Please use this identifier to cite or link to this item: http://www.repositorio.ufop.br/jspui/handle/123456789/16134
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLeme, Leandro Correia Paes-
dc.contributor.authorRodrigues, Bruno Mendes-
dc.date.accessioned2023-02-07T18:25:57Z-
dc.date.available2023-02-07T18:25:57Z-
dc.date.issued2022pt_BR
dc.identifier.citationLEME, L. C. P.; RODRIGUES, B. M. Existence of a positive solution for a class of non-local elliptic problem with critical growth in Rn. Mediterranean Journal of Mathematics, v. 19, n. 67, 2022. Disponível em: <https://link.springer.com/article/10.1007/s00009-022-02012-7>. Acesso em: 06 jul. 2022.pt_BR
dc.identifier.issn1660-5454-
dc.identifier.urihttp://www.repositorio.ufop.br/jspui/handle/123456789/16134-
dc.description.abstractIn this article, we consider the following non-local elliptic equation with critical growth ⎧⎪⎨⎪⎩− a + b RN |∇u| 2 dx p−1 2 Δu = λk(x)uq + u2∗−1, x ∈ RN , u ∈ D1,2(RN ), where N ≥ 3, λ > 0, 2∗:= 2N N−2 , 1 < p ≤ q < 2∗ − 1, a ≥ 0, b ≥ 0 and k(x) ∈ L 2∗ 2∗−q−1 (RN ) is a nonnegative function. Using variational methods and concentration-compactness principle, we obtain a positive solution.pt_BR
dc.language.isoen_USpt_BR
dc.rightsrestritopt_BR
dc.subjectNon-local elliptic equationpt_BR
dc.subjectCritical exponentpt_BR
dc.subjectVariational methodpt_BR
dc.titleExistence of a positive solution for a class of non-local elliptic problem with critical growth in Rn.pt_BR
dc.typeArtigo publicado em periodicopt_BR
dc.identifier.uri2https://link.springer.com/article/10.1007/s00009-022-02012-7pt_BR
dc.identifier.doihttps://doi.org/10.1007/s00009-022-02012-7pt_BR
Appears in Collections:DEMAT - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ARTIGO_ExistencePositiveSolution.pdf
  Restricted Access
370,06 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.