Please use this identifier to cite or link to this item: http://www.repositorio.ufop.br/jspui/handle/123456789/17271
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAvelar, Danilo Vilela-
dc.contributor.authorBrochero Martinez, Fabio Enrique-
dc.contributor.authorRibas, Sávio-
dc.date.accessioned2023-08-18T20:47:37Z-
dc.date.available2023-08-18T20:47:37Z-
dc.date.issued2022pt_BR
dc.identifier.citationAVELAR, D. V.; BROCHERO MARTINEZ, F. E.; RIBAS, S. On the direct and inverse zero-sum problems over Cn ⋊s C2. Journal of Combinatorial Theory Series A, v. 197, artigo 105751, 2023. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0097316523000195>. Acesso em: 06 jul. 2023.pt_BR
dc.identifier.issn1096-089-
dc.identifier.urihttp://www.repositorio.ufop.br/jspui/handle/123456789/17271-
dc.description.abstractLet Cn be the cyclic group of order n. In this paper, we provide the exact values of some zero-sum constants over Cn ⋊s C2 where s 6≡ ±1 (mod n), namely η-constant, Gao constant, and Erdős- Ginzburg-Ziv constant (the latter for all but a “small” family of cases). As a consequence, we prove the Gao’s and Zhuang-Gao’s Conjectures for groups of this form. We also solve the associated inverse problems by characterizing the structure of product-one free sequences over Cn ⋊s C2 of maximum length.pt_BR
dc.language.isoen_USpt_BR
dc.rightsrestritopt_BR
dc.titleOn the direct and inverse zero-sum problems over Cn ⋊s C2.pt_BR
dc.typeArtigo publicado em periodicopt_BR
dc.identifier.uri2https://www.sciencedirect.com/science/article/pii/S0097316523000195pt_BR
dc.identifier.doihttps://doi.org/10.1016/j.jcta.2023.105751pt_BR
Appears in Collections:DEMAT - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ARTIGO_DirectInverseZero.pdf
  Restricted Access
277,73 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.