0

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

8
0
.3
1
0

d
a
_
B
P
W
C
_
2
_
8
_
6

b
in
p
a
ck
in
g

2
.5
2
1

1
0
8
0
0
.0
0
0

5
8
.3
7
5

1
0
8
0
0
.0
0
0

5
8
.3
3
9

1
0
8
0
0
.0
0
0

2
.7
2
3

1
0
8
0
0
.0
0
0

5
8
.2
3
8

1
0
8
0
0
.0
0
0

d
a
_
B
P
W
C
_
2
_
8
_
9

b
in
p
a
ck
in
g

1
.0
9
2

1
0
8
0
0
.0
0
0

5
6
.7
2
3

1
0
8
0
0
.0
0
0

5
6
.7
0
1

1
0
8
0
0
.0
0
0

0
.4
5
8

1
0
8
0
0
.0
0
0

5
6
.7
1
6

1
0
8
0
0
.0
0
0

d
a
n
o
3
_
3

m
ip
li
b

1
0
0
.0
0
0

3
5
0
.4
9
0

1
0
0
.0
0
0

3
5
8
.5
2
0

1
0
0
.0
0
0

3
8
0
.8
2
0

1
0
0
.0
0
0

3
5
1
.7
2
0

1
0
0
.0
0
0

3
5
1
.0
5
0

d
a
n
o
3
_
5

m
ip
li
b

1
0
0
.0
0
0

1
1
1
8
.7
6
0

1
0
0
.0
0
0

1
0
1
7
.5
1
0

1
0
0
.0
0
0

1
0
2
1
.1
7
0

1
0
0
.0
0
0

1
0
2
8
.6
4
0

1
0
0
.0
0
0

1
0
4
1
.5
0
0

d
ra
y
a
g
e
-1
0
0
-2
3

m
ip
li
b

1
0
0
.0
0
0

4
7
.4
6
0

1
0
0
.0
0
0

4
8
.6
5
0

1
0
0
.0
0
0

4
7
.7
2
0

1
0
0
.0
0
0

5
5
.5
8
0

1
0
0
.0
0
0

4
8
.0
3
0

d
ra
y
a
g
e
-2
5
-2
3

m
ip
li
b

9
9
.9
1
7

1
0
8
0
0
.0
0
0

9
9
.9
1
7

1
0
8
0
0
.0
0
0

9
9
.9
1
7

1
0
8
0
0
.0
0
0

9
9
.9
1
7

1
0
8
0
0
.0
0
0

9
9
.9
1
7

1
0
8
0
0
.0
0
0

d
s

m
ip
li
b

0
.3
2
9

1
0
8
0
0
.0
0
0

1
.3
2
1

1
0
8
0
0
.0
0
0

1
.3
2
1

1
0
8
0
0
.0
0
0

1
.6
0
0

1
0
8
0
0
.0
0
0

1
.3
2
1

1
0
8
0
0
.0
0
0

d
w
s0
0
8
-0
1

m
ip
li
b

4
0
.4
7
2

1
0
8
0
0
.0
0
0

4
0
.4
7
2

1
0
8
0
0
.0
0
0

4
0
.4
7
2

1
0
8
0
0
.0
0
0

4
0
.4
7
2

1
0
8
0
0
.0
0
0

4
0
.4
7
2

1
0
8
0
0
.0
0
0

e
il
3
3
-2

m
ip
li
b

1
2
.7
5
0

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

3
7
.6
5
0

1
2
.7
5
0

1
0
8
0
0
.0
0
0

1
2
.7
5
0

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

1
3
4
.6
1
0

e
il
A
1
0
1
-2

m
ip
li
b

2
0
.8
6
5

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

1
0
4
7
8
.5
5
0

2
0
.8
6
5

1
0
8
0
0
.0
0
0

2
0
.8
6
5

1
0
8
0
0
.0
0
0

2
4
.0
6
5

1
0
8
0
0
.0
0
0

e
il
A
7
6

m
ip
li
b

1
0
0
.0
0
0

2
3
3
.8
2
0

1
0
0
.0
0
0

1
8
.8
5
0

1
0
0
.0
0
0

1
9
.1
8
0

1
0
0
.0
0
0

2
4
.3
0
0

1
0
0
.0
0
0

1
9
.0
7
0

e
il
B
1
0
1

m
ip
li
b

1
0
0
.0
0
0

2
4
3
9
.5
6
0

1
0
0
.0
0
0

1
9
6
7
.9
3
0

1
0
0
.0
0
0

1
7
8
3
.9
3
0

1
0
0
.0
0
0

4
6
9
.6
3
0

1
0
0
.0
0
0

1
7
3
9
.8
9
0

e
il
B
1
0
1
.2

m
ip
li
b

6
0
.1
0
0

1
0
8
0
0
.0
0
0

7
0
.3
1
6

1
0
8
0
0
.0
0
0

6
1
.3
0
8

1
0
8
0
0
.0
0
0

6
1
.3
0
8

1
0
8
0
0
.0
0
0

6
1
.3
0
8

1
0
8
0
0
.0
0
0

e
il
B
7
6

m
ip
li
b

1
0
0
.0
0
0

2
6
.1
3
0

1
0
0
.0
0
0

6
.5
0
0

1
0
0
.0
0
0

6
.9
8
0

1
0
0
.0
0
0

7
.0
1
0

1
0
0
.0
0
0

6
.4
6
0

e
il
C
7
6

m
ip
li
b

1
0
0
.0
0
0

6
8
9
.5
2
0

1
0
0
.0
0
0

9
4
.9
2
0

1
0
0
.0
0
0

8
3
.3
5
0

1
0
0
.0
0
0

8
6
.6
0
0

1
0
0
.0
0
0

2
6
.9
9
0

e
il
C
7
6
.2

m
ip
li
b

5
3
.0
4
8

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

4
4
5
7
.3
5
0

5
3
.0
4
8

1
0
8
0
0
.0
0
0

5
3
.0
4
8

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

1
4
4
2
.0
8
0

e
il
D
7
6

m
ip
li
b

1
0
0
.0
0
0

7
2
1
.1
8
0

1
0
0
.0
0
0

2
1
6
.1
8
0

1
0
0
.0
0
0

2
1
6
.0
6
0

1
0
0
.0
0
0

5
4
.4
4
0

1
0
0
.0
0
0

1
8
9
.0
7
0

e
il
D
7
6
.2

m
ip
li
b

2
3
.8
2
8

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

3
3
0
6
.5
2
0

2
3
.8
2
8

1
0
8
0
0
.0
0
0

2
3
.8
2
8

1
0
8
0
0
.0
0
0

5
1
.0
7
8

1
0
8
0
0
.0
0
0

e
n
li
g
h
t_

h
a
rd

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

e
x
p
-1
-5
0
0
-5
-5

m
ip
li
b

7
5
.2
3
3

1
0
8
0
0
.0
0
0

7
5
.2
3
3

1
0
8
0
0
.0
0
0

7
5
.2
3
3

1
0
8
0
0
.0
0
0

7
5
.2
3
3

1
0
8
0
0
.0
0
0

7
5
.2
3
3

1
0
8
0
0
.0
0
0

fa
st
0
5
0
7

m
ip
li
b

1
0
0
.0
0
0

1
4
8
6
.3
7
0

1
0
0
.0
0
0

1
7
7
8
.0
3
0

1
0
0
.0
0
0

1
6
7
0
.9
0
0

1
0
0
.0
0
0

1
5
2
0
.1
2
0

1
0
0
.0
0
0

1
6
0
9
.9
4
0

fa
st
x
g
e
m
m
-n
2
r6
s0
t2

m
ip
li
b

2
.3
8
7

1
0
8
0
0
.0
0
0

2
.2
5
1

1
0
8
0
0
.0
0
0

2
.4
5
1

1
0
8
0
0
.0
0
0

2
.3
8
9

1
0
8
0
0
.0
0
0

2
.1
9
8

1
0
8
0
0
.0
0
0

�
b
a
ll

m
ip
li
b

1
0
0
.0
0
0

8
4
4
.6
9
0

1
0
0
.0
0
0

7
3
4
.4
7
0

1
0
0
.0
0
0

7
8
5
.3
1
0

1
0
0
.0
0
0

9
0
5
.0
8
0

1
0
0
.0
0
0

8
5
8
.3
9
0

g
e
rm

a
n
rr

m
ip
li
b

2
7
.1
0
9

1
0
8
0
0
.0
0
0

2
7
.0
5
2

1
0
8
0
0
.0
0
0

2
7
.0
9
7

1
0
8
0
0
.0
0
0

2
6
.9
8
5

1
0
8
0
0
.0
0
0

2
7
.0
4
8

1
0
8
0
0
.0
0
0

g
la
ss
-s
c

m
ip
li
b

6
5
.3
4
6

1
0
8
0
0
.0
0
0

6
5
.3
4
6

1
0
8
0
0
.0
0
0

6
5
.3
4
6

1
0
8
0
0
.0
0
0

6
5
.3
4
6

1
0
8
0
0
.0
0
0

6
5
.3
4
6

1
0
8
0
0
.0
0
0

g
la
ss
4

m
ip
li
b

5
0
.0
0
0

1
0
8
0
0
.0
0
0

5
0
.0
0
0

1
0
8
0
0
.0
0
0

5
0
.0
0
0

1
0
8
0
0
.0
0
0

5
0
.0
0
1

1
0
8
0
0
.0
0
0

5
0
.0
0
1

1
0
8
0
0
.0
0
0

g
m
u
-3
5
-4
0

m
ip
li
b

1
1
.2
0
7

1
0
8
0
0
.0
0
0

1
1
.2
0
7

1
0
8
0
0
.0
0
0

1
1
.2
0
7

1
0
8
0
0
.0
0
0

1
1
.2
0
7

1
0
8
0
0
.0
0
0

1
1
.2
0
7

1
0
8
0
0
.0
0
0

g
m
u
-3
5
-5
0

m
ip
li
b

0
.2
8
2

1
0
8
0
0
.0
0
0

0
.2
8
2

1
0
8
0
0
.0
0
0

0
.2
8
2

1
0
8
0
0
.0
0
0

0
.2
8
2

1
0
8
0
0
.0
0
0

0
.2
8
2

1
0
8
0
0
.0
0
0

g
ra
p
h
2
0
-2
0
-1
ra
n
d

m
ip
li
b

4
9
.1
0
7

1
0
8
0
0
.0
0
0

4
9
.1
0
7

1
0
8
0
0
.0
0
0

4
9
.1
0
7

1
0
8
0
0
.0
0
0

4
9
.1
0
7

1
0
8
0
0
.0
0
0

4
9
.1
0
7

1
0
8
0
0
.0
0
0

g
ra
p
h
d
ra
w
-d
o
m
a
in

m
ip
li
b

8
8
.9
6
1

1
0
8
0
0
.0
0
0

9
1
.6
3
5

1
0
8
0
0
.0
0
0

9
2
.0
0
8

1
0
8
0
0
.0
0
0

8
9
.9
8
0

1
0
8
0
0
.0
0
0

9
1
.7
2
9

1
0
8
0
0
.0
0
0

h
8
0
x
6
3
2
0
d

m
ip
li
b

7
7
.5
0
9

1
0
8
0
0
.0
0
0

7
7
.5
0
9

1
0
8
0
0
.0
0
0

7
7
.5
0
9

1
0
8
0
0
.0
0
0

7
7
.5
0
9

1
0
8
0
0
.0
0
0

7
7
.5
0
9

1
0
8
0
0
.0
0
0

Detailed Results of the Computational Experiments 103
T
ab
le
A
.2
:
R
es
ul
ts

fo
r
th
e
ex
ec
ut
io
n
of

C
O
IN

-O
R
B
ra
nc
h-
an
d-
C
ut

so
lv
er

(c
on
ti
nu
ed
).

