Please use this identifier to cite or link to this item:
http://www.repositorio.ufop.br/jspui/handle/123456789/6265
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Leite, Sarah Negreiros de Carvalho | - |
dc.contributor.author | Costa, Thiago Bulhões da Silva | - |
dc.contributor.author | Suarez Uribe, Luisa Fernanda | - |
dc.contributor.author | Soriano, Diogo Coutinho | - |
dc.contributor.author | Yared, Glauco Ferreira Gazel | - |
dc.contributor.author | Coradine, Luis Cláudius | - |
dc.contributor.author | Attux, Romis Ribeiro de Faissol | - |
dc.date.accessioned | 2016-01-28T14:37:20Z | - |
dc.date.available | 2016-01-28T14:37:20Z | - |
dc.date.issued | 2015 | - |
dc.identifier.citation | LEITE, S. N. de C. et al. Comparative analysis of strategies for feature extraction and classification in SSVEP BCIs. Biomedical Signal Processing and Control, v. 21, p. 34-42, 2015. Disponível em: <http://www.sciencedirect.com/science/article/pii/S1746809415000877>. Acesso em: 19 out. 2015. | pt_BR |
dc.identifier.issn | 1746-8094 | - |
dc.identifier.uri | http://www.repositorio.ufop.br/handle/123456789/6265 | - |
dc.description.abstract | Brain–computer interface (BCI) systems based on electroencephalography have been increasingly usedin different contexts, engendering applications from entertainment to rehabilitation in a non-invasiveframework. In this study, we perform a comparative analysis of different signal processing techniquesfor each BCI system stage concerning steady state visually evoked potentials (SSVEP), which includes: (1)feature extraction performed by different spectral methods (bank of filters, Welch’s method and the mag-nitude of the short-time Fourier transform); (2) feature selection by means of an incremental wrapper,a filter using Pearson’s method and a cluster measure based on the Davies–Bouldin index, in additionto a scenario with no selection strategy; (3) classification schemes using linear discriminant analysis(LDA), support vector machines (SVM) and extreme learning machines (ELM). The combination of suchmethodologies leads to a representative and helpful comparative overview of robustness and efficiency ofclassical strategies, in addition to the characterization of a relatively new classification approach (definedby ELM) applied to the BCI-SSVEP systems. | pt_BR |
dc.language.iso | en_US | pt_BR |
dc.title | Comparative analysis of strategies for feature extraction and classification in SSVEP BCIs. | pt_BR |
dc.type | Artigo publicado em periodico | pt_BR |
dc.rights.license | O periódico Biomedical Signal Processing and Control concede permissão para depósito deste artigo no Repositório Institucional da UFOP. Número da licença: 3736501335741. | pt_BR |
dc.identifier.doi | https://doi.org/10.1016/j.bspc.2015.05.008 | - |
Appears in Collections: | DEELT - Artigos publicados em periódicos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ARTIGO_ComparativeAnalysisStrategies.pdf | 2,3 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.