Please use this identifier to cite or link to this item: http://www.repositorio.ufop.br/jspui/handle/123456789/10535
Title: Multiplicity of solutions for p-biharmonic problems with critical growth.
Authors: Bueno, Hamilton Prado
Leme, Leandro Correia Paes
Rodrigues, Helder Cândido
Issue Date: 2018
Citation: BUENO, H. P.; LEME, L. C. P.; RODRIGUES, H. C. Multiplicity of solutions for p-biharmonic problems with critical growth. Rocky Mountain Journal of Mathematics, v. 48, n. 2, p. 425-442, 2018. Disponível em: <https://projecteuclid.org/euclid.rmjm/1528077624>. Acesso em: 16 jun. 2018.
Abstract: We prove the existence of infinitely many solutions for p-biharmonic problems in a bounded, smooth domain Ω with concave-convex nonlinearities dependent upon a parameter λ and a positive continuous function f:Ω¯¯¯¯→R. We simultaneously handle critical case problems with both Navier and Dirichlet boundary conditions by applying the Ljusternik-Schnirelmann method. The multiplicity of solutions is obtained when λ is small enough. In the case of Navier boundary conditions, all solutions are positive, and a regularity result is proved.
URI: http://www.repositorio.ufop.br/handle/123456789/10535
metadata.dc.identifier.uri2: https://projecteuclid.org/euclid.rmjm/1528077624
ISSN: 00357596
Appears in Collections:DEMAT - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ARTIGO_MultiplicitySolutionsBiharmonic.pdf
  Restricted Access
164,13 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.