in
s
t
a
n
c
e

g
r
o
u
p

c
b
c

c
b
c
+
c
g

-{
c
lq
s
t
r
}

-{
b
k
c
lq
e
x
t
}

-{
o
d
d
w
}

g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e

h
y
p
o
th
y
ro
id
-k
1

m
ip
li
b

1
0
0
.0
0
0

1
8
4
6
.6
3
0

1
0
0
.0
0
0

1
9
4
0
.6
4
0

1
0
0
.0
0
0

1
9
0
6
.6
3
0

1
0
0
.0
0
0

1
9
1
6
.2
5
0

1
0
0
.0
0
0

1
8
9
2
.2
9
0

ic
9
7
_
p
o
te
n
ti
a
l

m
ip
li
b

6
5
.4
4
1

1
0
8
0
0
.0
0
0

6
5
.4
4
1

1
0
8
0
0
.0
0
0

6
5
.4
4
1

1
0
8
0
0
.0
0
0

6
5
.3
8
5

1
0
8
0
0
.0
0
0

6
5
.4
4
1

1
0
8
0
0
.0
0
0

ic
ir
9
7
_
te
n
si
o
n

m
ip
li
b

7
0
.6
8
1

1
0
8
0
0
.0
0
0

7
0
.6
8
1

1
0
8
0
0
.0
0
0

7
0
.6
8
1

1
0
8
0
0
.0
0
0

7
0
.6
8
1

1
0
8
0
0
.0
0
0

7
0
.6
8
1

1
0
8
0
0
.0
0
0

ir
is
h
-e
le
c
tr
ic
it
y

m
ip
li
b

8
4
.6
0
9

1
0
8
0
0
.0
0
0

8
4
.6
2
3

1
0
8
0
0
.0
0
0

8
4
.5
9
8

1
0
8
0
0
.0
0
0

8
4
.6
2
5

1
0
8
0
0
.0
0
0

8
4
.6
1
9

1
0
8
0
0
.0
0
0

ir
p

m
ip
li
b

1
0
0
.0
0
0

9
.3
7
0

1
0
0
.0
0
0

1
6
.4
9
0

1
0
0
.0
0
0

1
5
.6
4
0

1
0
0
.0
0
0

6
.8
5
0

1
0
0
.0
0
0

1
6
.7
7
0

is
ta
n
b
u
l-
n
o
-c
u
to
�

m
ip
li
b

1
0
0
.0
0
0

2
0
7
2
.8
4
0

1
0
0
.0
0
0

1
7
2
2
.1
7
0

1
0
0
.0
0
0

1
6
8
9
.4
3
0

1
0
0
.0
0
0

1
7
2
8
.1
3
0

1
0
0
.0
0
0

1
6
8
0
.1
3
0

k
1
m
u
sh
ro
o
m

m
ip
li
b

2
.1
9
2

1
0
8
0
0
.0
0
0

2
.1
9
2

1
0
8
0
0
.0
0
0

2
.1
9
2

1
0
8
0
0
.0
0
0

2
.1
9
2

1
0
8
0
0
.0
0
0

2
.1
9
2

1
0
8
0
0
.0
0
0

k
e
ll
e
r4
c
p
a
rt

m
ip
li
b

2
8
.1
6
4

1
0
8
0
0
.0
0
0

4
3
.3
9
6

1
0
8
0
0
.0
0
0

4
1
.0
5
5

1
0
8
0
0
.0
0
0

3
1
.6
8
7

1
0
8
0
0
.0
0
0

4
3
.3
9
6

1
0
8
0
0
.0
0
0

k
e
ll
e
r4
c
p
a
rt
p
p

m
ip
li
b

0
.1
0
6

1
0
8
0
0
.0
0
0

2
.3
2
5

1
0
8
0
0
.0
0
0

2
.3
2
5

1
0
8
0
0
.0
0
0

0
.1
2
6

1
0
8
0
0
.0
0
0

2
.3
2
5

1
0
8
0
0
.0
0
0

l1
5
2
la
v

m
ip
li
b

1
0
0
.0
0
0

1
.4
2
0

1
0
0
.0
0
0

1
.3
5
0

1
0
0
.0
0
0

1
.3
9
0

1
0
0
.0
0
0

1
.3
1
0

1
0
0
.0
0
0

1
.9
9
0

le
c
ts
ch
e
d
-5
-o
b
j

m
ip
li
b

6
2
.5
0
0

1
0
8
0
0
.0
0
0

6
2
.5
0
0

1
0
8
0
0
.0
0
0

6
2
.5
0
0

1
0
8
0
0
.0
0
0

6
2
.5
0
0

1
0
8
0
0
.0
0
0

6
2
.5
0
0

1
0
8
0
0
.0
0
0

le
o
1

m
ip
li
b

6
7
.0
1
4

1
0
8
0
0
.0
0
0

6
7
.0
1
4

1
0
8
0
0
.0
0
0

6
7
.0
1
4

1
0
8
0
0
.0
0
0

6
7
.0
1
4

1
0
8
0
0
.0
0
0

6
7
.0
1
4

1
0
8
0
0
.0
0
0

le
o
2

m
ip
li
b

5
3
.8
4
0

1
0
8
0
0
.0
0
0

5
3
.8
4
0

1
0
8
0
0
.0
0
0

5
3
.8
4
0

1
0
8
0
0
.0
0
0

5
3
.8
4
0

1
0
8
0
0
.0
0
0

5
3
.8
4
0

1
0
8
0
0
.0
0
0

lo
n
g
_
e
a
rl
y
0
1

ro
st
e
ri
n
g

1
0
0
.0
0
0

8
6
6
.4
3
0

1
0
0
.0
0
0

6
7
7
.4
0
0

1
0
0
.0
0
0

5
3
4
.6
4
0

1
0
0
.0
0
0

7
5
8
.1
5
0

1
0
0
.0
0
0

7
0
4
.6
4
0

lo
n
g
_
e
a
rl
y
0
2

ro
st
e
ri
n
g

9
5
.0
9
8

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

2
0
2
6
.5
1
0

1
0
0
.0
0
0

3
8
4
9
.9
3
0

1
0
0
.0
0
0

1
8
5
7
.9
9
0

1
0
0
.0
0
0

2
3
6
1
.7
0
0

lo
n
g
_
h
id
d
e
n
0
1

ro
st
e
ri
n
g

3
6
.5
9
3

1
0
8
0
0
.0
0
0

9
3
.9
3
4

1
0
8
0
0
.0
0
0

9
0
.3
0
5

1
0
8
0
0
.0
0
0

8
4
.8
3
4

1
0
8
0
0
.0
0
0

9
3
.9
9
7

1
0
8
0
0
.0
0
0

lo
n
g
_
h
id
d
e
n
0
2

ro
st
e
ri
n
g

2
4
.9
7
9

1
0
8
0
0
.0
0
0

9
3
.6
8
4

1
0
8
0
0
.0
0
0

9
3
.6
8
4

1
0
8
0
0
.0
0
0

8
3
.1
5
8

1
0
8
0
0
.0
0
0

9
3
.6
8
4

1
0
8
0
0
.0
0
0

lo
n
g
_
la
te
0
1

ro
st
e
ri
n
g

0
.0
0
0

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

8
3
2
0
.2
8
0

9
9
.7
7
3

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

8
5
8
5
.0
5
0

9
9
.3
9
7

1
0
8
0
0
.0
0
0

lo
n
g
_
la
te
0
2

ro
st
e
ri
n
g

0
.0
0
0

1
0
8
0
0
.0
0
0

9
9
.9
9
8

1
0
8
0
0
.0
0
0

9
9
.9
9
9

1
0
8
0
0
.0
0
0

9
6
.4
6
8

1
0
8
0
0
.0
0
0

9
9
.1
7
0

1
0
8
0
0
.0
0
0

lo
n
g
_
la
te
0
4

ro
st
e
ri
n
g

0
.0
0
0

1
0
8
0
0
.0
0
0

9
4
.5
4
6

1
0
8
0
0
.0
0
0

7
8
.7
6
1

1
0
8
0
0
.0
0
0

7
8
.7
6
1

1
0
8
0
0
.0
0
0

7
8
.7
6
1

1
0
8
0
0
.0
0
0

lo
ts
iz
e

m
ip
li
b

3
9
.7
1
1

1
0
8
0
0
.0
0
0

3
9
.7
1
1

1
0
8
0
0
.0
0
0

3
9
.7
1
1

1
0
8
0
0
.0
0
0

3
9
.7
1
1

1
0
8
0
0
.0
0
0

3
9
.7
1
1

1
0
8
0
0
.0
0
0

m
a
d

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

m
a
p
1
0

m
ip
li
b

1
0
0
.0
0
0

3
3
6
3
.2
9
0

1
0
0
.0
0
0

3
0
5
3
.7
6
0

1
0
0
.0
0
0

3
0
7
7
.2
7
0

1
0
0
.0
0
0

3
1
5
3
.9
7
0

1
0
0
.0
0
0

3
0
1
1
.7
8
0

m
a
p
1
6
7
1
5
-0
4

m
ip
li
b

0
.6
5
3

1
0
8
0
0
.0
0
0

0
.6
5
3

1
0
8
0
0
.0
0
0

0
.6
5
3

1
0
8
0
0
.0
0
0

0
.6
5
3

1
0
8
0
0
.0
0
0

0
.6
5
3

1
0
8
0
0
.0
0
0

m
a
rk
sh
a
re
_
4
_
0

m
ip
li
b

1
0
0
.0
0
0

1
3
.6
6
0

1
0
0
.0
0
0

1
3
.7
2
0

1
0
0
.0
0
0

1
3
.6
3
0

1
0
0
.0
0
0

1
4
.0
5
0

1
0
0
.0
0
0

1
3
.4
8
0

m
a
rk
sh
a
re
2

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

m
a
s7
4

m
ip
li
b

1
0
0
.0
0
0

1
4
7
.4
2
0

1
0
0
.0
0
0

1
4
9
.5
3
0

1
0
0
.0
0
0

1
4
9
.0
1
0

1
0
0
.0
0
0

1
5
1
.0
3
0

1
0
0
.0
0
0

1
4
9
.5
4
0

m
a
s7
6

m
ip
li
b

1
0
0
.0
0
0

1
9
.6
7
0

1
0
0
.0
0
0

1
9
.2
3
0

1
0
0
.0
0
0

1
9
.5
3
0

1
0
0
.0
0
0

1
9
.2
6
0

1
0
0
.0
0
0

1
9
.5
2
0

m
c
1
1

m
ip
li
b

7
5
.7
3
4

1
0
8
0
0
.0
0
0

7
5
.7
3
4

1
0
8
0
0
.0
0
0

7
5
.7
3
4

1
0
8
0
0
.0
0
0

7
5
.7
3
4

1
0
8
0
0
.0
0
0

7
5
.7
3
4

1
0
8
0
0
.0
0
0

m
c
sc
h
e
d

m
ip
li
b

8
3
.7
6
0

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

9
7
6
5
.8
3
0

1
0
0
.0
0
0

9
6
9
1
.9
7
0

8
5
.2
6
5

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

9
6
3
1
.9
1
0

m
e
d
iu
m
_
e
a
rl
y
0
2

ro
st
e
ri
n
g

6
0
.3
4
0

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

6
5
.2
0
0

1
0
0
.0
0
0

1
9
1
.3
1
0

1
0
0
.0
0
0

6
2
.9
9
0

1
0
0
.0
0
0

6
2
.2
5
0

m
e
d
iu
m
_
h
id
d
e
n
0
1

ro
st
e
ri
n
g

5
.8
0
0

1
0
8
0
0
.0
0
0

5
9
.3
5
5

1
0
8
0
0
.0
0
0

5
8
.8
0
6

1
0
8
0
0
.0
0
0

5
3
.8
4
1

1
0
8
0
0
.0
0
0

6
0
.0
3
5

1
0
8
0
0
.0
0
0

m
e
d
iu
m
_
h
id
d
e
n
0
2

ro
st
e
ri
n
g

0
.0
0
0

1
0
8
0
0
.0
0
0

6
9
.8
4
8

1
0
8
0
0
.0
0
0

6
8
.4
2
0

1
0
8
0
0
.0
0
0

6
1
.3
2
9

1
0
8
0
0
.0
0
0

6
9
.6
4
4

1
0
8
0
0
.0
0
0

m
e
d
iu
m
_
h
id
d
e
n
0
5

ro
st
e
ri
n
g

0
.0
0
0

1
0
8
0
0
.0
0
0

5
1
.7
3
1

1
0
8
0
0
.0
0
0

4
7
.5
1
5

1
0
8
0
0
.0
0
0

2
4
.1
9
4

1
0
8
0
0
.0
0
0

5
6
.3
0
5

1
0
8
0
0
.0
0
0

m
e
d
iu
m
_
la
te
0
1

ro
st
e
ri
n
g

3
1
.7
9
2

1
0
8
0
0
.0
0
0

9
3
.5
5
3

1
0
8
0
0
.0
0
0

9
2
.4
0
4

1
0
8
0
0
.0
0
0

8
6
.5
3
2

1
0
8
0
0
.0
0
0

9
4
.1
2
3

1
0
8
0
0
.0
0
0

Detailed Results of the Computational Experiments 104
T
ab
le
A
.2
:
R
es
ul
ts

fo
r
th
e
ex
ec
ut
io
n
of

C
O
IN

-O
R
B
ra
nc
h-
an
d-
C
ut

so
lv
er

(c
on
ti
nu
ed
).

