Please use this identifier to cite or link to this item:
Title: A convergence indicator for multi-objective optimisation algorithms.
Authors: Santos, Thiago Fontes
Xavier, Sebastião Martins
Keywords: Shannon entropy
Performance measure
Issue Date: 2018
Citation: SANTOS, T. F.; XAVIER, S. M. A convergence indicator for multi-objective optimisation algorithms. TEMA. Tendências em Matemática Aplicada e Computacional, v. 19, n. 3, p. 437-448, 2018. Disponível em: <>. Acesso em: 19 mar. 2019.
Abstract: The algorithms of multi-objective optimisation had a relative growth in the last years. Thereby, it requires some way of comparing the results of these. In this sense, performance measures play a key role. In general, it’s considered some properties of these algorithms such as capacity, convergence, diversity or convergence-diversity. There are some known measures such as generational distance (GD), inverted generational distance (IGD), hypervolume (HV), Spread(∆), Averaged Hausdorff distance (∆p), R2-indicator, among others. In this paper, we focuses on proposing a new indicator to measure convergence based on the traditional formula for Shannon entropy. The main features about this measure are: 1) It does not require to know the true Pareto set and 2) Medium computational cost when compared with Hypervolume.
ISSN: 2179-8451
metadata.dc.rights.license: Todo o conteúdo do periódico Tema, exceto onde identificado, está licenciado sob uma licença Creative Commons 4.0 que permite copiar, distribuir e transmitir o trabalho em qualquer suporte ou formato desde que sejam citados o autor e o licenciante. Fonte: Tema <>. Acesso em: 13 abr. 2019.
Appears in Collections:DEMAT - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ARTIGO_ConvergenceIndicatorMultiobjective.pdf3,05 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.