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Abstract-In this note a matrix formulation of the frequency domain dynamic analysis of SDOF systems 
is presented. The number of terms in the Discrete Fourier Transforms can be arbitrarily selected and the 
transforms are implicitly calculated in the procedure which leads to the response in the time domain. 

INTRODUCI’ION 

The analysis of dynamic response in frequency do- 
main is strongly indicated for structural systems with 
frequency-dependent properties. Linear structural 
dynamic analysis in frequency domain is well known 
and had a great development with the use of the Fast 
Fourier Transform (FFT) algorithm. Nevertheless, 
only recently methods of non-linear dynamic struc- 
tural analysis in the frequency domain have been 
developed. Kawamoto [l] presented an iterative 
method called Hybrid Frequency-Time Domain 
method, or HFTD method, in which the non-linear- 
ities are treated as pseudo-forces. Darbre and 
Wolf [2] presented the segmenting version of HFTD 
procedure and demonstrated its convergence criterion. 
Venancio Filho and Claret [3] presented a method for 
non-linear dynamic analysis in frequency domain 
based on a step-by-step incremental technique with 
linearized steps and a secant stiffness. All these 
methods use the FFT algorithm for calculation of 
direct and inverse discrete Fourier transforms. 

Although the FFT algorithm is computationally 
very efficient it can be. very hard to work in an 
iterative or step-by-step non-linear analysis. The 
number of terms in the discrete series, using the FFT 
algorithm, must be a power of two. Thus, if no 
sufficient precision is achieved with N terms, only 2N 
terms can be used. This fact means that the compu- 
tational effort and the storage memory needed by the 
algorithm can increase very rapidly. On the other 
hand, the FFT algorithm is apart from the procedure 
of the response calculation in the frequency domain, 
implying in the repetition of a set of operations, every 
time it is called. 

In this note a matrix formulation of the dynamic 
response analysis of SDOF systems in the frequency 
domain is presented in which the number of terms in 
the Discrete Fourier Transforms (DFTs) is arbitrarily 
selected. The only restriction is that it must be an odd 

integer. An important feature of this formulation is 
that the DFTs are implicitly executed in the same 
procedure that leads to the response in the time 
domain. It turns out that it is very suitable for 
non-linear dynamic analysis in the frequency domain. 

CLASSICAL FORMULATION 

The dynamic response of a SDOF system in the 
frequency domain can be expressed by the following 
equations [4] 

o(t,) = $ “i’ H(Gm)P(cS,) eRn(mnlw 
m-0 

(1) 

and 
N-l 

P(cii,,,) = At c p(t,) e-‘2n(mniM. 
n-0 

(2) 

The total time interval Tp in which the response is 
to be calculated is divided into N (N odd) equal time 
intervals given by 

(3) 

and the discrete times in which the load is defined are 
given by 

r.=nAl=n$ (Odn<N-1). (4) 

The frequency range is likewise divided into N equal 
intervals A6 expressed as 

A(+ 
P 

(5) 

and the discrete frequencies (3, are taken according 
Table Al (see Appendix 1). 
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In eqn (2), P(&,) is discrete Fourier transform of 
the load; in eqn (l), H(G,) P(&,,J is the discrete 
Fourier transform of the response (or the response in 
the frequency domain) and et(&) is the inverse discrete 
Fourier transform of the response (or the response in 
the time domain). 

The dynamic response expressed by eqns (1) and 
(2) can be numerically determined by the FFT aigor- 
ithm. In dealing with this algorithm, N must be a 
power of two and, consequently, an even integer. 
Nevertheless, as will be subsequently shown, when N 
is even there is an imaginary term in the response. 
In order to get rid of this term, N must be odd. 

Let 

MATRIX ~RMULATION 

P= M&&~(G),&), . . . ,P(G), . . . vN,,-,)l (6) 

and 

be, respectively, the vectors of the load and the 
response at the discrete times 

r, = ndt, (rz = 0, 1,2,. . . , N - l), (8) 

and let 

P = {P(&), P(G,,), P(&), . . . , P(&), . . . I 

P(G - 1 )I (9) 

be the vector of the discrete Fourier transform of the 
load defined at the discrete frequencies && interpreted 
according to Table Al. 