in
s
t
a
n
c
e

g
r
o
u
p

c
b
c

c
b
c
+
c
g

-{
c
lq
s
t
r
}

-{
b
k
c
lq
e
x
t
}

-{
o
d
d
w
}

g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e

m
e
d
iu
m
_
la
te
0
2

ro
st
e
ri
n
g

7
0
.9
7
5

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

9
3
6
.1
1
0

1
0
0
.0
0
0

1
2
8
6
.0
1
0

1
0
0
.0
0
0

9
6
4
.4
7
0

1
0
0
.0
0
0

1
4
6
7
.7
5
0

m
e
d
iu
m
_
la
te
0
3

ro
st
e
ri
n
g

5
6
.5
3
9

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

7
3
8
7
.8
1
0

1
0
0
.0
0
0

2
0
5
2
.3
8
0

1
0
0
.0
0
0

7
3
6
3
.8
2
0

1
0
0
.0
0
0

4
2
4
5
.2
7
0

m
ik
-2
5
0
-2
0
-7
5
-4

m
ip
li
b

1
0
0
.0
0
0

2
1
.1
1
0

1
0
0
.0
0
0

2
1
.7
1
0

1
0
0
.0
0
0

2
1
.0
9
0

1
0
0
.0
0
0

2
1
.3
3
0

1
0
0
.0
0
0

2
1
.2
7
0

m
il
o
-v
1
2
-6
-r
2
-4
0
-1

m
ip
li
b

6
9
.2
4
3

1
0
8
0
0
.0
0
0

6
9
.2
4
3

1
0
8
0
0
.0
0
0

6
9
.2
4
3

1
0
8
0
0
.0
0
0

6
9
.2
4
3

1
0
8
0
0
.0
0
0

6
9
.2
4
3

1
0
8
0
0
.0
0
0

m
o
m
e
n
tu
m
1

m
ip
li
b

6
4
.5
4
3

1
0
8
0
0
.0
0
0

6
7
.6
1
8

1
0
8
0
0
.0
0
0

6
4
.5
4
8

1
0
8
0
0
.0
0
0

6
4
.6
4
5

1
0
8
0
0
.0
0
0

6
8
.5
4
7

1
0
8
0
0
.0
0
0

m
u
sh
ro
o
m
-b
e
st

m
ip
li
b

2
8
.8
9
9

1
0
8
0
0
.0
0
0

2
8
.8
9
9

1
0
8
0
0
.0
0
0

2
8
.8
9
9

1
0
8
0
0
.0
0
0

2
8
.8
9
9

1
0
8
0
0
.0
0
0

2
8
.8
9
9

1
0
8
0
0
.0
0
0

m
z
z
v
1
1

m
ip
li
b

1
0
0
.0
0
0

4
5
5
.4
6
0

1
0
0
.0
0
0

5
2
7
.2
5
0

1
0
0
.0
0
0

2
3
0
.2
8
0

1
0
0
.0
0
0

2
4
6
.2
7
0

1
0
0
.0
0
0

2
0
8
.3
3
0

m
z
z
v
4
2
z

m
ip
li
b

1
0
0
.0
0
0

4
6
.4
3
0

1
0
0
.0
0
0

6
2
.3
1
0

1
0
0
.0
0
0

5
4
.7
1
0

1
0
0
.0
0
0

5
3
.9
4
0

1
0
0
.0
0
0

5
9
.4
6
0

n
2
se
q
3
6
q

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

n
3
d
iv
3
6

m
ip
li
b

1
0
0
.0
0
0

6
6
3
8
.8
8
0

1
0
0
.0
0
0

5
8
0
2
.1
6
0

1
0
0
.0
0
0

5
7
4
9
.8
0
0

1
0
0
.0
0
0

5
8
1
5
.6
3
0

1
0
0
.0
0
0

6
0
4
9
.0
1
0

n
e
o
s-
1
2
8
1
0
4
8

m
ip
li
b

1
0
0
.0
0
0

1
5
2
.0
2
0

1
0
0
.0
0
0

1
8
.1
2
0

1
0
0
.0
0
0

1
8
.1
8
0

1
0
0
.0
0
0

2
1
9
.6
6
0

1
0
0
.0
0
0

1
3
.9
5
0

n
e
o
s-
1
3
5
4
0
9
2

m
ip
li
b

1
0
0
.0
0
0

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

1
0
8
0
0
.0
0
0

n
e
o
s-
1
4
4
5
7
6
5

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

n
e
o
s-
1
4
5
6
9
7
9

m
ip
li
b

6
5
.8
1
8

1
0
8
0
0
.0
0
0

6
5
.8
1
8

1
0
8
0
0
.0
0
0

6
5
.8
1
8

1
0
8
0
0
.0
0
0

6
5
.8
1
8

1
0
8
0
0
.0
0
0

6
5
.8
1
8

1
0
8
0
0
.0
0
0

n
e
o
s-
1
5
8
2
4
2
0

m
ip
li
b

1
0
0
.0
0
0

2
2
.2
5
0

1
0
0
.0
0
0

2
2
.3
5
0

1
0
0
.0
0
0

2
2
.3
5
0

1
0
0
.0
0
0

2
2
.5
1
0

1
0
0
.0
0
0

2
2
.3
7
0

n
e
o
s-
1
5
9
5
2
3
0

m
ip
li
b

7
9
.0
1
0

1
0
8
0
0
.0
0
0

7
9
.1
0
8

1
0
8
0
0
.0
0
0

7
9
.1
4
0

1
0
8
0
0
.0
0
0

7
8
.9
1
5

1
0
8
0
0
.0
0
0

7
9
.0
3
2

1
0
8
0
0
.0
0
0

n
e
o
s-
1
5
9
9
2
7
4

m
ip
li
b

1
0
0
.0
0
0

1
.1
9
0

1
0
0
.0
0
0

1
.2
1
0

1
0
0
.0
0
0

1
.1
8
0

1
0
0
.0
0
0

1
.2
1
0

1
0
0
.0
0
0

1
.2
2
0

n
e
o
s-
1
6
2
0
7
7
0

m
ip
li
b

7
5
.0
0
0

1
0
8
0
0
.0
0
0

8
7
.5
0
0

1
0
8
0
0
.0
0
0

7
5
.0
0
0

1
0
8
0
0
.0
0
0

7
5
.0
0
0

1
0
8
0
0
.0
0
0

7
5
.0
0
0

1
0
8
0
0
.0
0
0

n
e
o
s-
1
6
2
0
8
0
7

m
ip
li
b

1
0
0
.0
0
0

1
8
7
7
.1
9
0

1
0
0
.0
0
0

1
1
3
0
.3
6
0

1
0
0
.0
0
0

1
1
2
8
.5
4
0

1
0
0
.0
0
0

1
1
5
2
.5
9
0

1
0
0
.0
0
0

1
9
2
4
.2
9
0

n
e
o
s-
1
6
2
2
2
5
2

m
ip
li
b

7
5
.0
0
0

1
0
8
0
0
.0
0
0

7
5
.0
0
0

1
0
8
0
0
.0
0
0

7
5
.0
0
0

1
0
8
0
0
.0
0
0

7
5
.0
0
0

1
0
8
0
0
.0
0
0

7
5
.0
0
0

1
0
8
0
0
.0
0
0

n
e
o
s-
2
6
5
7
5
2
5
-c
rn
a

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

n
e
o
s-
2
7
4
6
5
8
9
-d
o
o
n

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

n
e
o
s-
2
9
7
8
1
9
3
-i
n
d
e

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

n
e
o
s-
2
9
8
7
3
1
0
-j
o
e
s

m
ip
li
b

1
0
0
.0
0
0

6
.1
4
0

1
0
0
.0
0
0

6
.4
6
0

1
0
0
.0
0
0

6
.6
1
0

1
0
0
.0
0
0

6
.3
3
0

1
0
0
.0
0
0

6
.5
7
0

n
e
o
s-
3
0
4
6
6
1
5
-m

u
rg

m
ip
li
b

4
3
.3
1
1

1
0
8
0
0
.0
0
0

4
3
.3
1
1

1
0
8
0
0
.0
0
0

4
3
.3
1
1

1
0
8
0
0
.0
0
0

4
3
.3
1
1

1
0
8
0
0
.0
0
0

4
3
.3
1
1

1
0
8
0
0
.0
0
0

n
e
o
s-
3
2
1
6
9
3
1
-p
u
ri
ri

m
ip
li
b

5
.7
0
2

1
0
8
0
0
.0
0
0

5
.7
0
2

1
0
8
0
0
.0
0
0

5
.7
0
2

1
0
8
0
0
.0
0
0

5
.7
0
2

1
0
8
0
0
.0
0
0

5
.7
0
2

1
0
8
0
0
.0
0
0

n
e
o
s-
3
3
8
1
2
0
6
-a
w
h
e
a

m
ip
li
b

1
0
0
.0
0
0

2
3
.0
1
0

1
0
0
.0
0
0

2
3
.8
7
0

1
0
0
.0
0
0

2
3
.5
2
0

1
0
0
.0
0
0

2
3
.4
9
0

1
0
0
.0
0
0

2
3
.2
0
0

n
e
o
s-
3
4
0
2
2
9
4
-b
o
b
in

m
ip
li
b

1
0
0
.0
0
0

2
3
4
.7
3
0

1
0
0
.0
0
0

2
3
7
.1
9
0

1
0
0
.0
0
0

2
3
2
.7
9
0

1
0
0
.0
0
0

2
3
5
.9
5
0

1
0
0
.0
0
0

2
4
5
.7
1
0

n
e
o
s-
3
5
5
5
9
0
4
-t
u
ra
m
a

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

n
e
o
s-
3
6
2
7
1
6
8
-k
a
sa
i

m
ip
li
b

8
7
.3
2
9

1
0
8
0
0
.0
0
0

8
7
.3
2
9

1
0
8
0
0
.0
0
0

8
7
.3
5
3

1
0
8
0
0
.0
0
0

8
7
.3
2
9

1
0
8
0
0
.0
0
0

8
7
.3
2
9

1
0
8
0
0
.0
0
0

n
e
o
s-
3
6
5
6
0
7
8
-k
u
m
e
u

m
ip
li
b

2
3
.1
5
4

1
0
8
0
0
.0
0
0

6
1
.2
3
9

1
0
8
0
0
.0
0
0

4
0
.2
0
7

1
0
8
0
0
.0
0
0

2
4
.8
9
1

1
0
8
0
0
.0
0
0

3
0
.2
0
6

1
0
8
0
0
.0
0
0

n
e
o
s-
3
7
5
4
4
8
0
-n
id
d
a

m
ip
li
b

8
1
.5
9
3

1
0
8
0
0
.0
0
0

8
1
.5
9
3

1
0
8
0
0
.0
0
0

8
1
.5
9
3

1
0
8
0
0
.0
0
0

8
1
.5
9
3

1
0
8
0
0
.0
0
0

8
1
.5
9
3

1
0
8
0
0
.0
0
0

n
e
o
s-
4
3
0
0
6
5
2
-r
a
h
u
e

m
ip
li
b

1
.1
7
8

1
0
8
0
0
.0
0
0

1
.1
7
8

1
0
8
0
0
.0
0
0

1
.1
7
8

1
0
8
0
0
.0
0
0

1
.1
7
8

1
0
8
0
0
.0
0
0

1
.1
7
8

1
0
8
0
0
.0
0
0

n
e
o
s-
4
3
3
8
8
0
4
-s
n
o
w
y

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

n
e
o
s-
4
3
8
7
8
7
1
-t
a
v
u
a

m
ip
li
b

4
6
.6
0
8

1
0
8
0
0
.0
0
0

4
7
.7
1
0

1
0
8
0
0
.0
0
0

4
6
.6
0
8

1
0
8
0
0
.0
0
0

4
6
.6
0
8

1
0
8
0
0
.0
0
0

4
7
.7
1
0

1
0
8
0
0
.0
0
0

Detailed Results of the Computational Experiments 105
T
ab
le
A
.2
:
R
es
ul
ts

fo
r
th
e
ex
ec
ut
io
n
of

C
O
IN

-O
R
B
ra
nc
h-
an
d-
C
ut

so
lv
er

(c
on
ti
nu
ed
).

