Please use this identifier to cite or link to this item: http://www.repositorio.ufop.br/jspui/handle/123456789/16133
Title: Existence and multiplicity results for an elliptic problem involving cylindrical weights and a homogeneous term μ.
Authors: Assunção, Ronaldo Brasileiro
Miyagaki, Olimpio Hiroshi
Leme, Leandro Correia Paes
Rodrigues, Bruno Mendes
Keywords: Supercritical
Degenerate operator
Variational methods
Issue Date: 2019
Citation: ASSUNÇÃO, R. B. et al. Existence and multiplicity results for an elliptic problem involving cylindrical weights and a homogeneous term μ. Mediterranean Journal of Mathematics, v. 16, n. 33, 2019. Disponível em: <https://link.springer.com/article/10.1007/s00009-019-1317-y>. Acesso em: 06 jul. 2022.
Abstract: We consider the following elliptic problem ⎧⎨ ⎩ − div |∇u| p−2 ∇u |y| ap = μ |u| p−2 u |y| p(a+1) + h(x) |u| q−2 u |y| bq + f(x, u) in Ω, u = 0 on ∂Ω, in an unbounded cylindrical domain Ω := {(y, z) ∈ Rm+1 × RN−m−1 ; 0 <A< |y| <B< ∞}, where A, B ∈ R+, p > 1, 1 ≤ m<N − p, q := N p N − p(a + 1 − b), 0 ≤ μ < μ := m + 1 − p(a + 1) p p , h ∈ L N q (Ω) ∩ L∞(Ω) is a positive function and f : Ω × R → R is a Carath ́eodory function with growth at infinity. Using the Krasnoselski’s genus and applying Z2 version of the Mountain Pass Theorem, we prove, under certain assumptions about f, that the above problem has infinite invariant solutions.
URI: http://www.repositorio.ufop.br/jspui/handle/123456789/16133
metadata.dc.identifier.uri2: https://link.springer.com/article/10.1007/s00009-019-1317-y
metadata.dc.identifier.doi: https://doi.org/10.1007/s00009-019-1317-y
ISSN: 1660-5454
Appears in Collections:DEMAT - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ARTIGO_ExistenceMultiplicityResults.pdf
  Restricted Access
451,13 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.