With the definition of eqns (6) and (9), eqn (2) can 
be cast in matrix form as 

P = AtE*P, (!O) 

where the (N x N) matrix E* is defined as the matrix 
whose generic term E& is 

E& = e -i~&?fflN) (11) 

or, explicitly 

E*= 

By the same token, the response from eqn (2) is 
written in matrix form as 

v=!EEHp 
2n * (13) 

where E is the matrix defined in eqn (1 I) with positive 
signs in the exponentiais instead of negative ones, and 
H is the diagonal matrix formed with the complex 
frequency response functions calculated at the dis- 
crete frequencies of Table Al. The typical term of H 
is given by 

mk)=(k -mrz;5,+ir5&-‘, (O<m <N--l), 

(14) 

where k, m, and c are the stiffness, mass, and damping 
of the SDOF system, respectively. Substituting now 
P from eqn (10) into eqn (13), the following equation 
is obtained 

v = f EHE*p. (1% 

Equation (15) expresses the matrix formulation of the 
dynamic analysis of SDOF systems in the f&quency 
domain. In the sequel, it is proven that the matrix 
product EHE*p is rest, provided N is odd. 

Consider from eqn (2) P&J and P&_,), with 
m=O,l,...,(N-1)/2 written in indiciai notation, 
respectively, as 

; W,) = E:,P, 

and 

where j=1,2,..., N - 1. All the corresponding 
terms in the summations of eqns (16) and (17) are 
complex conjugates (except the first ones which are 
real) in face of the proof given in Appendix 2. 
Therefore, P(ui,) and P(G,_,) are complex conju- 
gates. 

Consider now eqn (13) written as 

$+4P, W-0 

e” e* 
e-OWl 

Symmetric 

. . . eo .‘.eO 

. ..e - in(Zn/N) . . . e-.w- W~/N) 

. * . e-9Jowl . , . e-izw- 1)(2dYl 
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where A is given by 

A=EH. (19) 

The n th line of matrix A from eqn (19) can be written 
as the vector 

A,= $... 
{ 

einm(2Wl H(~~). . . ein(N- mWlN) 

x H(ci&_nt). . . 
1 

(20) 

As (ewZn’w, e~N-m)(2n’~) and [H(Q,,), H(8,_,)] are 
pairs of complex conjugates (see Appendices 2 and 1, 
respectively), the typical pair displayed in eqn (20) is 
also a pair of complex conjugates. 

Multiply now A,, from eqn (20), by P, from eqn 
(9), in order to obtain the typical term of v, u,, from 
eqn (18). The result, in indicial notation, is 

ACT 
XV” = &nW&JWrn). (21) 

In this summation, all pairs like 

L%JWL)WJJ, En(N-m~H(~N-m)P(~N-m)l, 
(22) 

where m=l,2,..., N - 1 and where c.Gm is inter- 
preted according to Table Al, are complex conju- 
gates pairs. On the other hand the first term (m = 0) 

in the summation of eqn (21) is real. Therefore, v, is 
a sum of a real term (the first one) with pairs of 
complex conjugates which finally proves that v, is real 
and, consequently, v is real. 

A very important point that must be emphasized is 
that N must be odd, otherwise there would be in the 
summation of eqn (21), a central term 

E !l(N/2) f&&v,2 PY&v72 1 

which has not its complex conjugate in order to form 
a complex conjugate pair. In this way, there would 
exist an imaginary term in the summation which 
produces v,. This is contrary to the condition implied 
in FFT algorithm that N should be a power of two 
and, consequently, even. 

FINAL REMARKS 

Equation (15) establishes a matrix formula for the 
analysis of the response of a SDOF system in the 
frequency domain. The aim of this formulation is to 
minimize the computational effort required in non- 
linear analysis in the frequency domain. On the other 
hand, in eqn (15) the only condition implied over N 
is that it should be odd. Thus, N can be changed 
freely to achieve sufficient precision in the response, 

optimizing the space of memory in the computer and 
the number of operations in the process. 

The matrices E, H and E* have properties that can 
simplify the numerical implementation of eqn (15), 
also reducing the computational effort. 
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APPENDM 1 

The discrete frequencies employed in this formulation 
must be interpreted according Table Al. Taking into ac- 
count the frequencies Cs, from Table Al, H(ci&,) and 
H(e5N_m), eqn (14), are complex conjugate. 

Table Al. Discrete frequencies (N odd) 

m m or (N-m) %I 

0 0 0 
1 1 Afi 
2 2 2A(i, 

. ” ’ 
. . . 

(N - 1)/2 
;;I ;;;; 

[(N - 1)/2]Adi 
(N + 1)/2 [-(N - 1)/2]Aci, 

. . . . . . . 
N-2 2 -2Ac5 
N-l 1 -Be3 

APPENDIX 2 

Apply Euler formula to eimn(**‘~ in order to have 

e”“~2x~M=cos(mn$)+isin(mn$) (A2.1) 

and to e(~R-m~2rl‘vJ to have 

e<N - m)n(Zn/M 

=cos[(N-m)n;]+isin[(N-m)n%] 

=cos(mn$)-isin(mn2). (A2.2) 

Equations (A2.1) and (A2.2) prove that ebnn(2R’n? and 
e@v-mM2ni~ are complex conjugates. 