in
s
t
a
n
c
e

g
r
o
u
p

c
b
c

c
b
c
+
c
g

-{
c
lq
s
t
r
}

-{
b
k
c
lq
e
x
t
}

-{
o
d
d
w
}

g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e

n
e
o
s-
4
4
1
3
7
1
4
-t
u
ri
a

m
ip
li
b

1
0
0
.0
0
0

8
8
.1
2
0

1
0
0
.0
0
0

1
0
7
.2
7
0

1
0
0
.0
0
0

1
1
1
.6
9
0

1
0
0
.0
0
0

1
0
7
.6
5
0

1
0
0
.0
0
0

9
4
.7
5
0

n
e
o
s-
4
5
3
2
2
4
8
-w
a
ih
i

m
ip
li
b

0
.9
6
3

1
0
8
0
0
.0
0
0

0
.8
7
2

1
0
8
0
0
.0
0
0

0
.8
7
2

1
0
8
0
0
.0
0
0

0
.9
7
1

1
0
8
0
0
.0
0
0

0
.9
0
8

1
0
8
0
0
.0
0
0

n
e
o
s-
4
6
4
7
0
3
0
-t
u
ta
k
i

m
ip
li
b

9
9
.8
5
7

1
0
8
0
0
.0
0
0

9
9
.8
5
7

1
0
8
0
0
.0
0
0

9
9
.8
5
7

1
0
8
0
0
.0
0
0

9
9
.8
5
7

1
0
8
0
0
.0
0
0

9
9
.8
5
7

1
0
8
0
0
.0
0
0

n
e
o
s-
4
7
2
2
8
4
3
-w
id
d
e
n

m
ip
li
b

4
8
.2
9
0

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

4
3
7
4
.9
1
0

4
9
.3
8
8

1
0
8
0
0
.0
0
0

4
9
.3
8
8

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

6
0
1
6
.1
4
0

n
e
o
s-
4
7
3
8
9
1
2
-a
tr
a
to

m
ip
li
b

1
0
0
.0
0
0

9
2
2
.5
1
0

1
0
0
.0
0
0

9
2
9
.9
5
0

1
0
0
.0
0
0

9
2
9
.8
9
0

1
0
0
.0
0
0

9
1
7
.1
3
0

1
0
0
.0
0
0

9
3
2
.3
5
0

n
e
o
s-
4
7
6
3
3
2
4
-t
o
g
u
ru

m
ip
li
b

1
.1
8
0

1
0
8
0
0
.0
0
0

1
.1
8
0

1
0
8
0
0
.0
0
0

1
.1
8
0

1
0
8
0
0
.0
0
0

1
.1
8
0

1
0
8
0
0
.0
0
0

1
.1
8
0

1
0
8
0
0
.0
0
0

n
e
o
s-
4
9
5
4
6
7
2
-b
e
rk
e
l

m
ip
li
b

6
7
.5
5
8

1
0
8
0
0
.0
0
0

6
7
.5
5
8

1
0
8
0
0
.0
0
0

6
7
.5
5
8

1
0
8
0
0
.0
0
0

6
7
.5
5
8

1
0
8
0
0
.0
0
0

6
7
.5
5
8

1
0
8
0
0
.0
0
0

n
e
o
s-
5
0
4
9
7
5
3
-c
u
a
n
z
a

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

n
e
o
s-
5
0
5
2
4
0
3
-c
y
g
n
e
t

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

n
e
o
s-
5
0
9
3
3
2
7
-h
u
a
h
u
m

m
ip
li
b

3
9
.7
4
5

1
0
8
0
0
.0
0
0

3
9
.7
4
5

1
0
8
0
0
.0
0
0

3
9
.7
4
5

1
0
8
0
0
.0
0
0

3
9
.7
4
5

1
0
8
0
0
.0
0
0

3
9
.7
4
5

1
0
8
0
0
.0
0
0

n
e
o
s-
5
1
0
4
9
0
7
-j
a
ra
m
a

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

n
e
o
s-
5
1
0
7
5
9
7
-k
a
k
a
p
o

m
ip
li
b

1
0
0
.0
0
0

4
7
.9
9
0

1
0
0
.0
0
0

4
9
.0
1
0

1
0
0
.0
0
0

4
7
.0
2
0

1
0
0
.0
0
0

4
9
.2
1
0

1
0
0
.0
0
0

4
7
.9
6
0

n
e
o
s-
5
1
1
4
9
0
2
-k
a
sa
v
u

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

n
e
o
s-
5
1
8
8
8
0
8
-n
a
tt
a
i

m
ip
li
b

1
0
0
.0
0
0

9
4
6
3
.6
2
0

1
0
0
.0
0
0

8
9
0
9
.3
6
0

1
0
0
.0
0
0

9
2
0
6
.4
0
0

1
0
0
.0
0
0

9
4
4
6
.7
5
0

1
0
0
.0
0
0

9
0
4
9
.1
4
0

n
e
o
s-
5
1
9
5
2
2
1
-n
ie
m
u
r

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

n
e
o
s-
5
6
5
8
1
5

m
ip
li
b

1
0
0
.0
0
0

1
0
8
.9
1
0

1
0
0
.0
0
0

2
3
.5
4
0

1
0
0
.0
0
0

1
1
7
.9
1
0

1
0
0
.0
0
0

2
3
.8
6
0

1
0
0
.0
0
0

3
6
.4
0
0

n
e
o
s-
6
1
1
1
3
5

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

6
.8
8
3

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

n
e
o
s-
6
3
1
6
9
4

m
ip
li
b

2
0
.0
0
0

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

6
.6
5
0

1
0
0
.0
0
0

2
7
.8
2
0

1
0
0
.0
0
0

6
.5
2
0

1
0
0
.0
0
0

6
.3
5
0

n
e
o
s-
6
3
1
7
0
9

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

2
1
5
.4
4
0

6
4
.7
0
6

1
0
8
0
0
.0
0
0

6
4
.7
0
6

1
0
8
0
0
.0
0
0

6
4
.7
0
6

1
0
8
0
0
.0
0
0

n
e
o
s-
6
3
1
7
1
0

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

1
5
7
7
.3
8
0

1
0
0
.0
0
0

1
3
1
7
.5
5
0

0
.0
0
0

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

9
9
9
.3
4
0

n
e
o
s-
6
3
1
7
8
4

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

7
3
.3
3
3

1
0
8
0
0
.0
0
0

7
3
.3
3
3

1
0
8
0
0
.0
0
0

7
3
.3
3
3

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

8
2
.8
5
0

n
e
o
s-
6
6
2
4
6
9

m
ip
li
b

5
7
.2
0
1

1
0
8
0
0
.0
0
0

5
7
.1
7
6

1
0
8
0
0
.0
0
0

5
7
.1
7
6

1
0
8
0
0
.0
0
0

5
7
.2
0
1

1
0
8
0
0
.0
0
0

5
7
.1
7
6

1
0
8
0
0
.0
0
0

n
e
o
s-
7
8
5
8
9
9

m
ip
li
b

1
0
0
.0
0
0

4
6
.5
1
0

1
0
0
.0
0
0

4
6
.9
5
0

1
0
0
.0
0
0

3
0
.7
8
0

1
0
0
.0
0
0

2
7
7
.7
3
0

1
0
0
.0
0
0

1
8
8
.1
0
0

n
e
o
s-
7
8
7
9
3
3

m
ip
li
b

9
0
.4
0
0

1
0
8
0
0
.0
0
0

9
1
.9
0
4

1
0
8
0
0
.0
0
0

9
0
.6
1
5

1
0
8
0
0
.0
0
0

9
0
.5
7
4

1
0
8
0
0
.0
0
0

9
1
.9
7
8

1
0
8
0
0
.0
0
0

n
e
o
s-
7
9
1
0
2
1

m
ip
li
b

1
0
0
.0
0
0

4
2
.6
1
0

1
0
0
.0
0
0

3
4
.0
7
0

1
0
0
.0
0
0

4
1
.2
6
0

1
0
0
.0
0
0

3
3
.8
6
0

1
0
0
.0
0
0

2
4
.6
7
0

n
e
o
s-
7
9
9
8
3
8

m
ip
li
b

7
8
.7
2
0

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

2
0
.3
3
0

1
0
0
.0
0
0

2
1
.0
8
0

8
3
.3
3
3

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

1
7
.1
5
0

n
e
o
s-
8
0
8
2
1
4

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

4
0
.0
0
0

1
0
8
0
0
.0
0
0

4
0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

4
0
.0
0
0

1
0
8
0
0
.0
0
0

n
e
o
s-
8
2
5
0
7
5

m
ip
li
b

1
0
0
.0
0
0

2
1
.1
5
0

1
0
0
.0
0
0

2
3
.4
1
0

1
0
0
.0
0
0

2
3
.3
7
0

1
0
0
.0
0
0

1
7
.3
5
0

1
0
0
.0
0
0

1
2
.8
7
0

n
e
o
s-
8
4
8
5
8
9

m
ip
li
b

9
7
.4
6
7

1
0
8
0
0
.0
0
0

9
7
.4
6
7

1
0
8
0
0
.0
0
0

9
7
.4
6
7

1
0
8
0
0
.0
0
0

9
7
.4
6
7

1
0
8
0
0
.0
0
0

9
7
.4
6
7

1
0
8
0
0
.0
0
0

n
e
o
s-
8
6
0
3
0
0

m
ip
li
b

1
0
0
.0
0
0

1
7
2
.5
1
0

1
0
0
.0
0
0

8
1
.6
6
0

1
0
0
.0
0
0

7
9
.8
2
0

1
0
0
.0
0
0

8
1
.0
1
0

1
0
0
.0
0
0

1
7
7
.5
5
0

n
e
o
s-
8
7
3
0
6
1

m
ip
li
b

9
8
.6
3
1

1
0
8
0
0
.0
0
0

9
8
.6
3
1

1
0
8
0
0
.0
0
0

9
8
.6
3
1

1
0
8
0
0
.0
0
0

9
8
.6
3
1

1
0
8
0
0
.0
0
0

9
8
.6
3
1

1
0
8
0
0
.0
0
0

n
e
o
s-
9
0
5
8
5
6

m
ip
li
b

1
0
0
.0
0
0

7
4
6
.7
8
0

1
0
0
.0
0
0

1
6
8
4
.6
3
0

1
0
0
.0
0
0

1
7
3
1
.3
5
0

1
0
0
.0
0
0

6
0
9
4
.6
2
0

1
0
0
.0
0
0

1
7
1
9
.8
1
0

n
e
o
s-
9
1
1
9
7
0

m
ip
li
b

9
9
.8
2
0

1
0
8
0
0
.0
0
0

9
9
.8
2
0

1
0
8
0
0
.0
0
0

9
9
.8
2
0

1
0
8
0
0
.0
0
0

9
9
.8
2
0

1
0
8
0
0
.0
0
0

9
9
.8
2
0

1
0
8
0
0
.0
0
0

n
e
o
s-
9
1
2
0
2
3

m
ip
li
b

1
0
0
.0
0
0

2
3
9
.3
0
0

1
0
0
.0
0
0

4
.8
6
0

1
0
0
.0
0
0

4
.9
1
0

1
0
0
.0
0
0

8
.7
0
0

1
0
0
.0
0
0

8
.9
4
0

n
e
o
s-
9
3
1
5
3
8

m
ip
li
b

7
6
.4
6
2

1
0
8
0
0
.0
0
0

8
2
.4
3
0

1
0
8
0
0
.0
0
0

8
0
.6
2
1

1
0
8
0
0
.0
0
0

7
6
.4
6
2

1
0
8
0
0
.0
0
0

8
0
.5
3
7

1
0
8
0
0
.0
0
0

Detailed Results of the Computational Experiments 106
T
ab
le
A
.2
:
R
es
ul
ts

fo
r
th
e
ex
ec
ut
io
n
of

C
O
IN

-O
R
B
ra
nc
h-
an
d-
C
ut

so
lv
er

(c
on
ti
nu
ed
).

