Please use this identifier to cite or link to this item:
Title: Artificial neural network-based committee machine for predicting fuel rate and sulfur contents of a coke blast furnace.
Authors: Assis, Paulo Santos
Carvalho, Leonard de Araújo
Irgaliyev, A.
Keywords: Modeling
Issue Date: 2019
Citation: ASSIS, P. S.; CARVALHO, L. de A.; IRGALYEV, A. Artificial neural network-based committee machine for predicting fuel rate and sulfur contents of a coke blast furnace. International Journal of Science and Research, v. 8, n. 12, p. 1492-1495, dez. 2019. Disponível em: <>. Acesso em: 10 mar. 2020.
Abstract: Being developed over the centuries, it currently occupies a prominent role in the world production scenario, being the stage of the process related to the obtaining of hot metal an element of great importance to establish the competitiveness of national steel. From this perspective, the control of the process of obtaining hot metal is relevant to ensure competitive prices and a sustainable process. Considering the presented situation, this research developed a committee machine, being three networks to predict each of the study variables, namely: i) fuel rate; ii) sulfur content in hot metal. The committee machine was developed to model the hot metal during the operation of a coke blast furnace, according to the input parameters provided. The results obtained by the committee machine were lower than those of the neural networks acting alone, and the following RMSE values were verified: i) fuel rate: 4.88 (network 1), 4.74 (network 2), 6.14 (network 3) and 4.67 (committee); ii) sulfur content: 0.00915 (network 1), 0.00917 (network 2), 0.00974 (network 3) and 0.00726 (committee). Considering the results obtained, the model can be used to provide important support in monitoring and decision making during the operation.
ISSN: 2319-7064
metadata.dc.rights.license: Licensed Under Creative Commons Attribution CC BY. Fonte: o próprio artigo.
Appears in Collections:DEMET - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ARTIGO_ArtificialNeuralNetwork.pdf210,31 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.