Please use this identifier to cite or link to this item: http://www.repositorio.ufop.br/jspui/handle/123456789/12026
Title: Association of high-fat diet with neuroinflammation, anxiety-like defensive behavioral responses, and altered thermoregulatory responses in male rats.
Authors: Noronha, Sylvana Izaura Salyba Rendeiro de
Lima, Paulo Marcelo de
Campos, Glenda Siqueira Viggiano
Chírico, Máira Tereza Talma
Abreu, Aline Rezende Ribeiro de
Figueiredo, Amanda Braga de
Silva, Fernanda Cacilda dos Santos
Chianca Júnior, Deoclécio Alves
Lowry, Christopher
Menezes, Rodrigo Cunha Alvim de
Keywords: Basolateral amygdala
FOS - immunoreactive cell
Dorsomedial hypothalamic nucleus
Neuroinflammation
Issue Date: 2019
Citation: NORONHA, S. I. S. R. et al. Association of high-fat diet with neuroinflammation, anxiety-like defensive behavioral responses, and altered thermoregulatory responses in male rats. Brain Behavior and Immunity, v. 80, p. 500-511, 2019. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0889159119301370?via%3Dihub>. Acesso em: 10 fev. 2020.
Abstract: Overweight and obesity are a worldwide pandemic affecting billions of people. These conditions have been associated with a chronic low-grade inflammatory state that is recognized as a risk factor for a range of somatic diseases as well as neurodevelopmental disorders, anxiety disorders, trauma- and stressor-related disorders, and affective disorders. We previously reported that the ingestion of a high-fat diet (HFD; 45% fat kcal/g) for nine weeks was capable of inducing obesity in rats in association with increased reactivity to stress and increased anxiety-related defensive behavior. In this study, we conducted a nine-week diet protocol to induce obesity in rats, followed by investigation of anxiety-related defensive behavioral responses using the elevated T-maze (ETM), numbers of FOS-immunoreactive cells after exposure of rats to the avoidance or escape task of the ETM, and neuroinflammatory cytokine expression in hypothalamic and amygdaloid nuclei. In addition, we investigated stress-induced cutaneous thermoregulatory responses during exposure to an open-field (OF). Here we demonstrated that nine weeks of HFD intake induced obesity, in association with increased abdominal fat pad weight, increased anxiety-related defensive behavioral responses, and increased proinflammatory cytokines in hypothalamic and amygdaloid nuclei. In addition, HFD exposure altered avoidance- or escape task-induced FOSimmunoreactivity within brain structures involved in control of neuroendocrine, autonomic, and behavioral responses to aversive stimuli, including the basolateral amygdala (BLA) and dorsomedial (DMH), paraventricular (PVN) and ventromedial (VMH) hypothalamic nuclei. Furthermore, rats exposed to HFD, relative to control dietfed rats, responded with increased tail skin temperature at baseline and throughout exposure to an open-field apparatus. These data are consistent with the hypothesis that HFD induces neuroinflammation, alters excitability of brain nuclei controlling neuroendocrine, autonomic, and behavioral responses to stressful stimuli, and enhances stress reactivity and anxiety-like defensive behavioral responses.
URI: http://www.repositorio.ufop.br/handle/123456789/12026
metadata.dc.identifier.uri2: https://www.sciencedirect.com/science/article/pii/S0889159119301370?via%3Dihub
metadata.dc.identifier.doi: https://doi.org/10.1016/j.bbi.2019.04.030
ISSN: 0889-1591
Appears in Collections:DECBI - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ARTIGO_AssociationHighFat.pdf
  Restricted Access
1,46 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.