in
s
t
a
n
c
e

g
r
o
u
p

c
b
c

c
b
c
+
c
g

-{
c
lq
s
t
r
}

-{
b
k
c
lq
e
x
t
}

-{
o
d
d
w
}

g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e

n
e
o
s-
9
3
4
5
3
1

m
ip
li
b

1
0
0
.0
0
0

1
7
4
7
.8
9
0

1
0
0
.0
0
0

1
4
5
5
.6
1
0

1
0
0
.0
0
0

1
5
1
8
.7
3
0

1
0
0
.0
0
0

7
9
5
.2
4
0

1
0
0
.0
0
0

7
8
3
.7
7
0

n
e
o
s-
9
4
8
3
4
6

m
ip
li
b

9
0
.2
6
9

1
0
8
0
0
.0
0
0

9
0
.9
9
5

1
0
8
0
0
.0
0
0

9
1
.2
8
2

1
0
8
0
0
.0
0
0

9
1
.1
9
1

1
0
8
0
0
.0
0
0

9
1
.3
6
6

1
0
8
0
0
.0
0
0

n
e
o
s-
9
5
0
2
4
2

m
ip
li
b

1
0
0
.0
0
0

1
6
4
5
.3
3
0

1
0
0
.0
0
0

1
5
9
3
.5
6
0

1
0
0
.0
0
0

1
5
9
1
.0
4
0

1
0
0
.0
0
0

1
6
6
4
.4
7
0

1
0
0
.0
0
0

1
7
8
3
.7
4
0

n
e
o
s-
9
5
7
3
2
3

m
ip
li
b

1
0
0
.0
0
0

1
0
1
.6
7
0

1
0
0
.0
0
0

1
0
2
.9
3
0

1
0
0
.0
0
0

3
7
2
.5
1
0

1
0
0
.0
0
0

9
6
.6
7
0

1
0
0
.0
0
0

8
1
.0
7
0

n
e
o
s1

m
ip
li
b

1
0
0
.0
0
0

2
.5
2
0

1
0
0
.0
0
0

3
.7
0
0

1
0
0
.0
0
0

3
.6
9
0

1
0
0
.0
0
0

2
.1
4
0

1
0
0
.0
0
0

5
.1
5
0

n
e
o
s1
7

m
ip
li
b

1
0
0
.0
0
0

3
4
6
3
.2
8
0

1
0
0
.0
0
0

3
3
3
0
.0
7
0

1
0
0
.0
0
0

3
4
1
7
.5
2
0

1
0
0
.0
0
0

3
2
6
4
.3
4
0

1
0
0
.0
0
0

3
3
3
4
.5
6
0

n
e
o
s1
8

m
ip
li
b

1
0
0
.0
0
0

1
6
7
.0
0
0

1
0
0
.0
0
0

7
5
5
.1
8
0

1
0
0
.0
0
0

7
4
5
.1
3
0

1
0
0
.0
0
0

3
9
1
.0
7
0

1
0
0
.0
0
0

1
9
1
8
.6
1
0

n
e
o
s5

m
ip
li
b

1
0
0
.0
0
0

2
5
5
1
.6
6
0

1
0
0
.0
0
0

2
7
3
0
.9
8
0

1
0
0
.0
0
0

2
7
3
9
.8
5
0

1
0
0
.0
0
0

2
7
6
3
.0
8
0

1
0
0
.0
0
0

2
5
9
4
.3
5
0

n
e
o
s8

m
ip
li
b

1
0
0
.0
0
0

4
5
.6
2
0

1
0
0
.0
0
0

4
4
.4
7
0

1
0
0
.0
0
0

4
5
.7
1
0

1
0
0
.0
0
0

4
4
.8
7
0

1
0
0
.0
0
0

4
5
.6
7
0

n
e
t1
2

m
ip
li
b

3
6
.6
5
6

1
0
8
0
0
.0
0
0

3
6
.6
5
6

1
0
8
0
0
.0
0
0

3
6
.6
5
6

1
0
8
0
0
.0
0
0

3
6
.6
5
6

1
0
8
0
0
.0
0
0

3
6
.6
5
6

1
0
8
0
0
.0
0
0

n
e
td
iv
e
rs
io
n

m
ip
li
b

4
6
.4
2
9

1
0
8
0
0
.0
0
0

4
6
.4
2
9

1
0
8
0
0
.0
0
0

4
6
.4
2
9

1
0
8
0
0
.0
0
0

4
6
.4
2
9

1
0
8
0
0
.0
0
0

4
6
.4
2
9

1
0
8
0
0
.0
0
0

n
e
x
p
-1
5
0
-2
0
-8
-5

m
ip
li
b

8
.4
5
7

1
0
8
0
0
.0
0
0

8
.4
5
7

1
0
8
0
0
.0
0
0

8
.4
5
7

1
0
8
0
0
.0
0
0

8
.4
5
7

1
0
8
0
0
.0
0
0

8
.4
5
7

1
0
8
0
0
.0
0
0

n
s1
2
0
8
4
0
0

m
ip
li
b

1
0
0
.0
0
0

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

9
5
6
.2
5
0

1
0
0
.0
0
0

1
0
8
0
0
.0
0
0

n
s1
6
8
8
3
4
7

m
ip
li
b

1
5
.7
9
4

1
0
8
0
0
.0
0
0

8
8
.0
0
0

1
0
8
0
0
.0
0
0

8
0
.0
0
0

1
0
8
0
0
.0
0
0

8
0
.0
0
0

1
0
8
0
0
.0
0
0

8
8
.0
0
0

1
0
8
0
0
.0
0
0

n
s1
6
9
6
0
8
3

m
ip
li
b

7
.1
4
7

1
0
8
0
0
.0
0
0

3
2
.5
5
8

1
0
8
0
0
.0
0
0

3
3
.2
0
9

1
0
8
0
0
.0
0
0

2
8
.4
2
4

1
0
8
0
0
.0
0
0

3
1
.3
9
5

1
0
8
0
0
.0
0
0

n
s1
7
6
0
9
9
5

m
ip
li
b

0
.8
8
7

1
0
8
0
0
.0
0
0

2
2
.3
4
1

1
0
8
0
0
.0
0
0

1
1
.4
9
9

1
0
8
0
0
.0
0
0

1
0
.0
4
1

1
0
8
0
0
.0
0
0

1
1
.2
6
7

1
0
8
0
0
.0
0
0

n
s1
8
3
0
6
5
3

m
ip
li
b

8
9
.7
0
0

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

6
5
0
5
.5
4
0

1
0
0
.0
0
0

6
5
8
5
.5
9
0

9
3
.4
6
9

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

8
9
5
5
.1
7
0

n
s8
9
4
2
3
6

m
ip
li
b

3
6
.0
9
9

1
0
8
0
0
.0
0
0

3
6
.0
9
9

1
0
8
0
0
.0
0
0

3
6
.0
9
9

1
0
8
0
0
.0
0
0

3
6
.0
9
9

1
0
8
0
0
.0
0
0

3
6
.0
9
9

1
0
8
0
0
.0
0
0

n
s9
0
3
6
1
6

m
ip
li
b

3
8
.9
4
8

1
0
8
0
0
.0
0
0

5
2
.9
4
0

1
0
8
0
0
.0
0
0

5
2
.9
4
0

1
0
8
0
0
.0
0
0

5
2
.9
4
0

1
0
8
0
0
.0
0
0

5
2
.9
4
0

1
0
8
0
0
.0
0
0

n
u
2
5
-p
r1
2

m
ip
li
b

1
0
0
.0
0
0

9
4
.9
6
0

1
0
0
.0
0
0

8
5
.2
5
0

1
0
0
.0
0
0

9
4
.9
8
0

1
0
0
.0
0
0

9
3
.3
7
0

1
0
0
.0
0
0

9
2
.5
3
0

n
u
rs
e
sc
h
e
d
-m

e
d
iu
m
-h
in
t0
3

ro
st
e
ri
n
g

4
0
.6
4
7

1
0
8
0
0
.0
0
0

7
8
.6
9
8

1
0
8
0
0
.0
0
0

7
2
.5
8
9

1
0
8
0
0
.0
0
0

6
8
.7
4
2

1
0
8
0
0
.0
0
0

7
7
.6
7
4

1
0
8
0
0
.0
0
0

n
u
rs
e
sc
h
e
d
-s
p
ri
n
t0
2

ro
st
e
ri
n
g

1
0
0
.0
0
0

6
4
.3
3
0

1
0
0
.0
0
0

4
3
.8
9
0

1
0
0
.0
0
0

2
5
.0
9
0

1
0
0
.0
0
0

4
3
.4
2
0

1
0
0
.0
0
0

4
9
.6
1
0

n
w
0
4

m
ip
li
b

1
0
0
.0
0
0

1
5
.5
5
0

1
0
0
.0
0
0

4
3
6
.9
3
0

1
0
0
.0
0
0

4
3
6
.4
4
0

1
0
0
.0
0
0

2
5
.0
6
0

1
0
0
.0
0
0

4
1
9
.1
2
0

o
p
m
2
-z
1
0
-s
4

m
ip
li
b

1
3
.2
7
1

1
0
8
0
0
.0
0
0

2
3
.9
2
5

1
0
8
0
0
.0
0
0

1
5
.9
1
0

1
0
8
0
0
.0
0
0

1
3
.2
7
1

1
0
8
0
0
.0
0
0

1
3
.2
7
1

1
0
8
0
0
.0
0
0

p
0
0
3
3

m
ip
li
b

1
0
0
.0
0
0

0
.0
4
0

1
0
0
.0
0
0

0
.0
5
0

1
0
0
.0
0
0

0
.0
6
0

1
0
0
.0
0
0

0
.0
5
0

1
0
0
.0
0
0

0
.0
4
0

p
0
2
0
1

m
ip
li
b

1
0
0
.0
0
0

2
.0
6
0

1
0
0
.0
0
0

1
.9
6
0

1
0
0
.0
0
0

1
.6
1
0

1
0
0
.0
0
0

1
.9
5
0

1
0
0
.0
0
0

2
.0
3
0

p
0
2
8
2

m
ip
li
b

1
0
0
.0
0
0

0
.7
3
0

1
0
0
.0
0
0

0
.8
7
0

1
0
0
.0
0
0

0
.7
3
0

1
0
0
.0
0
0

0
.7
4
0

1
0
0
.0
0
0

0
.8
8
0

p
0
5
4
8

m
ip
li
b

1
0
0
.0
0
0

0
.1
1
0

1
0
0
.0
0
0

0
.1
2
0

1
0
0
.0
0
0

0
.0
8
0

1
0
0
.0
0
0

0
.0
9
0

1
0
0
.0
0
0

0
.1
0
0

P
1

b
a
n
d
w
id
th

1
7
.0
8
0

1
0
8
0
0
.0
0
0

5
9
.9
1
5

1
0
8
0
0
.0
0
0

5
1
.0
0
7

1
0
8
0
0
.0
0
0

2
4
.3
6
9

1
0
8
0
0
.0
0
0

5
9
.7
2
7

1
0
8
0
0
.0
0
0

P
2

b
a
n
d
w
id
th

7
.7
3
4

1
0
8
0
0
.0
0
0

4
6
.3
4
0

1
0
8
0
0
.0
0
0

4
1
.8
2
9

1
0
8
0
0
.0
0
0

6
.8
5
9

1
0
8
0
0
.0
0
0

4
5
.5
9
0

1
0
8
0
0
.0
0
0

p
2
0
0
x
1
1
8
8
c

m
ip
li
b

1
0
0
.0
0
0

1
5
7
6
.9
8
0

1
0
0
.0
0
0

1
2
8
7
.2
8
0

1
0
0
.0
0
0

1
5
7
6
.3
5
0

1
0
0
.0
0
0

1
5
1
5
.4
2
0

1
0
0
.0
0
0

1
5
7
3
.9
6
0

p
2
7
5
6

m
ip
li
b

1
0
0
.0
0
0

1
.1
6
0

1
0
0
.0
0
0

0
.7
7
0

1
0
0
.0
0
0

0
.7
9
0

1
0
0
.0
0
0

1
.2
2
0

1
0
0
.0
0
0

0
.7
5
0

P
3

b
a
n
d
w
id
th

1
5
.4
0
8

1
0
8
0
0
.0
0
0

2
4
.7
9
5

1
0
8
0
0
.0
0
0

2
1
.5
5
7

1
0
8
0
0
.0
0
0

1
8
.5
2
9

1
0
8
0
0
.0
0
0

2
2
.1
2
6

1
0
8
0
0
.0
0
0

P
4

b
a
n
d
w
id
th

9
.4
0
7

1
0
8
0
0
.0
0
0

2
2
.7
1
6

1
0
8
0
0
.0
0
0

1
1
.7
9
6

1
0
8
0
0
.0
0
0

9
.9
7
3

1
0
8
0
0
.0
0
0

9
.9
9
2

1
0
8
0
0
.0
0
0

P
5

b
a
n
d
w
id
th

4
.0
1
5

1
0
8
0
0
.0
0
0

8
.5
6
3

1
0
8
0
0
.0
0
0

7
.1
1
5

1
0
8
0
0
.0
0
0

3
.9
7
5

1
0
8
0
0
.0
0
0

3
.7
8
3

1
0
8
0
0
.0
0
0

Detailed Results of the Computational Experiments 107
T
ab
le
A
.2
:
R
es
ul
ts

fo
r
th
e
ex
ec
ut
io
n
of

C
O
IN

-O
R
B
ra
nc
h-
an
d-
C
ut

so
lv
er

(c
on
ti
nu
ed
).

