Please use this identifier to cite or link to this item:
http://www.repositorio.ufop.br/jspui/handle/123456789/16136
Title: | On a singular minimizing problem. |
Authors: | Ercole, Grey Pereira, Gilberto de Assis |
Keywords: | Asymptotic behavior log-Sobolev inequality p-Laplacian Singular problem |
Issue Date: | 2018 |
Citation: | ERCOLE, G.; PEREIRA, G. de A. On a singular minimizing problem. Journal D Analyse Mathematique, v. 135, p. 575-598, 2018. Disponível em: <https://link.springer.com/article/10.1007/s11854-018-0040-0>. Acesso em: 06 jul. 2022. |
Abstract: | For each q ∈ (0, 1) let λq(Ω) := inf k∇vk p Lp(Ω) : v ∈ W1,p 0 (Ω) and Z Ω |v| q dx = 1, where p > 1 and Ω is a bounded and smooth domain of R N , N ≥ 2. We first show that 0 < μ(Ω) := lim q→0+λq(Ω)|Ω| p q < ∞, where |Ω| = R Ω dx. Then, we prove that μ(Ω) = min (k∇vk p Lp(Ω) : v ∈ W1,p 0 (Ω) and lim q→0+ 1 |Ω| Z Ω |v| q dx 1 q = 1) and that μ(Ω) is reached by a function u ∈ W1,p 0 (Ω), which is positive in Ω, belongs to C 0,α(Ω), for some α ∈ (0, 1), and satisfies − div(|∇u| p−2 ∇u) = μ(Ω)|Ω| −1 u −1 in Ω, and Z Ω log udx = 0. We also show that μ(Ω)−1 is the best constant C in the following log-Sobolev type inequality exp 1 |Ω| Z Ω log |v| p dx ≤ C k∇vk p Lp(Ω) , v ∈ W1,p 0 (Ω) and that this inequality becomes an equality if, and only if, v is a scalar multiple of u and C = μ(Ω)−1. |
URI: | http://www.repositorio.ufop.br/jspui/handle/123456789/16136 |
metadata.dc.identifier.uri2: | https://link.springer.com/article/10.1007/s11854-018-0040-0 |
metadata.dc.identifier.doi: | https://doi.org/10.1016/j.jmaa.2022.126225 |
ISSN: | 1565-8538 |
Appears in Collections: | DEMAT - Artigos publicados em periódicos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ARTIGO_SingularMinimizingProblem.pdf Restricted Access | 261,02 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.