Please use this identifier to cite or link to this item: http://www.repositorio.ufop.br/jspui/handle/123456789/17267
Title: Results on a strongly coupled, asymptotically linear pseudo-relativistic Schrödinger system : ground state, radial symmetry and Hölder regularity.
Authors: Bueno, Hamilton Prado
Mamani, Guido Gutierrez
Medeiros, Aldo Henrique de Souza
Pereira, Gilberto de Assis
Keywords: Pseudo-relativistic Schrödinger operator
Asymptotic linear system
Nehari–Pohozaev manifold
Issue Date: 2022
Citation: BUENO, H. P. et al. Results on a strongly coupled, asymptotically linear pseudo-relativistic Schrödinger system: ground state, radial symmetry and Hölder regularity. Nonlinear Analysis, v. 221, artigo 112916, abr. 2022. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0362546X22000839>. Acesso em: 06 jul. 2023.
Abstract: In this paper we consider the asymptotically linear, strongly coupled nonlinear system ⎧ ⎪⎨ ⎪⎩ √ −∆ + m2 u = u 2 + v 2 1 + s(u2 + v 2) u + λv, √ −∆ + m2 v = u 2 + v 2 1 + s(u2 + v 2) v + λu, where m > 0, 0 < λ < m and 0 < s < 1/(λ + m) are constants. By applying the Nehari–Pohozaev manifold, we prove that our system has a ground state solution. We also prove that solutions of this system are radially symmetric and belong to C0,μ(RN ) for some 0 < μ < 1 and each N > 1.
URI: http://www.repositorio.ufop.br/jspui/handle/123456789/17267
metadata.dc.identifier.uri2: https://www.sciencedirect.com/science/article/pii/S0362546X22000839
metadata.dc.identifier.doi: https://doi.org/10.1016/j.na.2022.112916
ISSN: 0362-546X
Appears in Collections:DEMAT - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ARTIGO_ResultsStronglyCoupled.pdf
  Restricted Access
784,38 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.