in
s
t
a
n
c
e

g
r
o
u
p

c
b
c

c
b
c
+
c
g

-{
c
lq
s
t
r
}

-{
b
k
c
lq
e
x
t
}

-{
o
d
d
w
}

g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e

P
6

b
a
n
d
w
id
th

4
.3
9
1

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

9
9
1
9
.2
8
0

1
1
.2
4
2

1
0
8
0
0
.0
0
0

4
.5
7
1

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

9
8
1
1
.8
5
0

p
6
b

m
ip
li
b

9
7
.4
5
4

1
0
8
0
0
.0
0
0

9
7
.5
3
5

1
0
8
0
0
.0
0
0

9
7
.5
3
1

1
0
8
0
0
.0
0
0

9
7
.6
0
4

1
0
8
0
0
.0
0
0

9
7
.5
2
5

1
0
8
0
0
.0
0
0

P
7

b
a
n
d
w
id
th

6
.6
6
0

1
0
8
0
0
.0
0
0

8
.5
2
9

1
0
8
0
0
.0
0
0

8
.7
4
6

1
0
8
0
0
.0
0
0

7
.4
2
5

1
0
8
0
0
.0
0
0

8
.0
0
8

1
0
8
0
0
.0
0
0

P
8

b
a
n
d
w
id
th

1
7
.0
8
0

1
0
8
0
0
.0
0
0

5
9
.9
1
5

1
0
8
0
0
.0
0
0

5
1
.0
0
7

1
0
8
0
0
.0
0
0

2
4
.3
6
9

1
0
8
0
0
.0
0
0

5
9
.7
2
7

1
0
8
0
0
.0
0
0

P
9

b
a
n
d
w
id
th

1
.6
8
3

1
0
8
0
0
.0
0
0

3
.8
2
6

1
0
8
0
0
.0
0
0

3
.7
1
9

1
0
8
0
0
.0
0
0

1
.8
5
5

1
0
8
0
0
.0
0
0

3
.7
7
4

1
0
8
0
0
.0
0
0

p
b
-s
im

p
-n
o
n
u
n
if

m
ip
li
b

3
3
.3
3
3

1
0
8
0
0
.0
0
0

4
1
.6
6
7

1
0
8
0
0
.0
0
0

3
8
.8
8
9

1
0
8
0
0
.0
0
0

3
8
.8
8
9

1
0
8
0
0
.0
0
0

4
1
.6
6
7

1
0
8
0
0
.0
0
0

p
d
is
tu
ch
o
a

m
ip
li
b

9
3
.8
6
5

1
0
8
0
0
.0
0
0

9
7
.0
9
7

1
0
8
0
0
.0
0
0

9
6
.6
0
5

1
0
8
0
0
.0
0
0

9
4
.1
8
3

1
0
8
0
0
.0
0
0

9
7
.6
3
6

1
0
8
0
0
.0
0
0

p
g

m
ip
li
b

1
0
0
.0
0
0

4
5
.4
6
0

1
0
0
.0
0
0

4
4
.3
0
0

1
0
0
.0
0
0

4
5
.1
3
0

1
0
0
.0
0
0

3
4
.9
9
0

1
0
0
.0
0
0

4
4
.1
4
0

p
g
5
_
3
4

m
ip
li
b

1
0
0
.0
0
0

2
1
6
6
.5
4
0

1
0
0
.0
0
0

1
7
1
7
.6
1
0

1
0
0
.0
0
0

2
1
6
0
.7
1
0

1
0
0
.0
0
0

2
1
9
0
.1
9
0

1
0
0
.0
0
0

2
1
3
2
.1
0
0

p
h
y
si
c
ia
n
sc
h
e
d
3
-3

m
ip
li
b

9
2
.1
6
1

1
0
8
0
0
.0
0
0

9
3
.9
5
2

1
0
8
0
0
.0
0
0

9
4
.0
0
4

1
0
8
0
0
.0
0
0

9
2
.8
2
8

1
0
8
0
0
.0
0
0

9
3
.6
3
6

1
0
8
0
0
.0
0
0

p
h
y
si
c
ia
n
sc
h
e
d
6
-2

m
ip
li
b

1
0
0
.0
0
0

3
9
.1
2
0

1
0
0
.0
0
0

3
7
.7
3
0

1
0
0
.0
0
0

4
0
.2
7
0

1
0
0
.0
0
0

4
0
.3
6
0

1
0
0
.0
0
0

4
1
.1
2
0

p
ip
e
ro
u
t-
0
8

m
ip
li
b

1
0
0
.0
0
0

5
4
9
.5
0
0

1
0
0
.0
0
0

5
5
5
.5
0
0

1
0
0
.0
0
0

5
7
6
.5
8
0

1
0
0
.0
0
0

5
7
2
.6
4
0

1
0
0
.0
0
0

5
6
8
.5
5
0

p
ip
e
ro
u
t-
2
7

m
ip
li
b

1
0
0
.0
0
0

5
9
5
.4
5
0

1
0
0
.0
0
0

9
1
7
.9
0
0

1
0
0
.0
0
0

3
5
0
.8
0
0

1
0
0
.0
0
0

8
8
5
.5
9
0

1
0
0
.0
0
0

9
1
8
.9
2
0

p
k
1

m
ip
li
b

1
0
0
.0
0
0

2
7
.6
8
0

1
0
0
.0
0
0

3
6
.1
2
0

1
0
0
.0
0
0

3
5
.9
6
0

1
0
0
.0
0
0

3
6
.9
6
0

1
0
0
.0
0
0

3
6
.1
0
0

p
ro
te
in
d
e
si
g
n
1
2
1
h
z
5
1
2
p
9

m
ip
li
b

3
2
.7
8
4

1
0
8
0
0
.0
0
0

3
2
.7
8
4

1
0
8
0
0
.0
0
0

3
2
.7
8
4

1
0
8
0
0
.0
0
0

3
2
.7
8
4

1
0
8
0
0
.0
0
0

3
2
.7
8
4

1
0
8
0
0
.0
0
0

p
ro
te
in
d
e
si
g
n
1
2
2
tr
x
1
1
p
8

m
ip
li
b

3
5
.9
4
3

1
0
8
0
0
.0
0
0

3
5
.9
4
3

1
0
8
0
0
.0
0
0

3
5
.9
4
3

1
0
8
0
0
.0
0
0

3
5
.9
4
3

1
0
8
0
0
.0
0
0

3
5
.9
4
3

1
0
8
0
0
.0
0
0

q
a
p
1
0

m
ip
li
b

1
0
0
.0
0
0

9
9
.4
1
0

1
0
0
.0
0
0

9
9
.0
9
0

1
0
0
.0
0
0

7
8
.1
2
0

1
0
0
.0
0
0

7
8
.7
2
0

1
0
0
.0
0
0

1
2
8
.9
4
0

ra
d
ia
ti
o
n
m
1
8
-1
2
-0
5

m
ip
li
b

9
1
.3
0
4

1
0
8
0
0
.0
0
0

9
1
.3
0
4

1
0
8
0
0
.0
0
0

9
1
.3
0
4

1
0
8
0
0
.0
0
0

9
1
.3
0
4

1
0
8
0
0
.0
0
0

9
1
.3
0
4

1
0
8
0
0
.0
0
0

ra
d
ia
ti
o
n
m
4
0
-1
0
-0
2

m
ip
li
b

9
5
.3
0
5

1
0
8
0
0
.0
0
0

9
5
.3
0
5

1
0
8
0
0
.0
0
0

9
5
.3
0
5

1
0
8
0
0
.0
0
0

9
5
.3
0
5

1
0
8
0
0
.0
0
0

9
5
.3
0
5

1
0
8
0
0
.0
0
0

ra
il
0
1

m
ip
li
b

6
3
.9
4
2

1
0
8
0
0
.0
0
0

6
4
.0
2
9

1
0
8
0
0
.0
0
0

6
4
.5
2
6

1
0
8
0
0
.0
0
0

6
3
.6
1
1

1
0
8
0
0
.0
0
0

6
4
.0
2
9

1
0
8
0
0
.0
0
0

ra
il
0
2

m
ip
li
b

0
.0
0
3

1
0
8
0
0
.0
0
0

0
.0
0
3

1
0
8
0
0
.0
0
0

0
.0
0
3

1
0
8
0
0
.0
0
0

0
.0
0
3

1
0
8
0
0
.0
0
0

0
.0
0
3

1
0
8
0
0
.0
0
0

ra
il
5
0
7

m
ip
li
b

1
0
0
.0
0
0

3
8
9
9
.3
7
0

1
0
0
.0
0
0

4
7
6
9
.5
1
0

1
0
0
.0
0
0

3
8
0
9
.9
2
0

1
0
0
.0
0
0

4
6
3
6
.6
9
0

1
0
0
.0
0
0

4
8
1
6
.9
0
0

ra
n
1
4
x
1
8
-d
is
j-
8

m
ip
li
b

6
5
.9
2
6

1
0
8
0
0
.0
0
0

6
5
.9
2
6

1
0
8
0
0
.0
0
0

6
6
.1
5
2

1
0
8
0
0
.0
0
0

6
6
.0
3
7

1
0
8
0
0
.0
0
0

6
6
.8
2
1

1
0
8
0
0
.0
0
0

rd
-r
p
lu
sc
-2
1

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

re
b
lo
ck
1
1
5

m
ip
li
b

9
1
.2
1
1

1
0
8
0
0
.0
0
0

9
1
.2
1
1

1
0
8
0
0
.0
0
0

9
1
.2
1
1

1
0
8
0
0
.0
0
0

9
1
.2
1
1

1
0
8
0
0
.0
0
0

9
1
.2
1
1

1
0
8
0
0
.0
0
0

re
b
lo
ck
6
7

m
ip
li
b

1
0
0
.0
0
0

2
8
0
3
.1
7
0

1
0
0
.0
0
0

5
0
5
3
.3
6
0

1
0
0
.0
0
0

5
1
1
9
.7
7
0

1
0
0
.0
0
0

5
0
5
4
.4
9
0

1
0
0
.0
0
0

2
7
7
0
.6
9
0

rm
a
tr
1
0
0
-p
1
0

m
ip
li
b

1
0
0
.0
0
0

1
4
5
.0
8
0

1
0
0
.0
0
0

1
4
5
.7
6
0

1
0
0
.0
0
0

1
5
0
.1
7
0

1
0
0
.0
0
0

1
4
5
.9
7
0

1
0
0
.0
0
0

1
4
4
.8
9
0

rm
a
tr
2
0
0
-p
5

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

3
2
.2
3
2

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

ro
c
I-
4
-1
1

m
ip
li
b

0
.4
0
4

1
0
8
0
0
.0
0
0

0
.4
0
4

1
0
8
0
0
.0
0
0

0
.4
0
4

1
0
8
0
0
.0
0
0

0
.4
0
4

1
0
8
0
0
.0
0
0

0
.4
0
4

1
0
8
0
0
.0
0
0

ro
c
II
-5
-1
1

m
ip
li
b

2
.0
5
1

1
0
8
0
0
.0
0
0

6
1
.1
9
8

1
0
8
0
0
.0
0
0

2
.7
5
0

1
0
8
0
0
.0
0
0

2
.3
2
7

1
0
8
0
0
.0
0
0

3
.2
4
1

1
0
8
0
0
.0
0
0

ro
c
o
c
o
B
1
0
-0
1
1
0
0
0

m
ip
li
b

7
4
.9
4
3

1
0
8
0
0
.0
0
0

7
4
.9
4
3

1
0
8
0
0
.0
0
0

7
4
.9
4
3

1
0
8
0
0
.0
0
0

7
4
.9
4
3

1
0
8
0
0
.0
0
0

7
4
.9
4
3

1
0
8
0
0
.0
0
0

ro
c
o
c
o
C
1
0
-0
0
1
0
0
0

m
ip
li
b

1
0
0
.0
0
0

9
8
1
.1
3
0

1
0
0
.0
0
0

9
7
6
.5
5
0

1
0
0
.0
0
0

9
8
4
.4
5
0

1
0
0
.0
0
0

9
7
4
.7
3
0

1
0
0
.0
0
0

9
8
8
.4
4
0

ro
i2
a
lp
h
a
3
n
4

m
ip
li
b

1
0
0
.0
0
0

9
3
0
.8
8
0

1
0
0
.0
0
0

9
1
0
.1
6
0

1
0
0
.0
0
0

8
9
7
.7
9
0

1
0
0
.0
0
0

8
5
2
.3
6
0

1
0
0
.0
0
0

9
4
5
.3
8
0

ro
i5
a
lp
h
a
1
0
n
8

m
ip
li
b

4
6
.5
7
1

1
0
8
0
0
.0
0
0

6
8
.9
3
1

1
0
8
0
0
.0
0
0

6
8
.9
3
1

1
0
8
0
0
.0
0
0

4
6
.5
7
4

1
0
8
0
0
.0
0
0

6
8
.7
7
4

1
0
8
0
0
.0
0
0

ro
ll
3
0
0
0

m
ip
li
b

1
0
0
.0
0
0

1
6
7
2
.6
7
0

1
0
0
.0
0
0

6
1
9
.7
2
0

1
0
0
.0
0
0

4
8
3
.0
3
0

1
0
0
.0
0
0

4
2
7
.3
5
0

1
0
0
.0
0
0

4
9
2
.8
2
0

Detailed Results of the Computational Experiments 108
T
ab
le
A
.2
:
R
es
ul
ts

fo
r
th
e
ex
ec
ut
io
n
of

C
O
IN

-O
R
B
ra
nc
h-
an
d-
C
ut

so
lv
er

(c
on
ti
nu
ed
).

in
s
t
a
n
c
e

g
r
o
u
p

c
b
c

c
b
c
+
c
g

-{
c
lq
s
t
r
}

-{
b
k
c
lq
e
x
t
}

-{
o
d
d
w
}

g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e

s1
0
0

m
ip
li
b

7
9
.8
7
1

1
0
8
0
0
.0
0
0

8
5
.1
5
6

1
0
8
0
0
.0
0
0

7
9
.8
7
1

1
0
8
0
0
.0
0
0

7
9
.8
7
1

1
0
8
0
0
.0
0
0

7
9
.8
7
1

1
0
8
0
0
.0
0
0

s2
5
0
r1
0

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

sa
te
ll
it
e
s2
-4
0

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

sa
te
ll
it
e
s2
-6
0
-f
s

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

sa
v
sc
h
e
d
1

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

sc
t2

m
ip
li
b

6
9
.6
1
9

1
0
8
0
0
.0
0
0

6
9
.6
1
9

1
0
8
0
0
.0
0
0

6
9
.6
1
9

1
0
8
0
0
.0
0
0

6
9
.6
1
9

1
0
8
0
0
.0
0
0

6
9
.6
1
9

1
0
8
0
0
.0
0
0

se
y
m
o
u
r

m
ip
li
b

5
2
.9
4
9

1
0
8
0
0
.0
0
0

5
2
.9
4
9

1
0
8
0
0
.0
0
0

5
2
.9
4
9

1
0
8
0
0
.0
0
0

5
2
.9
4
9

1
0
8
0
0
.0
0
0

5
2
.9
4
9

1
0
8
0
0
.0
0
0

se
y
m
o
u
r1

m
ip
li
b

1
0
0
.0
0
0

7
4
2
.7
9
0

1
0
0
.0
0
0

7
4
4
.0
0
0

1
0
0
.0
0
0

7
4
5
.0
0
0

1
0
0
.0
0
0

7
3
6
.7
7
0

1
0
0
.0
0
0

7
3
1
.9
5
0

si
n
g
3
2
6

m
ip
li
b

6
2
.7
0
9

1
0
8
0
0
.0
0
0

6
2
.7
0
9

1
0
8
0
0
.0
0
0

6
2
.7
0
9

1
0
8
0
0
.0
0
0

6
2
.7
0
9

1
0
8
0
0
.0
0
0

6
2
.7
0
9

1
0
8
0
0
.0
0
0

si
n
g
4
4

m
ip
li
b

6
9
.5
5
4

1
0
8
0
0
.0
0
0

7
3
.1
2
1

1
0
8
0
0
.0
0
0

7
0
.8
6
1

1
0
8
0
0
.0
0
0

7
0
.7
1
2

1
0
8
0
0
.0
0
0

7
1
.7
3
8

1
0
8
0
0
.0
0
0

sn
p
-0
2
-0
0
4
-1
0
4

m
ip
li
b

9
8
.9
7
1

1
0
8
0
0
.0
0
0

9
8
.9
7
1

1
0
8
0
0
.0
0
0

9
8
.9
7
1

1
0
8
0
0
.0
0
0

9
8
.9
7
2

1
0
8
0
0
.0
0
0

9
8
.9
7
1

1
0
8
0
0
.0
0
0

so
rr
e
ll
3

m
ip
li
b

6
9
.7
0
6

1
0
8
0
0
.0
0
0

9
9
.2
5
0

1
0
8
0
0
.0
0
0

9
9
.2
5
4

1
0
8
0
0
.0
0
0

9
9
.1
7
6

1
0
8
0
0
.0
0
0

9
9
.2
5
0

1
0
8
0
0
.0
0
0

sp
1
5
0
x
3
0
0
d

m
ip
li
b

9
5
.0
1
1

1
0
8
0
0
.0
0
0

9
4
.9
3
2

1
0
8
0
0
.0
0
0

9
5
.0
1
1

1
0
8
0
0
.0
0
0

9
5
.0
1
1

1
0
8
0
0
.0
0
0

9
5
.0
1
1

1
0
8
0
0
.0
0
0

sp
9
7
a
r

m
ip
li
b

4
9
.4
9
6

1
0
8
0
0
.0
0
0

4
9
.4
9
6

1
0
8
0
0
.0
0
0

4
9
.4
9
6

1
0
8
0
0
.0
0
0

4
9
.4
9
6

1
0
8
0
0
.0
0
0

4
9
.4
9
6

1
0
8
0
0
.0
0
0

sp
9
8
a
r

m
ip
li
b

7
7
.4
8
1

1
0
8
0
0
.0
0
0

7
7
.4
8
1

1
0
8
0
0
.0
0
0

7
7
.4
8
1

1
0
8
0
0
.0
0
0

7
7
.4
8
1

1
0
8
0
0
.0
0
0

7
7
.4
8
1

1
0
8
0
0
.0
0
0

sp
li
c
e
1
k
1

m
ip
li
b

0
.0
6
8

1
0
8
0
0
.0
0
0

0
.0
6
8

1
0
8
0
0
.0
0
0

0
.0
6
8

1
0
8
0
0
.0
0
0

0
.0
6
8

1
0
8
0
0
.0
0
0

0
.0
6
8

1
0
8
0
0
.0
0
0

sp
ri
n
t_

e
a
rl
y
0
1

ro
st
e
ri
n
g

1
0
0
.0
0
0

5
6
1
.3
7
0

1
0
0
.0
0
0

3
2
.4
8
0

1
0
0
.0
0
0

2
1
.8
3
0

1
0
0
.0
0
0

3
3
.4
6
0

1
0
0
.0
0
0

3
7
.0
5
0

sp
ri
n
t_

e
a
rl
y
0
2

ro
st
e
ri
n
g

1
0
0
.0
0
0

1
2
5
1
.0
2
0

1
0
0
.0
0
0

3
4
.4
7
0

1
0
0
.0
0
0

3
7
.6
5
0

1
0
0
.0
0
0

3
4
.3
5
0

1
0
0
.0
0
0

3
7
.4
6
0

sp
ri
n
t_

h
id
d
e
n
0
1

ro
st
e
ri
n
g

1
0
0
.0
0
0

1
0
3
8
1
.2
1
0

1
0
0
.0
0
0

2
0
0
.5
7
0

1
0
0
.0
0
0

1
1
3
.1
7
0

1
0
0
.0
0
0

2
0
1
.6
0
0

1
0
0
.0
0
0

1
0
2
.6
0
0

sp
ri
n
t_

h
id
d
e
n
0
2

ro
st
e
ri
n
g

1
0
0
.0
0
0

4
2
6
.2
9
0

1
0
0
.0
0
0

4
9
.9
8
0

1
0
0
.0
0
0

2
9
.0
0
0

1
0
0
.0
0
0

5
2
.1
3
0

1
0
0
.0
0
0

4
7
.7
6
0

sp
ri
n
t_

la
te
0
1

ro
st
e
ri
n
g

1
0
0
.0
0
0

8
8
5
0
.0
8
0

1
0
0
.0
0
0

1
0
4
.0
1
0

1
0
0
.0
0
0

1
1
9
.4
2
0

1
0
0
.0
0
0

1
0
5
.3
0
0

1
0
0
.0
0
0

1
0
7
.3
0
0

sp
ri
n
t_

la
te
0
2

ro
st
e
ri
n
g

1
0
0
.0
0
0

1
4
6
3
.5
8
0

1
0
0
.0
0
0

5
7
.8
4
0

1
0
0
.0
0
0

3
6
.0
0
0

1
0
0
.0
0
0

6
0
.2
7
0

1
0
0
.0
0
0

6
0
.9
1
0

sq
u
a
re
4
1

m
ip
li
b

0
.0
0
6

1
0
8
0
0
.0
0
0

0
.0
0
6

1
0
8
0
0
.0
0
0

0
.0
0
6

1
0
8
0
0
.0
0
0

0
.0
0
6

1
0
8
0
0
.0
0
0

0
.0
0
6

1
0
8
0
0
.0
0
0

sq
u
a
re
4
7

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

st
d
c
6
2
6
2
p

ti
m
e
ta
b
li
n
g

9
5
.2
2
0

1
0
8
0
0
.0
0
0

9
7
.1
0
6

1
0
8
0
0
.0
0
0

9
7
.1
2
3

1
0
8
0
0
.0
0
0

9
5
.4
5
4

1
0
8
0
0
.0
0
0

9
4
.9
3
1

1
0
8
0
0
.0
0
0

su
p
p
o
rt
c
a
se
1
0

m
ip
li
b

8
.0
8
5

1
0
8
0
0
.0
0
0

8
.2
5
7

1
0
8
0
0
.0
0
0

8
.2
5
7

1
0
8
0
0
.0
0
0

8
.2
5
7

1
0
8
0
0
.0
0
0

8
.1
0
5

1
0
8
0
0
.0
0
0

su
p
p
o
rt
c
a
se
1
8

m
ip
li
b

0
.0
4
1

1
0
8
0
0
.0
0
0

0
.0
4
1

1
0
8
0
0
.0
0
0

0
.0
4
1

1
0
8
0
0
.0
0
0

0
.0
4
1

1
0
8
0
0
.0
0
0

0
.0
4
1

1
0
8
0
0
.0
0
0

su
p
p
o
rt
c
a
se
2
6

m
ip
li
b

1
0
0
.0
0
0

3
4
7
5
.9
9
0

1
0
0
.0
0
0

3
6
1
8
.4
2
0

1
0
0
.0
0
0

3
0
3
1
.7
2
0

1
0
0
.0
0
0

3
0
7
9
.0
1
0

1
0
0
.0
0
0

2
9
2
6
.6
8
0

su
p
p
o
rt
c
a
se
3
3

m
ip
li
b

5
4
.2
1
7

1
0
8
0
0
.0
0
0

5
4
.2
1
7

1
0
8
0
0
.0
0
0

5
4
.2
1
7

1
0
8
0
0
.0
0
0

5
4
.2
1
7

1
0
8
0
0
.0
0
0

5
4
.2
1
7

1
0
8
0
0
.0
0
0

su
p
p
o
rt
c
a
se
4
0

m
ip
li
b

9
2
.9
7
3

1
0
8
0
0
.0
0
0

9
6
.4
2
4

1
0
8
0
0
.0
0
0

9
5
.3
2
3

1
0
8
0
0
.0
0
0

9
3
.5
1
8

1
0
8
0
0
.0
0
0

9
4
.8
1
7

1
0
8
0
0
.0
0
0

su
p
p
o
rt
c
a
se
6

m
ip
li
b

3
6
.3
7
1

1
0
8
0
0
.0
0
0

4
2
.2
1
7

1
0
8
0
0
.0
0
0

3
6
.3
7
1

1
0
8
0
0
.0
0
0

3
6
.3
7
1

1
0
8
0
0
.0
0
0

4
0
.5
6
8

1
0
8
0
0
.0
0
0

su
p
p
o
rt
c
a
se
7

m
ip
li
b

1
0
0
.0
0
0

2
1
6
8
.1
9
0

1
0
0
.0
0
0

2
0
2
5
.6
8
0

1
0
0
.0
0
0

2
0
4
5
.1
7
0

1
0
0
.0
0
0

2
1
1
8
.7
9
0

1
0
0
.0
0
0

2
1
6
9
.2
7
0

sw
a
th
1

m
ip
li
b

1
0
0
.0
0
0

1
0
6
.7
2
0

1
0
0
.0
0
0

9
7
.3
1
0

1
0
0
.0
0
0

9
5
.9
2
0

1
0
0
.0
0
0

9
4
.5
5
0

1
0
0
.0
0
0

9
6
.4
6
0

sw
a
th
3

m
ip
li
b

1
0
0
.0
0
0

4
4
1
.3
7
0

1
0
0
.0
0
0

4
5
8
.8
2
0

1
0
0
.0
0
0

4
4
5
.0
1
0

1
0
0
.0
0
0

4
4
2
.1
8
0

1
0
0
.0
0
0

4
3
6
.7
0
0

t1
7
1
7

m
ip
li
b

3
.7
0
3

1
0
8
0
0
.0
0
0

3
.6
8
3

1
0
8
0
0
.0
0
0

3
.6
8
3

1
0
8
0
0
.0
0
0

3
.5
9
8

1
0
8
0
0
.0
0
0

3
.6
8
3

1
0
8
0
0
.0
0
0

Detailed Results of the Computational Experiments 109
T
ab
le
A
.2
:
R
es
ul
ts

fo
r
th
e
ex
ec
ut
io
n
of

C
O
IN

-O
R
B
ra
nc
h-
an
d-
C
ut

so
lv
er

(c
on
ti
nu
ed
).

in
s
t
a
n
c
e

g
r
o
u
p

c
b
c

c
b
c
+
c
g

-{
c
lq
s
t
r
}

-{
b
k
c
lq
e
x
t
}

-{
o
d
d
w
}

g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e

t1
7
2
2

m
ip
li
b

1
4
.7
4
2

1
0
8
0
0
.0
0
0

1
5
.3
6
7

1
0
8
0
0
.0
0
0

1
5
.3
6
7

1
0
8
0
0
.0
0
0

1
4
.9
1
8

1
0
8
0
0
.0
0
0

1
5
.3
6
7

1
0
8
0
0
.0
0
0

ta
_
B
P
W
C
_
5
_
5
_
5

b
in
p
a
ck
in
g

1
0
0
.0
0
0

5
6
.1
5
0

1
0
0
.0
0
0

2
2
.6
3
0

1
0
0
.0
0
0

5
7
.4
5
0

1
0
0
.0
0
0

6
6
.5
4
0

1
0
0
.0
0
0

1
9
.8
8
0

ta
_
B
P
W
C
_
5
_
7
_
1

b
in
p
a
ck
in
g

1
0
0
.0
0
0

2
.1
0
0

1
0
0
.0
0
0

1
.7
6
0

1
0
0
.0
0
0

2
.0
4
0

1
0
0
.0
0
0

1
.7
5
0

1
0
0
.0
0
0

1
.8
0
0

ta
_
B
P
W
C
_
5
_
7
_
4

b
in
p
a
ck
in
g

1
0
0
.0
0
0

2
.0
3
0

1
0
0
.0
0
0

2
.0
0
0

1
0
0
.0
0
0

2
.2
3
0

1
0
0
.0
0
0

1
.9
7
0

1
0
0
.0
0
0

1
.8
8
0

ta
_
B
P
W
C
_
6
_
9
_
8

b
in
p
a
ck
in
g

1
0
0
.0
0
0

4
.2
0
0

1
0
0
.0
0
0

2
.7
6
0

1
0
0
.0
0
0

4
.1
7
0

1
0
0
.0
0
0

2
.7
6
0

1
0
0
.0
0
0

2
.7
5
0

ta
_
B
P
W
C
_
7
_
1
_
8

b
in
p
a
ck
in
g

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

tb
fp
-n
e
tw
o
rk

m
ip
li
b

1
0
0
.0
0
0

3
4
3
.6
2
0

1
0
0
.0
0
0

3
5
1
.8
7
0

1
0
0
.0
0
0

3
4
9
.8
0
0

1
0
0
.0
0
0

3
4
8
.9
3
0

1
0
0
.0
0
0

3
3
6
.2
4
0

tE
L
G
N
_
B
P
W
C
_
6
_
6
_
2
0

b
in
p
a
ck
in
g

8
8
.6
5
6

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

6
9
3
.3
3
0

9
0
.8
3
4

1
0
8
0
0
.0
0
0

9
0
.8
3
4

1
0
8
0
0
.0
0
0

9
0
.8
3
4

1
0
8
0
0
.0
0
0

tE
L
G
N
_
B
P
W
C
_
6
_
8
_
9

b
in
p
a
ck
in
g

1
0
0
.0
0
0

6
.6
0
0

1
0
0
.0
0
0

7
.0
7
0

1
0
0
.0
0
0

5
.7
2
0

1
0
0
.0
0
0

6
.1
9
0

1
0
0
.0
0
0

3
.6
9
0

tE
L
G
N
_
B
P
W
C
_
7
_
6
_
1
6

b
in
p
a
ck
in
g

1
5
.1
7
9

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

5
2
.6
7
0

1
0
0
.0
0
0

4
0
6
.4
9
0

8
8
.6
2
9

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

4
0
.9
8
0

th
o
r5
0
d
d
a
y

m
ip
li
b

2
1
.2
2
4

1
0
8
0
0
.0
0
0

2
6
.6
2
7

1
0
8
0
0
.0
0
0

2
7
.2
0
3

1
0
8
0
0
.0
0
0

2
1
.2
2
4

1
0
8
0
0
.0
0
0

2
4
.4
9
4

1
0
8
0
0
.0
0
0

ti
m
ta
b
1

m
ip
li
b

8
5
.3
8
6

1
0
8
0
0
.0
0
0

8
5
.6
6
9

1
0
8
0
0
.0
0
0

8
5
.6
6
9

1
0
8
0
0
.0
0
0

8
5
.6
1
5

1
0
8
0
0
.0
0
0

8
5
.3
8
6

1
0
8
0
0
.0
0
0

tM
IM

T
_
B
P
P
C
_
6
_
3
_
4

b
in
p
a
ck
in
g

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

tM
IM

T
_
B
P
P
C
_
8
_
7
_
5

b
in
p
a
ck
in
g

6
.7
9
0

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

8
3
5
.4
8
0

1
0
0
.0
0
0

6
2
7
3
.3
2
0

9
1
.2
8
8

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

4
3
3
.3
7
0

tr
1
2
-3
0

m
ip
li
b

7
4
.7
5
6

1
0
8
0
0
.0
0
0

7
4
.7
5
6

1
0
8
0
0
.0
0
0

7
4
.7
5
6

1
0
8
0
0
.0
0
0

7
4
.7
5
6

1
0
8
0
0
.0
0
0

7
4
.7
5
6

1
0
8
0
0
.0
0
0

tr
a
in
in
st
a
n
c
e
2

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

tr
a
in
in
st
a
n
c
e
6

m
ip
li
b

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

tr
d
4
4
5
c

ti
m
e
ta
b
li
n
g

0
.0
2
1

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

4
6
.5
6
0

1
0
0
.0
0
0

4
0
.4
4
0

1
0
0
.0
0
0

3
8
.9
3
0

1
0
0
.0
0
0

4
4
.6
3
0

tr
d
c
ro
o
m
s

ti
m
e
ta
b
li
n
g

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

0
.0
0
0

1
0
8
0
0
.0
0
0

9
.9
3
5

1
0
8
0
0
.0
0
0

tr
d
n
c
1
8

ti
m
e
ta
b
li
n
g

1
9
.9
0
1

1
0
8
0
0
.0
0
0

2
5
.9
1
3

1
0
8
0
0
.0
0
0

2
5
.9
2
5

1
0
8
0
0
.0
0
0

1
9
.1
6
0

1
0
8
0
0
.0
0
0

2
9
.7
9
5

1
0
8
0
0
.0
0
0

tr
d
ta
0
0
1
0

ti
m
e
ta
b
li
n
g

1
0
0
.0
0
0

1
4
3
3
.8
8
0

1
0
0
.0
0
0

9
.4
4
0

1
0
0
.0
0
0

1
7
.0
3
0

1
0
0
.0
0
0

1
8
.8
3
0

1
0
0
.0
0
0

9
.1
1
0

tr
d
ta
4
4
9

ti
m
e
ta
b
li
n
g

1
0
0
.0
0
0

1
5
4
.7
2
0

1
0
0
.0
0
0

2
3
.1
6
0

1
0
0
.0
0
0

2
9
.6
2
0

1
0
0
.0
0
0

7
6
.8
8
0

1
0
0
.0
0
0

1
9
.2
9
0

tr
d
ta
8
2
6
5

ti
m
e
ta
b
li
n
g

8
4
.1
1
1

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

1
4
9
9
.0
5
0

1
0
0
.0
0
0

2
3
6
.9
1
0

9
2
.1
0
6

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

1
3
6
.0
8
0

tr
d
ta
9
9

ti
m
e
ta
b
li
n
g

8
5
.4
4
7

1
0
8
0
0
.0
0
0

8
9
.1
7
7

1
0
8
0
0
.0
0
0

8
9
.8
8
0

1
0
8
0
0
.0
0
0

8
6
.3
2
6

1
0
8
0
0
.0
0
0

8
9
.1
1
6

1
0
8
0
0
.0
0
0

tr
d
ta
tl
9
2
2
0

ti
m
e
ta
b
li
n
g

9
9
.3
7
7

1
0
8
0
0
.0
0
0

9
9
.6
6
0

1
0
8
0
0
.0
0
0

1
0
0
.0
0
0

5
0
1
7
.1
4
0

1
0
0
.0
0
0

5
9
9
1
.9
8
0

1
0
0
.0
0
0

1
7
6
3
.3
4
0

tr
e
n
to
1

m
ip
li
b

5
1
.1
2
5

1
0
8
0
0
.0
0
0

5
0
.9
5
7

1
0
8
0
0
.0
0
0

5
1
.1
1
3

1
0
8
0
0
.0
0
0

5
0
.8
9
7

1
0
8
0
0
.0
0
0

5
0
.9
5
5

1
0
8
0
0
.0
0
0

u
a
_
B
P
W
C
_
1
_
8
_
1
0

b
in
p
a
ck
in
g

1
0
0
.0
0
0

2
2
9
.6
1
0

1
0
0
.0
0
0

1
3
.8
0
0

1
0
0
.0
0
0

5
7
.3
8
0

1
0
0
.0
0
0

1
5
.4
8
0

1
0
0
.0
0
0

1
2
.7
8
0

u
a
_
B
P
W
C
_
1
_
9
_
2

b
in
p
a
ck
in
g

1
0
0
.0
0
0

1
.2
2
0

1
0
0
.0
0
0

1
.0
4
0

1
0
0
.0
0
0

1
.2
0
0

1
0
0
.0
0
0

1
.0
5
0

1
0
0
.0
0
0

1
.0
3
0

u
c
c
a
se
1
2

m
ip
li
b

9
5
.7
7
3

1
0
8
0
0
.0
0
0

9
5
.7
7
3

1
0
8
0
0
.0
0
0

9
5
.7
7
3

1
0
8
0
0
.0
0
0

9
5
.7
7
3

1
0
8
0
0
.0
0
0

9
5
.7
7
3

1
0
8
0
0
.0
0
0

u
c
c
a
se
9

m
ip
li
b

6
.5
7
9

1
0
8
0
0
.0
0
0

6
.5
7
9

1
0
8
0
0
.0
0
0

6
.5
7
9

1
0
8
0
0
.0
0
0

6
.5
7
9

1
0
8
0
0
.0
0
0

6
.5
7
9

1
0
8
0
0
.0
0
0

u
c
t-
su
b
p
ro
b

m
ip
li
b

5
7
.4
4
7

1
0
8
0
0
.0
0
0

6
2
.1
1
1

1
0
8
0
0
.0
0
0

6
2
.8
1
7

1
0
8
0
0
.0
0
0

5
7
.1
5
5

1
0
8
0
0
.0
0
0

6
1
.3
6
4

1
0
8
0
0
.0
0
0

u
E
L
G
N
_
B
P
W
C
_
3
_
2
_
1
8

b
in
p
a
ck
in
g

0
.0
2
1

1
0
8
0
0
.0
0
0

0
.0
2
1

1
0
8
0
0
.0
0
0

0
.0
2
1

1
0
8
0
0
.0
0
0

0
.0
2
1

1
0
8
0
0
.0
0
0

0
.0
2
1

1
0
8
0
0
.0
0
0

u
E
L
G
N
_
B
P
W
C
_
3
_
9
_
1
8

b
in
p
a
ck
in
g

1
0
0
.0
0
0

4
8
.7
5
0

1
0
0
.0
0
0

7
.5
7
0

1
0
0
.0
0
0

1
2
.7
9
0

1
0
0
.0
0
0

8
.0
7
0

1
0
0
.0
0
0

7
.5
3
0

u
M
IM

T
_
B
P
P
C
_
2
_
5
_
2

b
in
p
a
ck
in
g

4
.6
5
9

1
0
8
0
0
.0
0
0

9
6
.8
7
2

1
0
8
0
0
.0
0
0

9
6
.8
7
2

1
0
8
0
0
.0
0
0

6
0
.6
0
5

1
0
8
0
0
.0
0
0

9
6
.8
7
2

1
0
8
0
0
.0
0
0

u
M
IM

T
_
B
P
P
C
_
2
_
9
_
1

b
in
p
a
ck
in
g

1
0
0
.0
0
0

3
.8
3
0

1
0
0
.0
0
0

1
.9
0
0

1
0
0
.0
0
0

3
.8
6
0

1
0
0
.0
0
0

1
.8
7
0

1
0
0
.0
0
0

1
.8
0
0

Detailed Results of the Computational Experiments 110
T
ab
le
A
.2
:
R
es
ul
ts

fo
r
th
e
ex
ec
ut
io
n
of

C
O
IN

-O
R
B
ra
nc
h-
an
d-
C
ut

so
lv
er

(c
on
ti
nu
ed
).

in
s
t
a
n
c
e

g
r
o
u
p

c
b
c

c
b
c
+
c
g

-{
c
lq
s
t
r
}

-{
b
k
c
lq
e
x
t
}

-{
o
d
d
w
}

g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e
g
a
p
c
lo
s
e
d

t
im

e

u
M
IM

T
_
B
P
P
C
_
3
_
7
_
6

b
in
p
a
ck
in
g

2
1
.2
4
8

1
0
8
0
0
.0
0
0

8
9
.9
8
1

1
0
8
0
0
.0
0
0

8
9
.9
8
1

1
0
8
0
0
.0
0
0

4
9
.8
3
2

1
0
8
0
0
.0
0
0

8
9
.9
8
1

1
0
8
0
0
.0
0
0

u
n
it
c
a
l_
7

m
ip
li
b

1
0
0
.0
0
0

8
4
9
5
.0
4
0

1
0
0
.0
0
0

7
9
7
6
.6
2
0

1
0
0
.0
0
0

7
9
7
3
.0
8
0

1
0
0
.0
0
0

8
5
2
9
.8
9
0

1
0
0
.0
0
0

8
3
8
8
.8
7
0

v
a
r-
sm

a
ll
e
m
e
ry
-m

6
j6

m
ip
li
b

6
6
.9
7
9

1
0
8
0
0
.0
0
0

6
6
.9
7
9

1
0
8
0
0
.0
0
0

6
6
.9
7
9

1
0
8
0
0
.0
0
0

6
6
.9
7
9

1
0
8
0
0
.0
0
0

6
6
.9
7
9

1
0
8
0
0
.0
0
0

w
a
ch
p
la
n

m
ip
li
b

1
0
0
.0
0
0

5
5
1
6
.0
0
0

1
0
0
.0
0
0

4
3
4
4
.0
2
0

1
0
0
.0
0
0

8
2
5
6
.9
5
0

1
0
0
.0
0
0

6
3
8
2
.3
2
0

1
0
0
.0
0
0

6
4
4
7
.9
9
0

w
n
q
-n
1
0
0
-m

w
9
9
-1
4

m
ip
li
b

1
2
.7
1
6

1
0
8
0
0
.0
0
0

6
3
.7
0
3

1
0
8
0
0
.0
0
0

6
3
.7
0
3

1
0
8
0
0
.0
0
0

4
4
.2
5
0

1
0
8
0
0
.0
0
0

6
3
.7
0
3

1
0
8
0
0
.0
0
0

	8388a8ccfbacd7781891360fbde0380fe0a1e5a2347b4517f04d695f022e7546.pdf
	8388a8ccfbacd7781891360fbde0380fe0a1e5a2347b4517f04d695f022e7546.pdf
	8388a8ccfbacd7781891360fbde0380fe0a1e5a2347b4517f04d695f022e7546.pdf
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Objectives and Contributions
	1.1.1 Published Papers and Conference Presentations

	1.2 Text Organization

	2 Background and Literature Review
	2.1 Combinatorial Optimization
	2.2 Mixed-Integer Linear Programming
	2.2.1 Preprocessing
	2.2.2 Primal Heuristics
	2.2.3 Branch-and-bound
	2.2.4 Cutting Planes
	2.2.5 Branch-and-cut

	2.3 Conflict Graphs in Mixed-Integer Linear Programming
	2.4 Literature Review
	2.5 Instance Sets

	3 Building Conflict Graphs
	3.1 Probing Technique Based on Feasibility Conditions
	3.2 Fast Detection of Conflicts
	3.2.1 Space Efficient Data Structures
	3.2.2 Query Efficient Data Structures

	3.3 Computational Results
	3.4 Conclusion

	4 Clique Strengthening
	4.1 Computational Results
	4.2 Conclusion

	5 Cutting Planes
	5.1 Clique Inequalities
	5.1.1 Bron-Kerbosch Algorithm

	5.2 Odd-Cycle Inequalities
	5.3 Cut Pool
	5.4 Computational Results
	5.4.1 Pivoting Rules of Bron-Kerbosch Algorithm
	5.4.2 Clique Cut Separator Experiments
	5.4.3 Odd-Cycle Cut Separator Experiments

	5.5 Conclusion

	6 Improving the COIN-OR Branch-and-Cut Solver
	6.1 Computational Results
	6.1.1 Individual Impact of Each Routine
	6.1.2 Results of the New Version of CBC Solver

	6.2 Conclusion

	7 Diving Heuristics
	7.1 Conflict-Based Diving Heuristics
	7.1.1 Conflict Diving
	7.1.2 Modified Degree Diving

	7.2 Computational Results
	7.3 Conclusion

	8 Final Considerations
	8.1 Further Research

	Bibliography
	A Detailed Results of the Computational Experiments

